1
|
Luo J, Tong X, Yue S, Wu K, Li X, Zhao H, Wang B, Li Z, Liu X, Wang ZM. Tailored Environment-Friendly Reverse Type-I Colloidal Quantum Dots for a Near-Infrared Optical Synapse and Artificial Vision System. ACS NANO 2024; 18:29991-30003. [PMID: 39431329 DOI: 10.1021/acsnano.4c10795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Colloidal quantum dots (QDs) are emerging as potential candidates for constructing near-infrared (NIR) photodetectors (PDs) and artificial optoelectronic synapses due to solution processability and a tunable bandgap. However, most of the current NIR QDs-optoelectronic devices are still fabricated using QDs with incorporated harmful heavy metals of lead (Pb) and mercury (Hg), showing potential health and environment risks. In this work, we tailored eco-friendly reverse type-I ZnSe/InP QDs by copper (Cu) doping and extended the photoresponse from the visible to NIR region. Transient absorption spectroscopy analysis revealed the presence of Cu dopant states in ZnSe/InP:Cu QDs that facilitated the extraction of photogenerated charge carriers, leading to an enhanced photodetection performance. Specifically, under 400 nm illumination, the Cu-doped ZnSe/InP QDs-based PDs presented a broadband photodetection ranging from ultraviolet (UV) to NIR, with a responsivity of 70.5 A W-1 and detectivity of 2.8 × 1011 Jones, surpassing those of the undoped ZnSe/InP QDs-based PDs (49.4 A W-1 and 1.9 × 1011 Jones, respectively). More importantly, the ZnSe/InP:Cu QDs-PDs demonstrated various synapse-like characteristics of short-term plasticity (STP), long-term plasticity (LTP), and learning-forging-relearning under NIR light illumination, which were further used to construct PD array devices for simulating the artificial visual system that is available in prospective optical neuromorphic applications.
Collapse
Affiliation(s)
- Jingying Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xin Tong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, Yunnan University, Kunming 650091, China
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu 641419, China
- Key Laboratory of Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Shuai Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Keming Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xin Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hongyang Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Binyu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhuojian Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu 641419, China
- Key Laboratory of Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
2
|
He S, Ni A, Gebre ST, Hang R, McBride JR, Kaledin AL, Yang W, Lian T. Doping of Colloidal Nanocrystals for Optimizing Interfacial Charge Transfer: A Double-Edged Sword. J Am Chem Soc 2024; 146:24925-24934. [PMID: 39189788 PMCID: PMC11403596 DOI: 10.1021/jacs.4c06110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Doping of colloidal nanocrystals offers versatile ways to improve their optoelectronic properties, with potential applications in photocatalysis and photovoltaics. However, the precise role of dopants on the interfacial charge transfer properties of nanocrystals remains poorly understood. Here, we use a Cu-doped InP@ZnSe quantum dot as a model system to investigate the dopant effects on both the intrinsic photophysics and their interfacial charge transfer by combining time-resolved transient absorption and photoluminescent spectroscopic methods. Our results revealed that the Cu dopant can cause the generation of the self-trapped exciton, which prolongs the exciton lifetime from 48.3 ± 1.7 to 369.0 ± 4.3 ns, facilitating efficient charge separation to slow electron and hole acceptors. However, hole localization into the Cu site alters their energetic levels, slowing hole transfer and accelerating charge recombination loss. This double-edged sword role of dopants in charge transfer properties is important in the future design of nanocrystals for their optoelectronic and photocatalytic applications.
Collapse
Affiliation(s)
- Sheng He
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Anji Ni
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Sara T Gebre
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Rui Hang
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - James R McBride
- Department of Chemistry, The Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Alexey L Kaledin
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
- The Cherry L. Emerson Center for Scientific Computation, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Wenxing Yang
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Jin L, Selopal GS, Tong X, Perepichka DF, Wang ZM, Rosei F. Heavy-Metal-Free Colloidal Quantum Dots: Progress and Opportunities in Solar Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402912. [PMID: 38923167 DOI: 10.1002/adma.202402912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Colloidal quantum dots (QDs) hold great promise as building blocks in solar technologies owing to their remarkable photostability and adjustable properties through the rationale involving size, atomic composition of core and shell, shapes, and surface states. However, most high-performing QDs in solar conversion contain hazardous metal elements, including Cd and Pb, posing significant environmental risks. Here, a comprehensive review of heavy-metal-free colloidal QDs for solar technologies, including photovoltaic (PV) devices, solar-to-chemical fuel conversion, and luminescent solar concentrators (LSCs), is presented. Emerging synthetic strategies to optimize the optical properties by tuning the energy band structure and manipulating charge dynamics within the QDs and at the QDs/charge acceptors interfaces, are analyzed. A comparative analysis of different synthetic methods is provided, structure-property relationships in these materials are discussed, and they are correlated with the performance of solar devices. This work is concluded with an outlook on challenges and opportunities for future work, including machine learning-based design, sustainable synthesis, and new surface/interface engineering.
