1
|
Lee J, Tang Y, Cureño Hernandez KE, Kim S, Lee R, Cartwright Z, Pochan DJ, Herrera-Alonso M. Ultrastable and Redispersible Zwitterionic Bottlebrush Micelles for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39370599 DOI: 10.1021/acsami.4c10968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Bottlebrush copolymers are increasingly used for drug delivery and biological imaging applications in part due to the enhanced thermodynamic stability of their self-assemblies. Herein, we discuss the effect of hydrophilic block chemistry on the stability of bottlebrush micelles. Amphiphilic bottlebrushes with zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and nonionic polyethylene glycol (PEG) hydrophilic blocks were synthesized by "grafting from" polymerization and self-assembled into well-defined spherical micelles. Colloidal stability and stability against disassembly were challenged under high concentrations of NaCl, MgSO4, sodium dodecyl sulfate, fetal bovine serum, and elevated temperature. While both types of micelles appeared to be stable in many of these conditions, those with a PMPC shell consistently surpassed their PEG analogs. Moreover, when repeatedly subjected to lyophilization/resuspension cycles, PMPC micelles redispersed with no apparent variation in size or dispersity even in the absence of a cryoprotectant; PEG micelles readily aggregated. The observed excellent stability of PMPC micelles is attributed to the low critical micelle concentration of the bottlebrushes as well as to the strong hydration shell caused by ionic solvation of the phosphorylcholine moieties. Zwitterionic micelles were loaded with doxorubicin, and higher loading capacity/efficiency, as well as delayed release, was observed with increasing side-chain length. Finally, hemocompatibility studies of PMPC micelles demonstrated no disruption to the red blood cell membranes. The growing concern regarding the immunogenicity of PEG-based systems propels the search for alternative hydrophilic polymers; in this respect and for their outstanding stability, zwitterionic bottlebrush micelles represent excellent candidates for drug delivery and bioimaging applications.
Collapse
Affiliation(s)
- Jeonghun Lee
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yao Tang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Karla E Cureño Hernandez
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sunghoon Kim
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Rahmi Lee
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Zachary Cartwright
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Margarita Herrera-Alonso
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
2
|
Bao H, Wang N, Chen S, Wang Y, Shao H, Ni Y, Li Y, Liu X, Han X. Multimodal Theranostic Nanoparticles for Necrosis Targeting, Fluorescence/SPECT Imaging, and Radiotherapy of Residual Tumors after Hepatocellular Carcinoma Ablation. Mol Pharm 2024; 21:1729-1744. [PMID: 38449426 DOI: 10.1021/acs.molpharmaceut.3c01081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Thermal ablation has been commonly used as an effective treatment for hepatocellular carcinoma; however, peri-necrotic tumor residues after ablation play a significant role in tumor recurrence and poor prognosis. Therefore, developing agents that can effectively target and eliminate residual tumors is critically needed. Necrosis targeting strategies have potential implications for evaluating tumor necrosis areas and treating the surrounding residual tumors. To address this issue, we have developed a biodegradable nanoparticle with necrosis avidity that is compatible with fluorescence imaging, single photon emission computed tomography (SPECT) imaging, and necrosis targeted radiotherapy. The nanoparticles were synthesized using iodine-131-labeled hypericin (131I-Hyp) as the core and amphiphilic copolymer poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL) as the shell. The developed nanoparticle, PNP@(131I-Hyp), has a uniform spherical morphology with a size of 33.07 ± 3.94 and 45.93 ± 0.58 nm determined by cryogenic transmission electron microscopy (cryo-TEM) and dynamic light-scattering analysis (polydispersity index = 0.19 ± 0.01), respectively, and having a good stability and blood compatibility in vitro. In mouse subcutaneous ablated-residual tumor models, fluorescence and SPECT imaging demonstrated that PNP@(131I-Hyp) prominently accumulated in the tumor and was retained for as long as 168 h following intravenous injection. Moreover, ex vivo analyses showed that PNP@(131I-Hyp) mainly gathered in the necrotic zones of subcutaneous tumors and inhibited residual tumors by radiotherapy. In addition, histological examination of harvested organs and hematological analysis demonstrated that intravenous injection of 5 mCi/kg nanoparticles caused no gross abnormalities. This multifunctional nanoparticle, therefore, has necrosis imaging and targeted therapeutic effects on residual tumors after thermal ablation of hepatocellular carcinoma, showing potential for clinical application.
