1
|
Yu J, Tian S, Lu G, Xu S, Yang K, Ye L, Li Q, Zhang L, Yang J. Antifreeze Protein-Inspired Zwitterionic Graphene Oxide Nanosheets for a Photothermal Anti-icing Coating. NANO LETTERS 2025; 25:987-994. [PMID: 39789771 DOI: 10.1021/acs.nanolett.4c04478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Organisms that survive at freezing temperatures produce antifreeze proteins (AFPs) to manage ice nucleation and growth. Inspired by AFPs, a series of synthetic materials have been developed to mimic these proteins in order to avoid the limitations of natural AFPs. Despite their great importance in various antifreeze applications, the relationship between structure and performance of AFP mimics remains unclear, especially whether their molecular charge-specific effects on ice inhibition exist. Herein, we design the AFP mimics─charged graphene oxide (GO) nanosheets─grafted with positive charge, negative charge, and zwitterionic groups, respectively. The relationship between the GO charge structure and antifreeze performance is investigated, and the distinct efficiency of charge in ice inhibition is systematically discovered. Based on the best-performing zwitterionic GO nanosheets, a highly efficient anti-icing and deicing coating is created. Moreover, benefiting from the photothermal property of GO nanosheets, the microstructures of coating are constructed to further enhance solar thermal deicing performance.
Collapse
Affiliation(s)
- Junyu Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Shu Tian
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Guangming Lu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Sijia Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Kai Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Lei Ye
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
- Haihe laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| |
Collapse
|
2
|
Huang J, Zhang Y, Chen J, Zhang Z, Zhang C, Huang C, Fei L. Surface topology of MXene flakes induces the selection of the sintering mechanism for supported Pt nanoparticles. Chem Sci 2024:d4sc03284e. [PMID: 39170721 PMCID: PMC11333939 DOI: 10.1039/d4sc03284e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024] Open
Abstract
Sintering of metal nanocatalysts leading to particle growth and subsequent performance deactivation is a primary issue that hinders their practical applications. While metal-support interaction (MSI) is considered as the critical factor which influences the sintering behavior, the underlying microscopic mechanism and kinetics remain incompletely understood. Here, by using in situ scanning transmission electron microscopy (STEM) and theoretical analysis, we reveal the selection rule of the sintering mechanism for Pt nanoparticles on a two-dimensional (2D) MXene (Ti3C2T x ) support, which relies on the surface topology of MXene flakes. It is demonstrated that the sintering of Pt nanoparticles proceeds via Ostwald ripening (OR) in the surface defect (such as steps and pore edges) regions of MXene flakes due to strong MSI on the Pt/MXene interface; conversely, weak MSI between Pt nanoparticles and the planar surface of MXene leads to prevalent particle migration and coalescence (PMC) for sintering. Furthermore, our quantitative analysis shows a significant divergence in sintering rates for PMC and OR processes. These microscopic observations suggest a clear "sintering mechanism-MSI" relationship for Pt/MXene nanocatalysts and may shed light on the design of novel nanocatalysts.
Collapse
Affiliation(s)
- Jiawei Huang
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| | - Yucheng Zhang
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| | - Jiaqi Chen
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| | - Zhouyang Zhang
- School of Materials and New Energy, Ningxia University Yinchuan 750021 China
| | - Chunfang Zhang
- College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Changshui Huang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Linfeng Fei
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| |
Collapse
|
3
|
Liang M, Cheng Y, Zhou X, Liu J, Wang J. Determining Roles of Potassium-Feldspar Surface Characters in Affecting Ice Nucleation. SMALL METHODS 2024; 8:e2300407. [PMID: 37462251 DOI: 10.1002/smtd.202300407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/10/2023] [Indexed: 04/24/2024]
Abstract
The roles of surface characteristics of the feldspar surface on ice nucleation have remained elusive. Here, simple strategies are reported to quantitatively analyze the effects of the surface morphology and molecular composition of the potassium-feldspar surface on ice nucleation. The steps are found to be responsible to the high ice nucleation efficacy according to the fact that water drop freezing temperature increases by about 4.5 °C atop the freshly cleavage feldspar surface being rich of steps comparing to the flattened ones. After the molecular component and atomic structure are destroyed by the fluorination, a tremendous decrease of the ice nucleation temperatures by around 9.0 °C is observed on both cleavage and flattened surfaces, and the steps still improve the ice nucleation activity of the hydrophobic cleavage surfaces. The influence of the surface composition also implies the importance of the molecular component and structure specificity on K-feldspar in facilitating ice nucleation.
