1
|
Casalini T, Mann J, Pepin X. Predicting Surface pH in Unbuffered Conditions for Acids, Bases, and Their Salts - A Review of Modeling Approaches and Their Performance. Mol Pharm 2024; 21:513-534. [PMID: 38127789 DOI: 10.1021/acs.molpharmaceut.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Dissolution of ionizable drugs and their salts is a function of drug surface solubility driven by the surface pH, i.e., the microenvironmental pH at the solid/liquid interface, which will deviate from bulk pH when there is an acid-base reaction occurring at the solid/liquid interface. In this work, we first present a brief overview of the modeling approaches available in the literature, classified according to the rate-determining step assumed in the dissolution process. In the second part, we present and evaluate the prediction performance of two different modeling approaches for surface pH. The first method relies only on thermodynamic equilibria, while the second method accounts for transport phenomena of charged compounds through the diffusional boundary layer using the Nernst - Planck equation. Model outcomes are compared with experimental data taken from the literature and obtained during this work. In terms of surface pH predictions, the models provide identical values for weak acids or weak bases. The models' outcomes for bases are in good agreement with experimental data in acidic conditions (bulk pH 1-4), while overpredictions are observed in the 5-7 bulk pH range in a system-dependent manner. Deviations can be related to the effect of surface dissolution (also referred to as surface reaction), which may become a controlling mechanism and slow the replenishment of the unionized drug at the surface of the crystal. Surface pH predictions for acids are generally in good agreement with experiments, with a slight underestimation for some drug examples, which could be related to errors in intrinsic solubility determination or to the assumption of thermodynamic equilibrium at the surface of the drug. A good agreement is also observed for salts with the thermodynamic model except for mesylate salts, suggesting that other phenomena, not currently included in the thermodynamic equilibrium model, may determine the surface pH.
Collapse
Affiliation(s)
- Tommaso Casalini
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg 431 50, Sweden
| | - James Mann
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Xavier Pepin
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| |
Collapse
|
2
|
Mendis NP, Lakerveld R. An In Vitro Model for Cocrystal Dissolution with Simultaneous Surface and Bulk Precipitation. Mol Pharm 2023; 20:5486-5499. [PMID: 37882573 DOI: 10.1021/acs.molpharmaceut.3c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Cocrystals can be promising means of overcoming the poor aqueous solubility of many drugs. However, precipitation of the stable drug at the cocrystal surface or in the bulk medium is often provoked during cocrystal dissolution due to high drug supersaturation, which prevents sustaining high drug concentrations for enhanced bioavailability. There is a need for predictive in vitro models that can accurately describe this cocrystal dissolution-supersaturation-precipitation (DSP) process to aid drug development and formulation design. Consideration of surface precipitation is often essential for such models given the strong impact of surface precipitation on the drug concentration during cocrystal dissolution. However, DSP models that can explicitly account for the effect of surface precipitation are currently lacking. This work presents a population balance-based model to describe in vitro cocrystal DSP behavior, which accounts for cocrystal dissolution, surface precipitation, and bulk precipitation. Dissolution experiments with carbamazepine-succinic acid cocrystals are conducted for model development and validation. The developed model captures all of the principal experimental trends and predicts the dose-dependent DSP behavior outside the regression data set with reasonable accuracy. The results show that surface precipitation is an essential component of the model. Finally, the new model is integrated with numerical optimization to illustrate how it can be used to identify an optimal dose, particle size, and amount of predissolved coformer.
Collapse
Affiliation(s)
- Nethrue Pramuditha Mendis
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Richard Lakerveld
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
3
|
Song S, Wang L, Xie G, Qu Y, Li H, Wang H, Han P, Tao X. Different Dissolution Molecular Pathways of Azilsartan Crystals with Different Forms Revealed by In Situ Atomic Force Microscopy. J Phys Chem Lett 2023; 14:8191-8198. [PMID: 37671935 DOI: 10.1021/acs.jpclett.3c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Here, using in situ atomic force microscopy (AFM), the dissolution behaviors and dissolution molecular pathways of two azilsartan crystals, the isopropanol solvate (AZ-IPA), and form I (AZ-I), in pure water and 6-30% poly(ethylene glycol) (PEG) aqueous solutions are revealed. The dissolution behaviors of step retreat and etch pit formation are observed on the (100) faces of the two crystals, with a single step corresponding to one molecular monolayer in crystal structures. Etching rates of pits increase with PEG concentration. Furthermore, our results show that AZ-IPA dissolves by the direct detachment of molecules from the step front to solution. Such a mechanism remains even when the PEG concentration changes. However, AZ-I dissolves primarily by the surface diffusion mechanism involving molecular detachment from the step front at first and then diffusion over the terraces before desorption into solution. PEG promotes the dissolution of AZ-I crystals by favoring the molecular detachment from the step front.