Collapse
Affiliation(s)
- Han Bao
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ning Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110001, China
| | - Song Chen
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yang Wang
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Haibo Shao
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yicheng Ni
- Department of Radiology, Zhongda Hospital, Southeast University, Nanjing 210000, China
| | - Yukang Li
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xian Liu
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiangjun Han
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
3
|
Domka W, Bartusik-Aebisher D, Rudy I, Dynarowicz K, Pięta K, Aebisher D. Photodynamic therapy in brain cancer: mechanisms, clinical and preclinical studies and therapeutic challenges. Front Chem 2023; 11:1250621. [PMID: 38075490 PMCID: PMC10704472 DOI: 10.3389/fchem.2023.1250621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/14/2023] [Indexed: 09/13/2024] Open
Abstract
Cancer is a main cause of death and preferred methods of therapy depend on the type of tumor and its location. Gliomas are the most common primary intracranial tumor, accounting for 81% of malignant brain tumors. Although relatively rare, they cause significant mortality. Traditional methods include surgery, radiotherapy and chemotherapy; they also have significant associated side effects that cause difficulties related to tumor excision and recurrence. Photodynamic therapy has potentially fewer side effects, less toxicity, and is a more selective treatment, and is thus attracting increasing interest as an advanced therapeutic strategy. Photodynamic treatment of malignant glioma is considered to be a promising additional therapeutic option that is currently being extensively investigated in vitro and in vivo. This review describes the application of photodynamic therapy for treatment of brain cancer. The mechanism of photodynamic action is also described in this work as it applies to treatment of brain cancers such as glioblastoma multiforme. The pros and cons of photodynamic therapy for brain cancer are also discussed.
Collapse
Affiliation(s)
- Wojciech Domka
- Department of Otolaryngology, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Izabela Rudy
- Students English Division Science Club, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Karolina Pięta
- Students English Division Science Club, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
4
|
Taşkonak B, Aylaz G, Andac M, Güven E, Ozkahraman B, Perçin I, Kılıç Süloğlu A. Hypericin-Loaded Chitosan Nanoparticles for Enhanced Photodynamic Therapy in A549 Lung Cancer Cells. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
5
|
Wu JJ, Zhang J, Xia CY, Ding K, Li XX, Pan XG, Xu JK, He J, Zhang WK. Hypericin: A natural anthraquinone as promising therapeutic agent. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154654. [PMID: 36689857 DOI: 10.1016/j.phymed.2023.154654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Hypericin is a prominent secondary metabolite mainly existing in genus Hypericum. It has become a research focus for a quiet long time owing to its extensively pharmacological activities especially the anti-cancer, anti-bacterial, anti-viral and neuroprotective effects. This review concentrated on summarizing and analyzing the existing studies of hypericin in a comprehensive perspective. METHODS The literature with desired information about hypericin published after 2010 was gained from electronic databases including PubMed, SciFinder, Science Direct, Web of Science, China National Knowledge Infrastructure databases and Wan Fang DATA. RESULTS According to extensive preclinical and clinical studies conducted on the hypericin, an organized and comprehensive summary of the natural and artificial sources, strategies for improving the bioactivities, pharmacological activities, drug combination of hypericin was presented to explore the future therapeutic potential of this active compound. CONCLUSIONS Overall, this review offered a theoretical guidance for the follow-up research of hypericin. However, the pharmacological mechanisms, pharmacokinetics and structure activity relationship of hypericin should be further studied in future research.