Collapse
Affiliation(s)
- Lei Jin
- Centre for Energy, Materials and Telecommunications, National Institute of Scientific Research, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Gurpreet Singh Selopal
- Department of Engineering, Faculty of Agriculture, Dalhousie University, 39 Cox Rd, Banting Building, Truro, NS, B2N 5E3, Canada
| | - Xin Tong
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Zhiming M Wang
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
| | - Federico Rosei
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgeri 1, Trieste, 34127, Italy
| |
Collapse
|
4
|
Rana G, Das S, Singha PK, Ali F, Maji R, Datta A. The effect of Cu(I)-doping on the photoinduced electron transfer from aqueous CdS quantum dots. J Chem Phys 2024; 161:024705. [PMID: 38990118 DOI: 10.1063/5.0218548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
The doping of CdS quantum dots (QDs) with Cu(I) disrupts electron-hole correlation due to hole trapping by the dopant ion, post-photoexcitation. The present paper examines the effect of such disruption on the rate of photoinduced electron transfer (PET) from the QDs to methyl viologen (MV2+), with implications in their photocatalytic activity. A significantly greater efficiency of PL quenching by MV2+ is observed for the doped QDs than for the undoped ones. Interestingly, the Stern-Volmer plots constructed using PL intensities exhibit an upward curvature for both the cases, while the PL lifetimes remain unaffected. This observation is rationalized by considering the adsorption of the quencher on the surface of the QDs and ultrafast PET post-photoexcitation. Ultrafast transient absorption experiments confirm a faster electron transfer for the doped QDs. It is also realized that the transient absorption experiment yields a more accurate estimate of the binding constant of the quencher with the QDs, than the PL experiment.
Collapse
Affiliation(s)
- Gourab Rana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sharmistha Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Prajit Kumar Singha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Fariyad Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rohan Maji
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
5
|
Xu D, Shen LL, Qin ZK, Yan S, Wang N, Wang J, Gao YJ. Construction of Reverse Type-II InP/Zn xCd 1-xS Core/Shell Quantum Dots with Low Interface Strain to Enhance Photocatalytic Hydrogen Evolution. Inorg Chem 2024; 63:12582-12592. [PMID: 38917407 DOI: 10.1021/acs.inorgchem.4c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The InP-based quantum dots (QDs) have attracted much attention in the field of photocatalytic H2 evolution. However, a shell should be used for InP-based photocatalytic systems to passivate the numerous surface defects. Different from the traditional InP-based core/shell QDs with Type-I or Type-II band alignment, herein, the "reverse Type-II" core/shell QDs in which both the conduction and valence bands of shell materials are more negative than those of core materials have been well-designed by regulating the ratio of Cd/Zn of the alloyed ZnxCd1-xS shell. The reverse Type-II band alignment would realize the spatial separation of photogenerated carriers. More importantly, the photogenerated holes tend to rest on the shell in the reverse Type-II QDs, which facilitate hole transfer to the surface, the rate-determining step for solar H2 evolution using QDs. Therefore, the obtained InP/Zn0.25Cd0.75S core/shell QDs exhibit superior photocatalytic activity and stability under visible light irradiation. The rate of solar H2 evolution reaches 376.19 μmol h-1 mg-1 at the initial 46 h, with a turnover number of ∼2,157,000 per QD within 70 h irradiation.
Collapse
Affiliation(s)
- Dongzi Xu
- School of Chemistry and Chemical Engineering, Faculty of Chemistry and Pharmacy, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, P. R. China
| | - Li-Lei Shen
- School of Chemistry and Chemical Engineering, Faculty of Chemistry and Pharmacy, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, P. R. China
| | - Zhi-Kai Qin
- School of Chemistry and Chemical Engineering, Faculty of Chemistry and Pharmacy, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, P. R. China
| | - Shuo Yan
- School of Chemistry and Chemical Engineering, Faculty of Chemistry and Pharmacy, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, P. R. China
| | - Nianxing Wang
- Department of Mechanical and Materials Engineering, University of Turku, Turku 20014, Finland
| | - Jingui Wang
- School of Chemistry and Chemical Engineering, Faculty of Chemistry and Pharmacy, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, P. R. China
| | - Yu-Ji Gao
- School of Chemistry and Chemical Engineering, Faculty of Chemistry and Pharmacy, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, P. R. China
| |
Collapse
|
6
|
Tsai KA, Chang YJ, Li YC, Zheng MW, Chang JC, Liu SH, Tseng SW, Li Y, Pu YC. Nitrogen Configuration Effects on Charge Carrier Dynamics in CsPbBr 3/Carbon Dots S-Scheme Heterojunction for Photocatalytic CO 2 Reduction. J Phys Chem Lett 2024; 15:5728-5737. [PMID: 38771736 DOI: 10.1021/acs.jpclett.4c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Nitrogen-doped carbon dots (NCDs) featuring primary pyrrolic N and pyridinic N dominated configurations were prepared using hydrothermal (H-NCDs) and microwave (M-NCDs) methods, respectively. These H-NCDs and M-NCDs were subsequently applied to decorate CsPbBr3 nanocrystals (CPB NCs) individually, using a ligand-assisted reprecipitation process. Both CPB/M-NCDs and CPB/H-NCDs nanoheterostructures (NHSs) exhibited S-scheme charge transfer behavior, which enhanced their performance in photocatalytic CO2 reduction and selectivity of CO2-to-CH4 conversion, compared to pristine CPB NCs. The presence of pyrrolic N configuration at the heterojunction of CPB/H-NCDs facilitated efficient S-scheme charge transfer, leading to a remarkable 43-fold increase in photoactivity. In contrast, CPB/M-NCDs showed only a modest 3-fold enhancement in photoactivity, which was attributed to electron trapping by pyridinic N at the heterojunction. The study offers crucial insights into charge carrier dynamics within perovskite/carbon NHSs at the molecular level to advance the understanding of solar fuel generation.