Collapse
Affiliation(s)
- Shuhong Song
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Lei Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Guanying Xie
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yaqian Qu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Huimin Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hongshuai Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peizhuo Han
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xutang Tao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
4
|
Lee JH, Lee H, Lee J, Kang TW, Park JH, Shin JH, Lee H, Majhi D, Lee SU, Kim JH. Multicomponent Covalent Organic Framework Solid Electrolyte Allowing Effective Li-Ion Dissociation and Diffusion for All-Solid-State Batteries. ACS NANO 2023; 17:17372-17382. [PMID: 37624768 DOI: 10.1021/acsnano.3c05405] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Organic solid electrolytes compatible with all-solid-state Li metal batteries (LMBs) are essential to ensuring battery safety, high energy density, and long-term cycling performance. However, it remains a challenge to develop an approach to provide organic solid electrolytes with capabilities for the facile dissociation of strong Li-ion pairs and fast transport of ionic components. Herein, a diethylene glycol-modified pyridinium covalent organic framework (DEG-PMCOF) with a well-defined periodic structure is prepared as a multicomponent solid electrolyte with a cationic moiety of high polarity, an additional flexible ion-transporter, and an ordered ionic channel for all-solid-state LMBs. The DEG-containing pyridinium groups of DEG-PMCOF allow a lower dissociation energy of Li salts and a smaller energy barrier of Li-ion transport, leading to high ion conductivity (1.71 × 10-4 S cm-1) and a large Li-ion transfer number (0.61) at room temperature in the solid electrolyte. The DEG-PMCOF solid electrolyte exhibits a wide electrochemical stability window and effectively suppresses the formation of Li dendrites and dead Li in all-solid-state LMBs. Molecular dynamics and density functional theory simulations provide insights into the mechanisms for the enhanced Li-ion transport driven by the integrated diffusion process based on hopping motion, vehicle motion, and free diffusion of DEG-PMCOF. The all-solid-state LMB assembled with a DEG-PMCOF solid electrolyte displays a high specific capacity with a retention of 99% and an outstanding Coulombic efficiency of 99% at various C-rates during long-term cycling. This DEG-PMCOF approach can offer an effective route to design various solid-state Li batteries.
Collapse
Affiliation(s)
- Jun-Hyeong Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hajin Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea
| | - Jaewoo Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Tae Woog Kang
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jung Hyun Park
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, 1 Hazelwood Drive, Champaign, Illinois 61820, United States
| | - Jae-Hoon Shin
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyunji Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Dibyananda Majhi
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sang Uck Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea
| | - Jong-Ho Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| |
Collapse
|
5
|
Kaur M, Yardley V, Wang K, Masania J, Arroo RRJ, Turner DB, Li M. Artemisinin Cocrystals for Bioavailability Enhancement. Part 2: In Vivo Bioavailability and Physiologically Based Pharmacokinetic Modeling. Mol Pharm 2021; 18:4272-4289. [PMID: 34748332 DOI: 10.1021/acs.molpharmaceut.1c00385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the evaluation and prediction of the pharmacokinetic (PK) performance of artemisinin (ART) cocrystal formulations, that is, 1:1 artemisinin/orcinol (ART-ORC) and 2:1 artemisinin/resorcinol (ART2-RES), using in vivo murine animal and physiologically based pharmacokinetic (PBPK) models. The efficacy of the ART cocrystal formulations along with the parent drug ART was tested in mice infected with Plasmodium berghei. When given at the same dose, the ART cocrystal formulation showed a significant reduction in parasitaemia at day 4 after infection compared to ART alone. PK parameters including Cmax (maximum plasma concentration), Tmax (time to Cmax), and AUC (area under the curve) were obtained by determining drug concentrations in the plasma using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), showing enhanced ART levels after dosage with the cocrystal formulations. The dose-response tests revealed that a significantly lower dose of the ART cocrystals in the formulation was required to achieve a similar therapeutic effect as ART alone. A PBPK model was developed using a PBPK mouse simulator to accurately predict the in vivo behavior of the cocrystal formulations by combining in vitro dissolution profiles with the properties of the parent drug ART. The study illustrated that information from classical in vitro and in vivo experimental investigations of the parent drug of ART formulations can be coupled with PBPK modeling to predict the PK parameters of an ART cocrystal formulation in an efficient manner. Therefore, the proposed modeling strategy could be used to establish in vitro and in vivo correlations for different cocrystals intended to improve dissolution properties and to support clinical candidate selection, contributing to the assessment of cocrystal developability and formulation development.