Collapse
Affiliation(s)
- Meichen Liang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongxin Cheng
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xin Zhou
- School of Physical Sciences & CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Jie Liu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianjun Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Tian S, Li R, Liu X, Wang J, Yu J, Xu S, Tian Y, Yang J, Zhang L. Inhibition of Defect-Induced Ice Nucleation, Propagation, and Adhesion by Bioinspired Self-Healing Anti-Icing Coatings. RESEARCH (WASHINGTON, D.C.) 2023; 6:0140. [PMID: 37214197 PMCID: PMC10194051 DOI: 10.34133/research.0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
Anti-icing coatings on outdoor infrastructures inevitably suffer from mechanical injuries in numerous icing scenarios such as hailstorms, sandstorms, impacts of foreign objects, and icing-deicing cycles. Herein, the mechanisms of surface-defect-induced icing are clarified. At the defects, water molecules exhibit stronger adsorption and the heat transfer rate increases, accelerating the condensation of water vapor as well as ice nucleation and propagation. Moreover, the ice-defect interlocking structure increases the ice adhesion strength. Thus, a self-healing (at -20 °C) antifreeze-protein (AFP)-inspired anti-icing coating is developed. The coating is based on a design that mimics the ice-binding and non-ice-binding sites in AFPs. It enables the coating to markedly inhibit ice nucleation (nucleation temperature < -29.4 °C), prevent ice propagation (propagation rate < 0.00048 cm2/s), and reduce ice adhesion on the surface (adhesion strength < 38.9 kPa). More importantly, the coating can also autonomously self-heal at -20 °C, as a result of multiple dynamic bonds in its structure, to inhibit defect-induced icing processes. The healed coating sustains high anti-icing and deicing performance even under various extreme conditions. This work reveals the in-depth mechanism of defect-induced ice formation as well as adhesion, and proposes a self-healing anti-icing coating for outdoor infrastructures.
Collapse
Affiliation(s)
- Shu Tian
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Ruiqi Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Xinmeng Liu
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Jiancheng Wang
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province 256606, China
| | - Junyu Yu
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Sijia Xu
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Yunqing Tian
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| |
Collapse
|
5
|
Sacchi M, Tamtögl A. Water adsorption and dynamics on graphene and other 2D materials: Computational and experimental advances. ADVANCES IN PHYSICS: X 2022; 8:2134051. [PMID: 36816858 PMCID: PMC7614201 DOI: 10.1080/23746149.2022.2134051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/18/2023] Open
Abstract
The interaction of water and surfaces, at molecular level, is of critical importance for understanding processes such as corrosion, friction, catalysis and mass transport. The significant literature on interactions with single crystal metal surfaces should not obscure unknowns in the unique behaviour of ice and the complex relationships between adsorption, diffusion and long-range inter-molecular interactions. Even less is known about the atomic-scale behaviour of water on novel, non-metallic interfaces, in particular on graphene and other 2D materials. In this manuscript, we review recent progress in the characterisation of water adsorption on 2D materials, with a focus on the nano-material graphene and graphitic nanostructures; materials which are of paramount importance for separation technologies, electrochemistry and catalysis, to name a few. The adsorption of water on graphene has also become one of the benchmark systems for modern computational methods, in particular dispersion-corrected density functional theory (DFT). We then review recent experimental and theoretical advances in studying the single-molecular motion of water at surfaces, with a special emphasis on scattering approaches as they allow an unparalleled window of observation to water surface motion, including diffusion, vibration and self-assembly.