Collapse
Affiliation(s)
- Kai-An Tsai
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Yao-Jen Chang
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Yu-Chieh Li
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Meng-Wei Zheng
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jui-Cheng Chang
- Department of Chemical Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Shou-Heng Liu
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shih-Wen Tseng
- Core Facility Center of National Cheng Kung University, Tainan 70101, Taiwan
| | - Yan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying-Chih Pu
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| |
Collapse
|
7
|
Çadırcı M, Elibol E, Demirci T, Kurban M. Investigating the effect of Zn doping and temperature on the photoluminescence behaviour of CuLaSe 2 quantum dots. LUMINESCENCE 2024; 39:e4722. [PMID: 38532615 DOI: 10.1002/bio.4722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
In this study, CuLaSe2 and ZnCuLaSe2 quantum dots (QDs) with a mean size of ~4 nm were synthesized and characterized, and their temperature-dependent photoluminescence (PL) properties were studied in the temperature range from 90 to 300 K for the first time. The results show that the obtained QDs were spherical and revealed excitonic band gaps. The PL intensity for both types of materials decreased when increasing the temperature to 300 K, which was attributed to the nonradiative relaxation and thermal escape mechanisms. As the temperature was increased, the PL linewidths broadened, and PL peak energies were red shifted for both types of QDs due to the exciton-phonon coupling and lattice deformation potential mechanisms. In addition, we found that as the temperature was decreased, the PL spectrum of ZnCuLaSe2 QDs contained two extra components, which could be attributed to the shallow defect sites (low energy peak) and the crystal phase transition process (high energy peak). The spectrum of CuLaSe2 QDs contained one extra component, which could be attributed to the crystal phase transition process.
Collapse
Affiliation(s)
- Musa Çadırcı
- Department of Electrical & Electronics Engineering, Faculty of Engineering, Düzce University, Düzce, Turkey
| | - Erdem Elibol
- Department of Electrical & Electronics Engineering, Faculty of Engineering, Düzce University, Düzce, Turkey
| | - Tuna Demirci
- Scientific and Technological Research Laboratory, Düzce University, Düzce, Turkey
| | - Mustafa Kurban
- Department of Prosthetics & Orthotics, Faculty of Health Science, Ankara University, Ankara, Turkey
| |
Collapse
|
8
|
Hou Q, Du Z, Sun Z, Kong J, Huang Y, Wang K, Ning J, Tang J. Pseudohalogen Ammonium Salt-Assisted Syntheses of Large-Sized Indium Phosphide Quantum Dots with Near-Infrared Photoluminescence. J Phys Chem Lett 2024:3285-3293. [PMID: 38489757 DOI: 10.1021/acs.jpclett.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The development of indium phosphide (InP)-based quantum dots (QDs) with a near-infrared (NIR) emission area still lags behind the visible wavelength region and remains problematic. This study describes a one-step in situ pseudohalogen ammonium salt-assisted approach to generate NIR-emitted InP-based QDs with high photoluminescence quantum yields (PLQYs). The coexistence of NH4+ and PF6- ions from NH4PF6 may in situ synchronously etch and passivate the surface oxides and impede the creation of traps under the whole growth process of InP QDs. Experimental findings demonstrated that the in situ pseudohalogen ammonium salt-assisted syntheses technique may feature emission at a full width at half-maximum (fwhm) peak as fine as ∼45 nm and broaden the emission range to around ∼780 nm. A two-step approach for ZnS shells was developed to further improve the PLQY of NIR-emitted InP QDs. Furthermore, the constructed high-power intrinsically stretchable NIR color-conversion film employing the InP-based QDs/polymer composites presented excellent luminescence conversion ability and stretchability.
