1
|
Carbin T, Zhang X, Culver AB, Zhao H, Zong A, Acharya R, Abbamonte CJ, Roy R, Cao G, Kogar A. Evidence for Bootstrap Percolation Dynamics in a Photoinduced Phase Transition. PHYSICAL REVIEW LETTERS 2023; 130:186902. [PMID: 37204876 DOI: 10.1103/physrevlett.130.186902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/27/2023] [Accepted: 03/30/2023] [Indexed: 05/21/2023]
Abstract
Upon intense femtosecond photoexcitation, a many-body system can undergo a phase transition through a nonequilibrium route, but understanding these pathways remains an outstanding challenge. Here, we use time-resolved second harmonic generation to investigate a photoinduced phase transition in Ca_{3}Ru_{2}O_{7} and show that mesoscale inhomogeneity profoundly influences the transition dynamics. We observe a marked slowing down of the characteristic time τ that quantifies the transition between two structures. τ evolves nonmonotonically as a function of photoexcitation fluence, rising from below 200 fs to ∼1.4 ps, then falling again to below 200 fs. To account for the observed behavior, we perform a bootstrap percolation simulation that demonstrates how local structural interactions govern the transition kinetics. Our work highlights the importance of percolating mesoscale inhomogeneity in the dynamics of photoinduced phase transitions and provides a model that may be useful for understanding such transitions more broadly.
Collapse
Affiliation(s)
- Tyler Carbin
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
| | - Xinshu Zhang
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
| | - Adrian B Culver
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
- Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Hengdi Zhao
- Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Alfred Zong
- Department of Chemistry, University of California at Berkeley, Berkeley, California, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Rishi Acharya
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
| | - Cecilia J Abbamonte
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
| | - Rahul Roy
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
- Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Gang Cao
- Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Anshul Kogar
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
| |
Collapse
|
2
|
Perez-Salinas D, Johnson AS, Prabhakaran D, Wall S. Multi-mode excitation drives disorder during the ultrafast melting of a C4-symmetry-broken phase. Nat Commun 2022; 13:238. [PMID: 35017507 PMCID: PMC8752725 DOI: 10.1038/s41467-021-27819-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Spontaneous C4-symmetry breaking phases are ubiquitous in layered quantum materials, and often compete with other phases such as superconductivity. Preferential suppression of the symmetry broken phases by light has been used to explain non-equilibrium light induced superconductivity, metallicity, and the creation of metastable states. Key to understanding how these phases emerge is understanding how C4 symmetry is restored. A leading approach is based on time-dependent Ginzburg-Landau theory, which explains the coherence response seen in many systems. However, we show that, for the case of the single layered manganite La0.5Sr1.5MnO4, the theory fails. Instead, we find an ultrafast inhomogeneous disordering transition in which the mean-field order parameter no longer reflects the atomic-scale state of the system. Our results suggest that disorder may be common to light-induced phase transitions, and methods beyond the mean-field are necessary for understanding and manipulating photoinduced phases.
Collapse
Affiliation(s)
- Daniel Perez-Salinas
- ICFO - The Institute of Photonics Sciences, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Allan S Johnson
- ICFO - The Institute of Photonics Sciences, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | | | - Simon Wall
- ICFO - The Institute of Photonics Sciences, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain.
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000, Aarhus C, Denmark.
| |
Collapse
|