Collapse
Affiliation(s)
- M. Sacchi
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, UK
| | - A. Tamtögl
- Institute of Experimental Physics, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
6
|
Zan R, Li Y, Tao S, Li G, Wu R, Liu D, Peng D, Liu Y, Fei L. Spray-Coated Superhydrophobic Overlayer with Photothermal and Electrothermal Functionalities for All-Weather De/anti-icing Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13584-13593. [PMID: 36301846 DOI: 10.1021/acs.langmuir.2c02386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High-performance de/anti-icing overlayers which can be deposited on diverse surfaces offer great potential in many industrial settings and daily life, yet a versatile overlayer applicable to all-weather conditions (high humidity, low temperature, raining, snowing, etc.) is in high demand for practical applications. This study presents the fabrication and application of a superhydrophobic overlayer with a bioinspired hierarchical surface which additionally possesses photothermal and electrothermal functionalities, so it can operate as a de/anti-icing layer in extreme environments. The overlayer, with a papilla-like microstructure similar to that of a lotus leaf, features polydopamine-decorated layered basic zinc acetate microparticles distributed in the framework of multiwalled carbon nanotubes. Specifically, the overlayer is superhydrophobic, and its capability of suppressing the condensation of water droplets and growth of ice crystals is verified by both in situ environmental scanning electron microscopy observations and freezing experiments. Moreover, the overlayer can be warmed up to 74 and 105 °C under the excitation of sunlight and direct current bias, respectively, which is sufficiently high for deicing in severe weather. It is worth mentioning that the overlayer is produced by a spray-coating technique; therefore, it is suitable for large-scale deployment on arbitrary substrate materials. The findings provide insights into a new strategy for engineering multifunctional overlayers and can lead to expanding applications of composite coatings.
Collapse
Affiliation(s)
- Ruhao Zan
- School of Physics and Materials Science, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials, and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yanjun Li
- School of Physics and Materials Science, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials, and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shuqiang Tao
- School of Physics and Materials Science, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials, and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Guowei Li
- School of Physics and Materials Science, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials, and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Ronghui Wu
- School of Physics and Materials Science, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials, and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Dingjun Liu
- Institute of Advanced Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Donggen Peng
- School of Infrastructure Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yong Liu
- School of Advanced Manufacturing, Key Laboratory of Lightweight and High Strength Structural Materials of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Linfeng Fei
- School of Physics and Materials Science, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials, and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
7
|
Zhang Z, Tang Y, Ying Y, Guo J, Gan M, Jiang Y, Xing C, Pan S, Xu M, Zhou Y, Zhang H, Leung CW, Huang H, Mak CL, Fei L. Multistep nucleation visualized during solid-state crystallization. MATERIALS HORIZONS 2022; 9:1670-1678. [PMID: 35470363 DOI: 10.1039/d2mh00174h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mechanisms of nucleation have been debated for more than a century, despite successes of classical nucleation theory. The nucleation process has been recently argued as involving a nonclassical mechanism (the "two-step" mechanism) in which an intermediate step occurs before the formation of a nascent ordered phase. However, a thorough understanding of this mechanism, in terms of both microscopic kinetics and thermodynamics, remains experimentally challenging. Here, in situ observations using transmission electron microscopy on a solid-state nucleation case indicate that early-stage crystallization can follow the non-classical pathway, yet proceed via a more complex manner in which multiple metastable states precede the emergence of a stable nucleus. The intermediate steps were sequentially isolated as spinodal decomposition of amorphous precursor, mass transport and structural oscillations between crystalline and amorphous states. Our experimental and theoretical analyses support the idea that the energetic favorability is the driving force for the observed sequence of events. Due to the broad applicability of solid-state crystallization, the findings of this study offer new insights into modern nucleation theory and a potential avenue for materials design.
