1
|
Lei D, Xin J, Yao Y, Chen L, Liu J, Wang S, Wang J, Zeng W, Yao C. In situ pain relief during photodynamic therapy by ROS-responsive nanomicelle through blocking VGSC. Colloids Surf B Biointerfaces 2024; 242:114062. [PMID: 38972255 DOI: 10.1016/j.colsurfb.2024.114062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Pain in photodynamic therapy (PDT), resulting from the stimulation of reactive oxygen species (ROS) and local acute inflammation, is a primary side effect of PDT that often leads to treatment interruption or termination, significantly compromising the efficacy of PDT and posing an enduring challenge for clinical practice. Herein, a ROS-responsive nanomicelle, poly(ethylene glycol)-b-poly(propylene sulphide) (PEG-PPS) encapsulated Ce6 and Lidocaine (LC), (ESCL) was used to address these problems. The tumor preferentially accumulated micelles could realize enhanced PDT effect, as well as in situ quickly release LC due to its ROS generation ability after light irradiation, which owes to the ROS-responsive property of PSS. In addition, PSS can suppress inflammatory pain which is one of the mechanisms of PDT induced pain. High LC-loaded efficiency (94.56 %) owing to the presence of the thioether bond of the PPS made an additional pain relief by inhibiting excessive inflammation besides blocking voltage-gated sodium channels (VGSC). Moreover, the anti-angiogenic effect of LC offers further therapeutic effects of PDT. The in vitro and in vivo anti-tumor results revealed significant PDT efficacy. The signals of the sciatic nerve in mice were measured by electrophysiological study to evaluate the pain relief, results showed that the relative integral area of neural signals in ESCL-treated mice decreased by 49.90 % compared to the micelles without loaded LC. Therefore, our study not only develops a very simple but effective tumor treatment PDT and in situ pain relief strategy during PDT, but also provides a quantitative pain evaluation method.
Collapse
Affiliation(s)
- Dongqin Lei
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jing Xin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Yuanping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Lan Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jing Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Sijia Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jing Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
| |
Collapse
|
2
|
Maurya VK, Shakya A, McClements DJ, Srinivasan R, Bashir K, Ramesh T, Lee J, Sathiyamoorthi E. Vitamin C fortification: need and recent trends in encapsulation technologies. Front Nutr 2023; 10:1229243. [PMID: 37743910 PMCID: PMC10517877 DOI: 10.3389/fnut.2023.1229243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/24/2023] [Indexed: 09/26/2023] Open
Abstract
The multifaceted role of vitamin C in human health intrudes several biochemical functions that are but not limited to antioxidant activity, homoeostasis, amino acid synthesis, collagen synthesis, osteogenesis, neurotransmitter production and several yet to be explored functions. In absence of an innate biosynthetic pathway, humans are obligated to attain vitamin C from dietary sources to maintain its optimal serum level (28 μmol/L). However, a significant amount of naturally occurring vitamin C may deteriorate due to food processing, storage and distribution before reaching to the human gastrointestinal tract, thus limiting or mitigating its disease combating activity. Literature acknowledges the growing prevalence of vitamin C deficiency across the globe irrespective of geographic, economic and population variations. Several tools have been tested to address vitamin C deficiency, which are primarily diet diversification, biofortification, supplementation and food fortification. These strategies inherit their own advantages and limitations. Opportunely, nanotechnology promises an array of delivery systems providing encapsulation, protection and delivery of susceptible compounds against environmental factors. Lack of clear understanding of the suitability of the delivery system for vitamin C encapsulation and fortification; growing prevalence of its deficiency, it is a need of the hour to develop and design vitamin C fortified food ensuring homogeneous distribution, improved stability and enhanced bioavailability. This article is intended to review the importance of vitamin C in human health, its recommended daily allowance, its dietary sources, factors donating to its stability and degradation. The emphasis also given to review the strategies adopted to address vitamin c deficiency, delivery systems adopted for vitamin C encapsulation and fortification.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Field Application Specialist, PerkinElmer, New Delhi, India
- National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Amita Shakya
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Ramachandran Srinivasan
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard University, New Delhi, India
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | | |
Collapse
|
3
|
Damsongsang P, Yusa SI, Hoven VP. Zwitterionic nano-objects having functionalizable hydrophobic core: Formation via polymerization-induced self-assembly and their morphology. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Seetasang S, Xu Y. Recent progress and perspectives in applications of 2-methacryloyloxyethyl phosphorylcholine polymers in biodevices at small scales. J Mater Chem B 2022; 10:2323-2337. [DOI: 10.1039/d1tb02675e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioinspired materials have attracted attention in a wide range of fields. Among these materials, a polymer family containing 2-methacryloyloxyethyl phosphorylcholine (MPC), which has a zwitterionic phosphorylcholine headgroup inspired by the...