Collapse
Affiliation(s)
- Jing-Jing Wu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kang Ding
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin-Xin Li
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Ge Pan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Wei-Ku Zhang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
6
|
Choudhary N, Collignon TE, Tewari D, Bishayee A. Hypericin and its anticancer effects: From mechanism of action to potential therapeutic application. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154356. [PMID: 35985181 DOI: 10.1016/j.phymed.2022.154356] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Emerging studies indicate that hypericin has diverse pharmacological actions and exhibits potential for treatment of various types of cancer. PURPOSE The current review evaluates the pharmacological activity, associated molecular mechanism, and therapeutic application of hypericin as an anticancer agent according to the most recent state of knowledge with special emphasis on clinical trials and safety profile. METHOD This review follows The Preferred Reporting Items for Systematic Reviews criteria. Various databases, including PubMed, Scopus and Science Direct, were used to search and collect relevant literature. The major keywords used included the following: cancer, distribution, property, signaling pathway, pharmacological effect, treatment, prevention, in vitro and in vivo studies, toxicity, bioavailability, and clinical trials. RESULTS One hundred three articles met the established inclusion and exclusion criteria. Hypericin has shown anticancer activity against the expansion of several cell types including breast cancer, cervical cancer, colorectal cancer, colon cancer, hepatocellular carcinoma, stomach carcinoma, leukemia, lung cancer, melanoma, and glioblastoma cancer. Hypericin exerts its anticancer activity by inhibiting pro-inflammatory mediators, endothelial growth factor, fibroblast growth factor, cell adhesion, angiogenesis, and mitochondrial thioredoxin. It has also been shown to cause an increase in the levels of caspase-3 and caspase-4, arrest the cell cycle at metaphase leading to cancer cell apoptosis, and affect various protein and gene expression patterns. CONCLUSION Hypericin exhibits significant inhibitory activity against various types of in vitro and in vivo cancer models. However, well-designed, high quality, large-scale and multi-center randomized clinical studies are required to establish the safety and clinical utility of hypericin in cancer patients.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab 151101, India
| | - Taylor E Collignon
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA.
| |
Collapse
|
7
|
Liang R, Wong KH, Yang Y, Duan Y, Chen M. ROS-Responsive Dexamethasone Micelles Normalize the Tumor Microenvironment to Enhance Hypericin in Cancer Photodynamic Therapy. Biomater Sci 2022; 10:1018-1025. [DOI: 10.1039/d1bm01802g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficacy of photodynamic therapy (PDT) for cancer is limited due to the abnormality of tumor microenvironment (TME), such as dysfunctional tumor vascular system leading to restrict the drug distribution in...
Collapse
|
8
|
Miao H, Zhu X, Yuan F, Su Q, Li P, Li W, Zhao D, Chang J. Self-Assembly Cascade Reaction Platform for CD44 Positive Lung Cancer Therapy. J Biomed Nanotechnol 2021; 17:2374-2381. [PMID: 34974860 DOI: 10.1166/jbn.2021.3203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lung cancer, as one of the most fatal cancers around the world, is responsible for the death of millions every year. Among various types of lung cancers, the ones overexpressing CD44 is usually associated higher cell proliferation with poorer prognosis. Therefore, finding a way to effectively treat CD44 positive lung cancer is urgently needed. Here in this study, negatively charged ultrasmall prussian blue nanoparticles (UPBNPs) was firstly synthesized and adsorbed to polyethyleneimine (PEI) together with glucose oxidase (Gox). Afterwards, the PEI was further complexed with hyaluronic acid (HA) to give a cascade reaction platform (HP/UPB-Gox) for CD44 positive lung cancer therapy. The HP/UPB-Gox with HA shell was able to positively target CD44 overexpressed A549 cells. Upon arriving at the tumor tissue, the Gox catalyzed the glucose of tumor to create H₂O₂, which further served as the substrate of UPBNPs, a peroxidase mimic, to finally give highly toxic hydroxyl radical (OH) for cancer therapy. Therefore, the cascade reaction formed between UPBNPs and Gox was expected to realize effective treatment on CD44 overexpressed lung cancer.