Collapse
Affiliation(s)
- Manreet Kaur
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, U.K
| | - Vanessa Yardley
- Department of Infection & Immunity, Faculty of Infectious & Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, U.K
| | - Ke Wang
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, U.K
| | - Jinit Masania
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, U.K
| | - Randolph R J Arroo
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, U.K
| | - David B Turner
- Certara UK Limited, Simcyp Division, Sheffield S1 2BJ, U.K
| | - Mingzhong Li
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, U.K
| |
Collapse
|
6
|
Kaur M, Yardley V, Wang K, Masania J, Botana A, Arroo RRJ, Li M. Artemisinin Cocrystals for Bioavailability Enhancement. Part 1: Formulation Design and Role of the Polymeric Excipient. Mol Pharm 2021; 18:4256-4271. [PMID: 34723557 DOI: 10.1021/acs.molpharmaceut.1c00384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Artemisinin (ART) is a most promising antimalarial agent, which is both effective and well tolerated in patients, though it has therapeutic limitations due to its low solubility, bioavailability, and short half-life. The objective of this work was to explore the possibility of formulating ART cocrystals, i.e., artemisinin-orcinol (ART-ORC) and artemisinin-resorcinol (ART2-RES), as oral dosage forms to deliver ART molecules for bioavailability enhancement. This is the first part of the study, aiming to develop a simple and effective formulation, which can then be tested on an appropriate animal model (i.e., mouse selected for in vivo study) to evaluate their preclinical pharmacokinetics for further development. In the current work, the physicochemical properties (i.e., solubility and dissolution rate) of ART cocrystals were measured to collect information necessary for the formulation development strategy. It was found that the ART solubility can be increased significantly by its cocrystals, i.e., 26-fold by ART-ORC and 21-fold by ART2-RES, respectively. Screening a set of polymers widely used in pharmaceutical products, including poly(vinylpyrrolidone), hydroxypropyl methylcellulose, and hydroxypropyl methylcellulose acetate succinate, based on the powder dissolution performance parameter analysis, revealed that poly(vinylpyrrolidone)/vinyl acetate (PVP-VA) was the most effective crystallization inhibitor. The optimal concentration of PVP-VA at 0.05 mg/mL for the formulation was then determined by a dissolution/permeability method, which represented a simplified permeation model to simultaneously evaluate the effects of a crystallization inhibitor on the dissolution and permeation performance of ART cocrystals. Furthermore, experiments, including surface dissolution of single ART cocrystals monitored by Raman spectroscopy, scanning electron microscopy and diffusion properties of ART in solution measured by 1H and diffusion-ordered spectroscopy nuclear magnetic resonance spectroscopy, provided insights into how the excipient affects the ART cocrystal dissolution performance and bioavailability.
Collapse
Affiliation(s)
- Manreet Kaur
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, U.K
| | - Vanessa Yardley
- Department of Infection & Immunity, Faculty of Infectious & Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, U.K
| | - Ke Wang
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, U.K
| | - Jinit Masania
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, U.K
| | | | - Randolph R J Arroo
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, U.K
| | - Mingzhong Li
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, U.K
| |
Collapse
|
7
|
Effect of Surfactants and Polymers on the Dissolution Behavior of Supersaturable Tecovirimat-4-Hydroxybenzoic Acid Cocrystals. Pharmaceutics 2021; 13:pharmaceutics13111772. [PMID: 34834187 PMCID: PMC8624993 DOI: 10.3390/pharmaceutics13111772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 11/28/2022] Open
Abstract
(1) Background: Pharmaceutical cocrystals have attracted remarkable interest and have been successfully used to enhance the absorption of poorly water-soluble drugs. However, supersaturable cocrystals are sometimes thermodynamically unstable, and the solubility advantages present a risk of precipitation because of the solution-mediated phase transformation (SMPT). Additives such as surfactants and polymers could sustain the supersaturation state successfully, but the effect needs insightful understanding. The aim of the present study was to investigate the roles of surfactants and polymers in the dissolution-supersaturation-precipitation (DSP) behavior of cocrystals. (2) Methods: Five surfactants (SDS, Poloxamer 188, Poloxamer 407, Cremophor RH 40, polysorbate 80) and five polymers (PVP K30, PVPVA 64, HPC, HPMC E5, CMC-Na) were selected as additives. Tecovirimat-4-hydroxybenzoic (TEC-HBA) cocrystals were chosen as a model cocrystal. The TEC-HBA cocrystals were first designed and verified by PXRD, DSC, SEM, and FTIR. The effects of surfactants and polymers on the solubility and dissolution of TEC-HBA cocrystals under sink and nonsink conditions were then investigated. (3) Results: Both the surfactants and polymers showed significant dissolution enhancement effects, and most of the polymers were more effective than the surfactants, according to the longer Tmax and higher Cmax. These results demonstrate that the dissolution behavior of cocrystals might be achieved by the maintained supersaturation effect of the additives. Interestingly, we found a linear relationship between the solubility and Cmax of the dissolution curve for surfactants, while no similar phenomena were found in solutions with polymer. (4) Conclusions: The present study provides a basis for additive selection and a framework for understanding the behavior of supersaturable cocrystals in solution.