Collapse
|
5
|
Rajput A, Pingale P, Telange D, Chalikwar S, Borse V. Lymphatic transport system to circumvent hepatic metabolism for oral delivery of lipid-based nanocarriers. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Yang S, Chen W, Li W, Song J, Gao Y, Si W, Li X, Cui B, Yu T. CD44-targeted pH-responsive micelles for enhanced cellular internalization and intracellular on-demand release of doxorubicin. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:173-184. [PMID: 33620265 DOI: 10.1080/21691401.2021.1884085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Poor cellular uptake and slow intracellular drug release remain the main barriers for the efficient application of micellar delivery system. Taking advantage of the overexpressed CD44 receptor and mild acidic microenvironment of tumour cells, CD44-targeted pH-responsive micelles based on the self-assembly of histidine-hyaluronic acid-dodecylamine (His-HA-DA) were prepared for the delivery of doxorubicin (DOX). These micelles exhibited pH-responsive behaviour with increased particle size, decreased encapsulation efficiency (EE%) of DOX and rapid release of DOX triggered by low pH. Compared with free DOX, DOX/HHD exhibited relatively high cellular uptake mainly via the CD44-mediated endocytosis. The on-demand intracellular release of DOX from DOX/HHD led to improved cytotoxicity. DOX/HHD also showed great penetration efficiency in 3D tumour spheres in vitro. Moreover, these micelles with suitable particle size gained excellent tumour-targeting effects, as well as improved anti-tumour effects and reduced side effects in vivo. In conclusion, these micelles with CD44 targeted and pH-responsive behaviours provide a promising strategy for the efficient delivery of anti-tumour drugs in vivo.
Collapse
Affiliation(s)
- Shudi Yang
- Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Weiliang Chen
- Pharmaceutical Department, Livzon Research Institute, Livzon Pharmaceutical Group Inc., Zhuhai, China
| | - Wei Li
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Jingcheng Song
- Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Yue Gao
- Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Wenhui Si
- Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Xiaoping Li
- Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Baowei Cui
- Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Tongtong Yu
- Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| |
Collapse
|
7
|
Wu Z, Zhang P, Wang P, Wang Z, Luo X. Using copper sulfide nanoparticles as cross-linkers of tumor microenvironment responsive polymer micelles for cancer synergistic photo-chemotherapy. NANOSCALE 2021; 13:3723-3736. [PMID: 33544101 DOI: 10.1039/d0nr06866g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photo-chemotherapy presents promising therapeutic effects in cancer treatment. Photo-thermal and chemotherapeutic agents are generally delivered independently or jointly by drug carriers, such as polymer micelles. A polymer micelle is one type of widely researched drug carrier. However, there is a disassembly risk for polymer micelles under excessive dilution in blood circulation, leading to the premature release of payloads from the micelles and finally resulting in undesirable toxic side effects. Herein, amino-PEG decorated copper sulfide nanoparticles (CuS NPs) with photothermal effect were applied as a cross-linker to enhance polymeric micelles' stability and to provide photothermal therapy in the meanwhile. The micelles were prepared using a pH/reductive responsive polymer, poly(ε-caprolactone)-ss-poly(2-(diisopropylamino)ethyl methacrylate/glycidyl methacrylate/2-methylacrylloxyethyl phosphorylcholine (PCL-SS-P(DPA/GMA/MP)), abbreviated as DGM. Cross-linked micelles (DGM-CuS) exhibited high photothermal transformation efficiency and excellent stability against dilution, as well as pH and redox responsive drug release. Under near-infrared laser irradiation, the cell cytotoxicity of doxorubicin-loaded micelles DGM-CuS@DOX and DGM-CuS@DOX-P (DGM-CuS@DOX modified by peptides) increased by 17.1 times and 69.2 times correspondingly compared to that without laser irradiation. All of the solid 4T1 tumors disappeared, and tumor metastases were merely observed in the major organs of the tumor-bearing mice after administration of DGM-CuS@DOX and DGM-CuS@DOX-P with irradiation. In this synergistic therapy system, CuS NPs play double roles of a photothermal agent and a micelle cross-linker. The strategy of utilizing nanoparticles as cross-linkers is newly reported, which offers new insight for combination therapy.