Collapse
Affiliation(s)
- Haitao Miao
- Department of Medical Oncology, Shanghai Medical College, Fudan University, Shanghai, 200127, China
| | - Xiaoxiao Zhu
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200000, China
| | - Fei Yuan
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200000, China
| | - Qing Su
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200000, China
| | - Pei Li
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200000, China
| | - Wanyu Li
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200000, China
| | - Diandian Zhao
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200000, China
| | - Jianhua Chang
- Department of Medical Oncology, Shanghai Medical College, Fudan University, Shanghai, 200127, China
| |
Collapse
|
9
|
St. Lorenz A, Buabeng ER, Taratula O, Taratula O, Henary M. Near-Infrared Heptamethine Cyanine Dyes for Nanoparticle-Based Photoacoustic Imaging and Photothermal Therapy. J Med Chem 2021; 64:8798-8805. [PMID: 34081463 PMCID: PMC10807376 DOI: 10.1021/acs.jmedchem.1c00771] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have synthesized and characterized a library of near-infrared (NIR) heptamethine cyanine dyes for biomedical application as photoacoustic imaging and photothermal agents. These hydrophobic dyes were incorporated into a polymer-based nanoparticle system to provide aqueous solubility and protection of the photophysical properties of each dye scaffold. Among those heptamethine cyanine dyes analyzed, 13 compounds within the nontoxic polymeric nanoparticles have been selected to exemplify structural relationships in terms of photostability, photoacoustic imaging, and photothermal behavior within the NIR (∼650-850 nm) spectral region. The most contributing structural features observed in our dye design include hydrophobicity, rotatable bonds, heavy atom effects, and stability of the central cyclohexene ring within the dye core. The NIR agents developed within this project serve to elicit a structure-function relationship with emphasis on their photoacoustic and photothermal characteristics aiming at producing customizable NIR photoacoustic and photothermal tools for clinical use.
Collapse
Affiliation(s)
- Anna St. Lorenz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Emmanuel Ramsey Buabeng
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA
- Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Maged Henary
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA
- Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
10
|
de Andrade GP, de Souza TFM, Cerchiaro G, Pinhal MADS, Ribeiro AO, Girão MJBC. Hypericin in photobiological assays: An overview. Photodiagnosis Photodyn Ther 2021; 35:102343. [PMID: 34038765 DOI: 10.1016/j.pdpdt.2021.102343] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 11/19/2022]
Abstract
Hypericin is considered a potent photosensitizer for use in antitumor and antimicrobial photodynamic therapy (PDT). This review presents the primary biological results obtained with hypericin in photodynamic therapy applications, such as photodynamic cancer treatment, photoinactivation of microorganisms (PDI), tissue scarring, and photo diagnosis. We present a compilation of in vitro results that have been published thus far; for these studies, we highlight the hypericin concentration, light dose, and other experimental conditions to evaluate the efficiency of photodynamic treatment like cell death, cell viability, or cell proliferation. The results indicate that different hypericin phototoxicity levels can be observed according to the specific light dose and concentration. Furthermore, it was shown that cellular localization and cell death mechanisms (apoptosis and necrosis) are dependent on the cell type.
Collapse
Affiliation(s)
- Gislaine Patricia de Andrade
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Av. dos Estados, 5001, Bairro Bangú, Santo André, SP, Brasil
| | | | - Giselle Cerchiaro
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Av. dos Estados, 5001, Bairro Bangú, Santo André, SP, Brasil
| | - Maria Aparecida da Silva Pinhal
- Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, 100, Vila Clementino, São Paulo, SP, Brasil
| | - Anderson Orzari Ribeiro
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Av. dos Estados, 5001, Bairro Bangú, Santo André, SP, Brasil.