Collapse
Affiliation(s)
- Qinggang Hou
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Zhonglin Du
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Zhe Sun
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Jiahua Kong
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Yixiao Huang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Keke Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Jiajia Ning
- Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| |
Collapse
|
9
|
Patel J, Singh KR, Singh AK, Singh J, Singh AK. Multifunctional Cu:ZnS quantum dots for degradation of Amoxicillin and Dye Sulphon Fast Black-F and efficient determination of urea for assessing environmental aspects. ENVIRONMENTAL RESEARCH 2023; 235:116674. [PMID: 37459950 DOI: 10.1016/j.envres.2023.116674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
This work is particularly aimed at the preparation of ZnS and Cu doped ZnS (Cu:ZnS) QDs by facile and easy technique, chemical precipitation method for the degradation of water pollutants and a simple scheme was proposed to prepare the urea-sensing system. The morphological and optical properties of the synthesized QDs was studied using high resolution transmission and scanning electron microscopes, X-ray diffraction, energy dispersive X-ray analysis, fluorescence and ultraviolet-visible spectroscopy, differential thermal and thermogravimetric analyses, Brunauer-Emmett-Teller analysis. The photocatalytic performance was systematically assessed by the photodegradation of an important pharmaceutical water pollutant, Amoxicillin (AMX) and a dye Fast Sulphon Black F (SFBF) in aqueous medium under UV light irradiation. Also, a very sensitive system was prepared by depositing the dots over an indium-tin-oxide (ITO) glass substrate for the sensing of biologically active molecule urea as it is an important monitor of public health in water and soil productivity. The results illustrated excellent photocatalytic efficiency (86.46% for AMX and 99.41% for SFBF) with stability up to four cycles of degradation reaction. The optimal photocatalyst dosage for achieving maximum removal of AMX was found to be 70 mg at a pH of 9.5, with a treatment time of 40 min. Similarly, for SFBF, the optimal photocatalyst dosage was determined to be 60 mg at pH 9, with a treatment time of 60 min. Further, the electrochemical analysis was done by fabricating Urease enzyme (UR)/Cu:ZnS QDs/ITO bioelectrode and then the fabricated bioelectrode, was utilized to determine the different concentrations of urea by cyclic voltammetry. Thus, the obtained limit of detection and sensitivity of the fabricated biosensing device for urea detection was obtained to be 0.0092 μM and 12 μA μM-1cm-2, respectively; under the optimized experimental conditions. Hence, it is anticipated that Cu:ZnS QDs can also successfully be applied as a promising material for fabrication of novel bioelectrode for urea determination and the biosensing platform is desirable and viable.
Collapse
Affiliation(s)
- Jyoti Patel
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| | - Kshitij Rb Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India; Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Akhilesh Kumar Singh
- School of Material Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ajaya K Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India; School of Chemistry & Physics, University of KwaZulu-Natal, Durban 4000, South Africa.
| |
Collapse
|
10
|
Liu J, Yue S, Zhang H, Wang C, Barba D, Vidal F, Sun S, Wang ZM, Bao J, Zhao H, Selopal GS, Rosei F. Efficient Photoelectrochemical Hydrogen Generation Using Eco-Friendly "Giant" InP/ZnSe Core/Shell Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37433096 DOI: 10.1021/acsami.3c04900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
InP quantum dots (QDs) are promising building blocks for use in solar technologies because of their low intrinsic toxicity, narrow bandgap, large absorption coefficient, and low-cost solution synthesis. However, the high surface trap density of InP QDs reduces their energy conversion efficiency and degrades their long-term stability. Encapsulating InP QDs into a wider bandgap shell is desirable to eliminate surface traps and improve optoelectronic properties. Here, we report the synthesis of "giant" InP/ZnSe core/shell QDs with tunable ZnSe shell thickness to investigate the effect of the shell thickness on the optoelectronic properties and the photoelectrochemical (PEC) performance for hydrogen generation. The optical results demonstrate that ZnSe shell growth (0.9-2.8 nm) facilitates the delocalization of electrons and holes into the shell region. The ZnSe shell simultaneously acts as a passivation layer to protect the surface of InP QDs and as a spatial tunneling barrier to extract photoexcited electrons and holes. Thus, engineering the ZnSe shell thickness is crucial for the photoexcited electrons and hole transfer dynamics to tune the optoelectronic properties of "giant" InP/ZnSe core/shell QDs. We obtained an outstanding photocurrent density of 6.2 mA cm-1 for an optimal ZnSe shell thickness of 1.6 nm, which is 288% higher than the values achieved from bare InP QD-based PEC cells. Understanding the effect of shell thickness on surface passivation and carrier dynamics offers fundamental insights into the suitable design and realization of eco-friendly InP-based "giant" core/shell QDs toward improving device performance.