Collapse
|
8
|
Zhang Y, Gao Y, Du X, Guan R, He Z, Liu H. Combining Co-Amorphous-Based Spray Drying with Inert Carriers to Achieve Improved Bioavailability and Excellent Downstream Manufacturability. Pharmaceutics 2020; 12:pharmaceutics12111063. [PMID: 33171591 PMCID: PMC7695141 DOI: 10.3390/pharmaceutics12111063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023] Open
Abstract
It is crucial to improve poorly water-soluble orally administered drugs through both preclinical and therapeutic drug discovery. A co-amorphous formulation consisting of two low molecular weight (MW) molecules offers a solubility/dissolubility advantage over its crystalline form by maintaining their amorphous status. Here, we report on a co-amorphous solid dispersion (SD) system that includes inert carriers (lactose monohydrate or microcrystalline cellulose) and co-amorphous sacubitril (SAC)-valsartan (VAL) using the spray drying process. The strong molecular interactions between drugs were the driving force for forming robust co-amorphous SDs. Our system provided the highest solubility with more than ~11.5- and 3.12-times solubility increases when compared with the physical mixtures. Co-amorphous lactose monohydrate (LM) SDs showed better bioavailability of APIs (~356.27.8% and 154.01% for the relative bioavailability of LBQ 657 and valsartan, respectively). Co-amorphous inert carrier SDs possessed an excellent compressibility for the production of a direct compression pharmaceutical product. In conclusion, these brand-new co-amorphous SDs could reduce the number of unit processes to produce a final pharmaceutical product for downstream manufacturability.
Collapse
|
9
|
Omori M, Watanabe T, Uekusa T, Oki J, Inoue D, Sugano K. Effects of Coformer and Polymer on Particle Surface Solution-Mediated Phase Transformation of Cocrystals in Aqueous Media. Mol Pharm 2020; 17:3825-3836. [PMID: 32870691 DOI: 10.1021/acs.molpharmaceut.0c00587] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The purpose of the present study was to investigate the effect of the coformer difference on particle surface solution-mediated phase transformation (PS-SMPT) during cocrystal particle dissolution in aqueous media in the absence and presence of polymers. SMPT can occur either in the bulk phase or at the particle surface because drug molecules can be supersaturated at the dissolving cocrystal surface, as well as in the bulk phase. Previously, bulk phase SMPT has been primarily investigated in formulation development. However, little is known about the effects of coformers and polymers on PS-SMPT of cocrystals. In this study, six carbamazepine (CBZ) cocrystals were used as model cocrystals (malonic acid (MAL), succinic acid (SUC), glutaric acid (GLA), adipic acid (ADP), saccharin (SAC), and nicotinamide (NCT); nonsink dissolution tests were performed with or without a precipitation inhibitor (hydroxypropyl methylcellulose (HPMC)) at pH 6.5. The residual particles were analyzed by powder X-ray diffraction, differential scanning calorimetry, polarized light microscopy (PLM), and scanning electron microscopy. Real-time PLM was used to directly observe rapid PS-SMPT. In the absence of HPMC, supersaturation was not observed in the bulk phase for all cocrystals. All cocrystals rapidly transformed to CBZ dihydrate aggregates via PS-SMPT (mostly within 1 min). In contrast, in the presence of 0.1% HPMC, supersaturation was observed for CBZ-SUC, CBZ-ADP, CBZ-SAC, and CBZ-NCT but not for CBZ-MAL and CBZ-GLA. The cocrystals with lower solubility coformers tended to induce higher supersaturation in the bulk phase. The PS-SMPT of CBZ-SUC, CBZ-ADP, and CBZ-SAC was slowed down by HPMC. By suppressing PS-SMPT, the cocrystals exhibited its supersaturation potential, depending on the properties of each coformer. To take advantage of the supersaturation potential of cocrystals to improve oral drug absorption, it is important to suppress particle surface SMPT in addition to bulk phase SMPT.
Collapse
Affiliation(s)
- Maaya Omori
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Tomohiro Watanabe
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Taiga Uekusa
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Jumpei Oki
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Daisuke Inoue
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|