Collapse
Affiliation(s)
- Zhengzhong Wu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | | | | | | | | |
Collapse
|
8
|
Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Adv Drug Deliv Rev 2020; 167:170-188. [PMID: 32622022 DOI: 10.1016/j.addr.2020.06.030] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
The widespread development of nanocarriers to deliver chemotherapeutics to specific tumor sites has been motivated by the lack of selective targeting during chemotherapy inducing serious side effects and low therapeutic efficacy. The utmost challenge in targeted cancer therapies is the ineffective drug delivery system, in which the drug-loaded nanocarriers are hindered by multiple complex biological barriers that compromise the therapeutic efficacy. Despite considerable progress engineering novel nanoplatforms for the delivery of chemotherapeutics, there has been limited success in a clinical setting. In this review, we identify and analyze design strategies for improved therapeutic efficacy and unique properties of nanoplatforms, including liposomes, polymeric micelles, nanogels, and dendrimers. We provide a comprehensive and integral description of key biological barriers that nanoplatforms are exposed to during their in vivo journey and discuss associated strategies to overcome these barriers based on the latest research and information available in the field. We expect this review to provide constructive information for the rational design of more effective nanoplatforms to advance precision therapies and accelerate their clinical translation.
Collapse
|
9
|
Zhu Y, He Y, Su T, Li C, Cai S, Wu Z, Huang D, Zhang X, Cao J, He B. Exogenous vitamin C triggered structural changes of redox-activated dual core-crosslinked biodegradable nanogels for boosting the antitumor efficiency. J Mater Chem B 2020; 8:5109-5116. [PMID: 32412025 DOI: 10.1039/d0tb00356e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Premature leakage of drugs during blood circulation and slow drug release at the tumor site are two major challenges that nanocarriers have to overcome to achieve successful cancer therapy. Herein, a dual core-crosslinked, redox-sensitive polymeric nanogel (sDL) was constructed by the self-assembly of two star-shaped amphiphilic copolymers (4sP(EG-b-LLA)-N3, 4sP(EG-b-DLA)-N3) in the presence of a redox-sensitive crosslinker (d-ss-Bu), where hydrophilic polyethylene glycol (PEG) was used as the shell and the functional hydrophobic poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) were used as the dual crosslinked core via stereocomplex formation and chemical interactions. The dual core-crosslinked structure of the nanogels allowed for almost 2-fold enhanced doxorubicin (DOX)-loading capacity, favorable structural stability to restrict the premature leakage of therapeutic drug and smaller particle size to accelerate the internalization efficiency compared to non-crosslinked nanocarriers. Furthermore, exogenous vitamin C (Vc) can trigger the breakage of redox-sensitive bonds to accelerate drug release from nanogels for improved in vitro antitumor efficacy. Notably, in vivo near-infrared imaging showed that the highly stable DOX-loaded sDL efficiently aggregated at the tumor site. Sequential administration of DOX-loaded sDL and Vc exhibited the highest tumor inhibition effect without associated systemic toxicity compared to the corresponding single injection of Vc or DOX-loaded sDL control groups for in vivo studies, indicating that exogenous administration of Vc can synergistically impact the release of DOX from sDL. Therefore, the developed nanogels proved to be promising smart carriers for achieving precise tunable-stability in response to relevant environments and the combination of Vc to activate reduction-sensitive drug delivery is a promising approach to maximize the therapeutic efficacy.
Collapse
Affiliation(s)
- Yutong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|