Collapse
Affiliation(s)
- Jiabin Liu
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1P7, Canada
| | - Shuai Yue
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P. R. China
| | - Hui Zhang
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1P7, Canada
| | - Chao Wang
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1P7, Canada
| | - David Barba
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1P7, Canada
| | - François Vidal
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1P7, Canada
| | - Shuhui Sun
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1P7, Canada
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P. R. China
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, P. R. China
| | | | - Haiguang Zhao
- State Key Laboratory of Bio-Fibers and Eco-Textiles & College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Gurpreet Singh Selopal
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1P7, Canada
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P. R. China
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| | - Federico Rosei
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1P7, Canada
| |
Collapse
|
11
|
Dou FY, Harvey SM, Mason KG, Homer MK, Gamelin DR, Cossairt BM. Effect of a redox-mediating ligand shell on photocatalysis by CdS quantum dots. J Chem Phys 2023; 158:2889496. [PMID: 37158330 DOI: 10.1063/5.0144896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
Semiconductor quantum dots (QDs) are efficient organic photoredox catalysts due to their high extinction coefficients and easily tunable band edge potentials. Despite the majority of the surface being covered by ligands, our understanding of the effect of the ligand shell on organic photocatalysis is limited to steric effects. We hypothesize that we can increase the activity of QD photocatalysts by designing a ligand shell with targeted electronic properties, namely, redox-mediating ligands. Herein, we functionalize our QDs with hole-mediating ferrocene (Fc) derivative ligands and perform a reaction where the slow step is hole transfer from QD to substrate. Surprisingly, we find that a hole-shuttling Fc inhibits catalysis, but confers much greater stability to the catalyst by preventing a build-up of destructive holes. We also find that dynamically bound Fc ligands can promote catalysis by surface exchange and creation of a more permeable ligand shell. Finally, we find that trapping the electron on a ligand dramatically increases the rate of reaction. These results have major implications for understanding the rate-limiting processes for charge transfer from QDs and the role of the ligand shell in modulating it.
Collapse
Affiliation(s)
- Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Samantha M Harvey
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Konstantina G Mason
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Micaela K Homer
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
12
|
Das S, Rana G, Ali F, Datta A. Single particle level dynamics of photoactivation and suppression of Auger recombination in aqueous Cu-doped CdS quantum dots. NANOSCALE 2023; 15:4469-4476. [PMID: 36752332 DOI: 10.1039/d2nr06688b] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cu-doped CdS quantum dots (QDs) have been synthesized in water using 3-mercaptopropionic acid (3-MPA) as the capping agent. They exhibit intense photoluminescence and excellent color tunability, unlike most of the QDs synthesized/dispersed in water so far. Complete characterization of these aqueous doped CdS QDs has been performed for the first time, along with a single particle level elucidation of their exciton dynamics using fluorescence correlation spectroscopy. Photoactivation via dim/dark to bright particle conversion is observed at higher excitation powers. Dispersive blinking kinetics in undoped QDs reflects the involvement of a broad distribution of trap states. A lesser extent of dispersity is observed for doped QDs, in which hole-capture by Cu-defect states predominates. Excitation fluence dependence of the blinking rate highlights the role of Auger recombination in undoped QDs, which is suppressed significantly upon doping, due to disruption of the electron-hole correlation.
Collapse
Affiliation(s)
- Sharmistha Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Gourab Rana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Fariyad Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
13
|
Ghosh S, Mukherjee S, Mandal S, De CK, Mardanya S, Saha A, Mandal PK. Beneficial Intrinsic Hole Trapping and Its Amplitude Variation in a Highly Photoluminescent Toxic-Metal-Free Quantum Dot. J Phys Chem Lett 2023; 14:260-266. [PMID: 36595225 DOI: 10.1021/acs.jpclett.2c03373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intrinsic hole trapping as well as hole detrapping have not been observed for any quantum dot (QD) or perovskite nanocrystal (PNC) system. Moreover, amplitude variation of intrinsic hole trapping (or detrapping) has not been reported at all for any QD or PNC system. However, for a CuInS2-based core/alloy-shell (CAS) QD system, (a) both intrinsic hole trapping and detrapping have been observed and (b) very significant amplitude variations of hole trapping (∼16 to ∼42%) and hole detrapping (∼44 to 23%) have been observed. Unlike detrimental electron trapping, hole trapping has been shown to be beneficial, having a direct correlation toward increasing PLQY to 96%. Simultaneous electron and hole trapping has been shown to be quite beneficial for the CuInS2-based CAS QD system leading to the longest ON time (∼130 s) for which a nontoxic metal-based QD remains only in the ON-state without blinking.