| | | |
Collapse
|
11
|
Han X, Taratula O, St Lorenz A, Moses AS, Albarqi HA, Jahangiri Y, Wu Q, Xu K, Taratula O, Farsad K. A novel multimodal nanoplatform for targeting tumor necrosis. RSC Adv 2021; 11:29486-29497. [PMID: 35479549 PMCID: PMC9040648 DOI: 10.1039/d1ra05658a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022] Open
Abstract
Peri-necrotic tumor regions have been found to be a source of cancer stem cells (CSC), important in tumor recurrence. Necrotic and peri-necrotic tumor zones have poor vascular supply, limiting effective exposure to systemically administered therapeutics. Therefore, there is a critical need to develop agents that can effectively target these relatively protected tumor areas. We have developed a multi-property nanoplatform with necrosis avidity, fluorescence imaging and X-ray tracking capabilities to evaluate its feasibility for therapeutic drug delivery. The developed nanoparticle consists of three elements: poly(ethylene glycol)-block-poly(ε-caprolactone) as the biodegradable carrier; hypericin as a natural compound with fluorescence and necrosis avidity; and gold nanoparticles for X-ray tracking. This reproducible nanoparticle has a hydrodynamic size of 103.9 ± 1.7 nm with a uniform spherical morphology (polydispersity index = 0.12). The nanoparticle shows safety with systemic administration and a stable 30 day profile. Intravenous nanoparticle injection into a subcutaneous tumor-bearing mouse and intra-arterial nanoparticle injection into rabbits bearing VX2 orthotopic liver tumors resulted in fluorescence and X-ray attenuation within the tumors. In addition, ex vivo and histological analysis confirmed the accumulation of hypericin and gold in areas of necrosis and peri-necrosis. This nanoplatform, therefore, has the potential to enhance putative therapeutic drug delivery to necrotic and peri-necrotic areas, and may also have an application for monitoring early response to anti-tumor therapies. Au-Hyp-NP developed by encapsulation of gold and hypericin into PEG-PCL nanoplatform for fluorescence and X-ray tracking with tumor necrosis targeting.![]()
Collapse
Affiliation(s)
- Xiangjun Han
- Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, USA
| | - Anna St Lorenz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, USA
| | - Abraham S. Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, USA
| | - Hassan A. Albarqi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, USA
| | - Younes Jahangiri
- Dotter Department of Interventional Radiology, Oregon Health and Science University, Portland, Oregon 97239-3011, USA
| | - Qirun Wu
- Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Ke Xu
- Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, USA
| | - Khashayar Farsad
- Dotter Department of Interventional Radiology, Oregon Health and Science University, Portland, Oregon 97239-3011, USA
| |
Collapse
|
12
|
Jiang X, Lin M, Huang J, Mo M, Liu H, Jiang Y, Cai X, Leung W, Xu C. Smart Responsive Nanoformulation for Targeted Delivery of Active Compounds From Traditional Chinese Medicine. Front Chem 2020; 8:559159. [PMID: 33363102 PMCID: PMC7758496 DOI: 10.3389/fchem.2020.559159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been used to treat disorders in China for ~1,000 years. Growing evidence has shown that the active ingredients from TCM have antibacterial, antiproliferative, antioxidant, and apoptosis-inducing features. However, poor solubility and low bioavailability limit clinical application of active compounds from TCM. “Nanoformulations” (NFs) are novel and advanced drug-delivery systems. They show promise for improving the solubility and bioavailability of drugs. In particular, “smart responsive NFs” can respond to the special external and internal stimuli in targeted sites to release loaded drugs, which enables them to control the release of drug within target tissues. Recent studies have demonstrated that smart responsive NFs can achieve targeted release of active compounds from TCM at disease sites to increase their concentrations in diseased tissues and reduce the number of adverse effects. Here, we review “internal stimulus–responsive NFs” (based on pH and redox status) and “external stimulus–responsive NFs” (based on light and magnetic fields) and focus on their application for active compounds from TCM against tumors and infectious diseases, to further boost the development of TCM in modern medicine.
Collapse
Affiliation(s)
- Xuejun Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mei Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianwen Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mulan Mo
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Houhe Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Cai
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wingnang Leung
- Asia-Pacific Institute of Aging Studies, Lingnan University, Hong Kong, China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|