Collapse
|
14
|
Lu J, Guo Q, Chen J, Xie K, Guan X, Yang L, Wang G. Delicate Design of ZnS@In 2S 3 Core-Shell Structures with Modulated Photocatalytic Performance under Simulated Sunlight Irradiation. ACS OMEGA 2023; 8:529-538. [PMID: 36643549 PMCID: PMC9835534 DOI: 10.1021/acsomega.2c05483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
ZnS@In2S3 core-shell structures with high photocatalytic activity have been delicately designed and synthesized. The unique structure and synergistic effects of the composites have an important influence on the improvement of photocatalytic activity. The photocatalytic activity has been studied by photodegrading individual eosin B (EB) and the mixture solution consisting of eosin B and rhodamine B (EB-RhB) in the presence of hydrogen peroxide (H2O2) under simulated sunlight irradiation. The results show that all of the photocatalysts with different contents of In2S3 exhibit enhanced catalytic activity compared to pure ZnS for the degradation of EB and EB-RhB solution. When the theoretical molar ratio of ZnS to In2S3 was 1:0.5, the composite presents the highest photocatalytic efficiency, which could eliminate more than 98% of EB and 94% of EB-RhB. At the same time, after five cycles of photocatalytic tests, the photocatalytic efficiency could be about 96% for the degradation of the EB solution, and relatively high photocatalytic activity could also be obtained for the degradation of the EB-RhB mixed solution. This work has proposed a facile synthetic process to realize the controlled preparation of core-shell ZnS@In2S3 composites with effectively modulated structures and compositions, and the composites have also proved to be high-efficiency photocatalysts for the disposal of complicated pollutants.
Collapse
Affiliation(s)
- Jianyi Lu
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin132012, P. R. China
| | - Qianqian Guo
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin132012, P. R. China
| | - Jingyang Chen
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin132012, P. R. China
| | - Kunhan Xie
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin132012, P. R. China
| | - Xiaohui Guan
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin132012, P. R. China
| | - Liu Yang
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin132012, P. R. China
| | - Guangsheng Wang
- School
of Chemistry, Beihang University, Beijing100191, P. R. China
| |
Collapse
|
15
|
Zeng S, Tan W, Si J, Mao L, Shi J, Li Y, Hou X. Ultrafast Electron Transfer in InP/ZnSe/ZnS Quantum Dots for Photocatalytic Hydrogen Evolution. J Phys Chem Lett 2022; 13:9096-9102. [PMID: 36154010 DOI: 10.1021/acs.jpclett.2c02147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
InP/ZnS core/shell quantum dots have shown extraordinary application potential in photocatalysis. In this work, we demonstrated by ultrafast spectroscopy that the electron transfer ability of InP/ZnSe/ZnS core/shell/shell quantum dots was better than that of InP/ZnS quantum dots, because the introduction of ZnSe midshell resulted in improved passivation and greater exciton delocalization. The temperature-dependent PL spectra indicate that the exciton-phonon coupling strength and exciton binding energy of InP/ZnSe/ZnS quantum dots are smaller than those of InP/ZnS quantum dots. Further photocatalytic hydrogen evolution testing revealed that the photocatalytic activity of InP/ZnSe/ZnS quantum dots was significantly higher than that of InP/ZnS quantum dots, and InP/ZnSe/ZnS quantum dots even demonstrated improved stability. This research deepened our understanding of carrier dynamics and charge separation of InP/ZnSe/ZnS quantum dots, especially highlighting the application potential of InP/ZnSe/ZnS quantum dots in photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Shijia Zeng
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, 28 Xianning Road, Xi'an710049, China
| | - Wenjiang Tan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, 28 Xianning Road, Xi'an710049, China
| | - Jinhai Si
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, 28 Xianning Road, Xi'an710049, China
| | - Liuhao Mao
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Jinwen Shi
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an710049, China
| | - Yuren Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, 28 Xianning Road, Xi'an710049, China
| | - Xun Hou
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, 28 Xianning Road, Xi'an710049, China
| |
Collapse
|
16
|
Nagelj N, Brumberg A, Peifer S, Schaller RD, Olshansky JH. Compositionally Tuning Electron Transfer from Photoexcited Core/Shell Quantum Dots via Cation Exchange. J Phys Chem Lett 2022; 13:3209-3216. [PMID: 35377650 DOI: 10.1021/acs.jpclett.2c00333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is critical to find methods to control the thermodynamic driving force for photoexcited charge transfer from quantum dots (QDs) and explore how this affects charge transfer rates, since the efficiency of QD-based photovoltaic and photocatalysis technologies depends on both this rate and the associated energetic losses. In this work, we introduce a single-pot shell growth and Cu-catalyzed cation exchange method to synthesize CdxZn1-xSe/CdyZn1-yS QDs with tunable driving forces for electron transfer. Functionalizing them with two molecular electron acceptors─naphthalenediimide (NDI) and anthraquinone (AQ)─allowed us to probe nearly 1 eV of driving forces. For AQ, at lower driving forces, we find that higher Zn content results in a 130-fold increase of electron transfer rate constants. However, at higher driving forces electron transfer dynamics are unaltered. The data are understood using an Auger-assisted electron transfer model and analyzed with computational work to determine approximate binding geometries of these electron acceptors. Our work provides a method to tune QD reducing power and produces useful metrics for optimizing QD charge transfer systems that maximize rates of electron transfer while minimizing energetic losses.
Collapse
Affiliation(s)
- Nejc Nagelj
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Alexandra Brumberg
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Shoshanna Peifer
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jacob H Olshansky
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| |
Collapse
|
17
|
Humayun M, Wang C, Luo W. Recent Progress in the Synthesis and Applications of Composite Photocatalysts: A Critical Review. SMALL METHODS 2022; 6:e2101395. [PMID: 35174987 DOI: 10.1002/smtd.202101395] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Photocatalysis is an advanced technique that transforms solar energy into sustainable fuels and oxidizes pollutants via the aid of semiconductor photocatalysts. The main scientific and technological challenges for effective photocatalysis are the stability, robustness, and efficiency of semiconductor photocatalysts. For practical applications, researchers are trying to develop highly efficient and stable photocatalysts. Since the literature is highly scattered, it is urgent to write a critical review that summarizes the state-of-the-art progress in the design of a variety of semiconductor composite photocatalysts for energy and environmental applications. Herein, a comprehensive review is presented that summarizes an overview, history, mechanism, advantages, and challenges of semiconductor photocatalysis. Further, the recent advancements in the design of heterostructure photocatalysts including alloy quantum dots based composites, carbon based composites including carbon nanotubes, carbon quantum dots, graphitic carbon nitride, and graphene, covalent-organic frameworks based composites, metal based composites including metal carbides, metal halide perovskites, metal nitrides, metal oxides, metal phosphides, and metal sulfides, metal-organic frameworks based composites, plasmonic materials based composites and single atom based composites for CO2 conversion, H2 evolution, and pollutants oxidation are discussed elaborately. Finally, perspectives for further improvement in the design of composite materials for efficient photocatalysis are provided.
Collapse
Affiliation(s)
- Muhammad Humayun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wei Luo
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
18
|
Huang K, Fang Q, Sun W, He S, Yao Q, Xie J, Chen W, Deng H. Cucurbit[ n]uril Supramolecular Assemblies-Regulated Charge Transfer for Luminescence Switching of Gold Nanoclusters. J Phys Chem Lett 2022; 13:419-426. [PMID: 34989578 DOI: 10.1021/acs.jpclett.1c03917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Host-guest molecular assemblies are highly desirable for precisely controlling the luminescence properties of nanomaterials. Unfortunately, the design of high-quality luminescent nanoswitches is still very challenging due to the low affinity of traditional macrocyclic molecules (e.g., cyclodextrin) and inherently sophisticated electronic structures of nanoemitters. The current work represents the first to fabricate a luminescent nanoswitch using cucurbit[n]uril supramolecular assemblies-regulated luminescence of gold nanoclusters (AuNCs). It is found that, similar to a small-molecule fluorophore-based system, the luminescence of fabricated AuNC-cationic quencher nanohybrids can be reversibly manipulated by cucurbit[7]uril through altering the key parameters of the charge transfer process including the reorganization energy and electronic coupling between charge-transfer reactants. This study demonstrates the crucial role of cucurbit[n]uril host-guest assemblies in modulating the luminescence of AuNCs and their application in luminescence switching, thus offering new avenues for the fabrication and development of optical devices and smart materials.
Collapse
Affiliation(s)
- Kaiyuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Quanhui Fang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Weiming Sun
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Shaobin He
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Haohua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
19
|
Huang Y, Cohen TA, Sperry BM, Larson H, Nguyen HA, Homer MK, Dou FY, Jacoby LM, Cossairt BM, Gamelin DR, Luscombe CK. Organic building blocks at inorganic nanomaterial interfaces. MATERIALS HORIZONS 2022; 9:61-87. [PMID: 34851347 DOI: 10.1039/d1mh01294k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This tutorial review presents our perspective on designing organic molecules for the functionalization of inorganic nanomaterial surfaces, through the model of an "anchor-functionality" paradigm. This "anchor-functionality" paradigm is a streamlined design strategy developed from a comprehensive range of materials (e.g., lead halide perovskites, II-VI semiconductors, III-V semiconductors, metal oxides, diamonds, carbon dots, silicon, etc.) and applications (e.g., light-emitting diodes, photovoltaics, lasers, photonic cavities, photocatalysis, fluorescence imaging, photo dynamic therapy, drug delivery, etc.). The structure of this organic interface modifier comprises two key components: anchor groups binding to inorganic surfaces and functional groups that optimize their performance in specific applications. To help readers better understand and utilize this approach, the roles of different anchor groups and different functional groups are discussed and explained through their interactions with inorganic materials and external environments.
Collapse
Affiliation(s)
- Yunping Huang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Theodore A Cohen
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Breena M Sperry
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Helen Larson
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Micaela K Homer
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Laura M Jacoby
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Christine K Luscombe
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
20
|
Bang J, Kwon H, Kim S, Kang SB. Preparation of InP quantum dots-TiO2 nanoparticle composites with enhanced visible light induced photocatalytic activity. CrystEngComm 2022. [DOI: 10.1039/d2ce00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Environmentally friendly InP-based quantum dots (QDs) are expected to be ideal visible-light-harvesting materials because of their unique photophysical properties. Herein, we report on the results of using a combination of...
Collapse
|
21
|
Abd-Elrahim A, Ali MA. Facile synthesis of nano-sized zinc-rich ZnCdS ternary alloy and UV-irradiation curing of photoluminescence emission characteristics. OPTICAL MATERIALS 2021; 122:111774. [DOI: 10.1016/j.optmat.2021.111774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
22
|
Development of Visible-Light-Driven Rh–TiO2–CeO2 Hybrid Photocatalysts for Hydrogen Production. Catalysts 2021. [DOI: 10.3390/catal11070848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Visible-light-driven hydrogen production through photocatalysis has attracted enormous interest owing to its great potential to address energy and environmental issues. However, photocatalysis possesses several limitations to overcome for practical applications, such as low light absorption efficiency, rapid charge recombination, and poor stability of photocatalysts. Here, the preparation of efficient noble metal–semiconductor hybrid photocatalysts for photocatalytic hydrogen production is presented. The prepared ternary Rh–TiO2–CeO2 hybrid photocatalysts exhibited excellent photocatalytic performance toward the hydrogen production reaction compared with their counterparts, ascribed to the synergistic combination of Rh, TiO2, and CeO2.
Collapse
|
23
|
Wu F, Yu S, Zhong Y, Chen W, Dan M, Zou Y, Yuan C, Zhou Y. Homogeneous Photocatalytic Hydrogen Evolution System with Assembly of CdSe Quantum Dots and Graphene Oxide. Top Catal 2021. [DOI: 10.1007/s11244-021-01439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Highly Porous Au-Pt Bimetallic Urchin-Like Nanocrystals for Efficient Electrochemical Methanol Oxidation. NANOMATERIALS 2021; 11:nano11010112. [PMID: 33419079 PMCID: PMC7825411 DOI: 10.3390/nano11010112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/04/2023]
Abstract
Highly porous Au–Pt urchin-like bimetallic nanocrystals have been prepared by a one-pot wet-chemical synthesis method. The porosity of urchin-like bimetallic nanocrystals was controlled by amounts of hydrazine used as reductant. The prepared highly porous Au-Pt urchin-like nanocrystals were superior catalysts of electrochemical methanol oxidation due to high porosity and surface active sites by their unique morphology. This approach will pave the way for the design of bimetallic porous materials with unprecedented functions.
Collapse
|
25
|
Reducing the Photodegradation of Perovskite Quantum Dots to Enhance Photocatalysis in CO2 Reduction. Catalysts 2021. [DOI: 10.3390/catal11010061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Solution-processed perovskite quantum dots (QDs) have been intensively researched as next-generation photocatalysts owing to their outstanding optical properties. Even though the intrinsic physical properties of perovskite QDs have been significantly improved, the chemical stability of these materials remains questionable. Their low long-term chemical stability limits their commercial applicability in photocatalysis. In this study, we investigated the photodegradation mechanisms of perovskite QDs and their hybrids via photoluminescence (PL) by varying the excitation power and the ultraviolet (UV) exposure power. Defects in perovskite QDs and the interface between the perovskite QD and the co-catalyst influence the photo-stability of perovskite QDs. Consequently, we designed a stable perovskite QD film via an in-situ cross-linking reaction with amine-based silane materials. The surface ligand comprising 2,6-bis(N-pyrazolyl)pyridine nickel(II) bromide (Ni(ppy)) and 5-hexynoic acid improved the interface between the Ni co-catalyst and the perovskite QD. Then, ultrathin SiO2 was fabricated using 3-aminopropyltriethoxy silane (APTES) to harness the strong surface binding energy of the amine functional group of APTES with the perovskite QDs. The Ni co-catalyst content was further increased through Ni doping during purification using a short surface ligand (3-butynoic acid). As a result, stable perovskite QDs with rapid charge separation were successfully fabricated. Time-correlated single photon counting (TCSPC) PL study demonstrated that the modified perovskite QD film exhibited slow photodegradation owing to defect passivation and the enhanced interface between the Ni co-catalyst and the perovskite QD. This interface impeded the generation of hot carriers, which are a critical factor in photodegradation. Finally, a stable red perovskite QD was synthesized by applying the same strategy and the mixture between red and green QD/Ni(ppy)/SiO2 displayed an CO2 reduction capacity for CO (0.56 µmol/(g∙h)).
Collapse
|
26
|
Hong JW. Highly Active Binary Exfoliated
MoS
2
Sheet–
Cu
2
O
Nanocrystal Hybrids for Efficient Photocatalytic Pollutant Degradation. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jong Wook Hong
- Department of Chemistry University of Ulsan Ulsan 44610 South Korea
| |
Collapse
|