Collapse
Affiliation(s)
- Zhouyang Zhang
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Yujie Tang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yiran Ying
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Junqing Guo
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Min Gan
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Yateng Jiang
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Chunxian Xing
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shanshan Pan
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ming Xu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yangbo Zhou
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Haitao Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chi Wah Leung
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Haitao Huang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Chee Leung Mak
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Linfeng Fei
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
8
|
Li Y, Xie X, Li B, Sun X, Yang Y, Liu J, Feng J, Zhou Y, Li Y, Liu W, Wang S, Wang W, Zeng H, Zhang Z, Shen D, Shen D. Directed exfoliating and ordered stacking of transition-metal-dichalcogenides. NANOSCALE 2022; 14:7484-7492. [PMID: 35471207 DOI: 10.1039/d1nr07688d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional van der Waals crystals provide a limitless scope for designing novel combinations of physical properties by controlling the stacking order or twist angle of individual layers. Lattice orientation between stacked monolayers is significant not only for breaking the engineering symmetry but also for the study of many-body quantum phases and band topology. Thus far the state-of-the-art exfoliation approaches focus on the achievements of quality, size, yield, and scalability, while lacking sufficient information on lattice orientation. Consequently, interlayer alignment is usually determined by later experiments, such as the second harmonic generation spectroscopy, which increase the number of trials and errors for a designed artificial ordering and hampered the efficiency of systematic study. Herein, we report a lattice orientation distinguishable exfoliation method via gold favor epitaxy along the specific atomic step edges, meanwhile, fulfilling the requirements of high-quality, large-size, and high-yield monolayers. Hexagonal- and rhombohedral-stacking configurations of bilayer transition metal dichalcogenides are built directly at once as a result of foreseeing the lattice orientation. Optical spectroscopy, electron diffraction, and angle-resolved photoemission spectroscopy are used to study crystal quality, symmetric breaking, and band tuning, which support the exfoliating mechanism we proposed. This strategy shows the ability to facilitate the development of ordering stacking especially for multilayers assembling in the future.
Collapse
Affiliation(s)
- Yanshuang Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun, 130033, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiuhua Xie
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun, 130033, People's Republic of China.
| | - Binghui Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun, 130033, People's Republic of China.
| | - Xiaoli Sun
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Yichen Yang
- Center for Excellence in Superconducting Electronics, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Jishan Liu
- Center for Excellence in Superconducting Electronics, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiying Feng
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Ying Zhou
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yuanzheng Li
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Weizhen Liu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Shuangpeng Wang
- MOE Joint Key Laboratory, Institute of Applied Physics and Materials Engineering and Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR 999078, P. R. China
| | - Wei Wang
- MOE Joint Key Laboratory, Institute of Applied Physics and Materials Engineering and Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR 999078, P. R. China
| | - Huan Zeng
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun, 130033, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhenzhong Zhang
- School of Microelectronics, Dalian University of Technology, Dalian, 116024, China
| | - Dawei Shen
- Center for Excellence in Superconducting Electronics, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Dezhen Shen
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun, 130033, People's Republic of China.
| |
Collapse
|
9
|
Non-covalent interactions of graphene surface: Mechanisms and applications. Chem 2022. [DOI: 10.1016/j.chempr.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Pach E, Verdaguer A. Studying Ice with Environmental Scanning Electron Microscopy. Molecules 2021; 27:258. [PMID: 35011490 PMCID: PMC8746807 DOI: 10.3390/molecules27010258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Scanning electron microscopy (SEM) is a powerful imaging technique able to obtain astonishing images of the micro- and the nano-world. Unfortunately, the technique has been limited to vacuum conditions for many years. In the last decades, the ability to introduce water vapor into the SEM chamber and still collect the electrons by the detector, combined with the temperature control of the sample, has enabled the study of ice at nanoscale. Astounding images of hexagonal ice crystals suddenly became real. Since these first images were produced, several studies have been focusing their interest on using SEM to study ice nucleation, morphology, thaw, etc. In this paper, we want to review the different investigations devoted to this goal that have been conducted in recent years in the literature and the kind of information, beyond images, that was obtained. We focus our attention on studies trying to clarify the mechanisms of ice nucleation and those devoted to the study of ice dynamics. We also discuss these findings to elucidate the present and future of SEM applied to this field.
Collapse
Affiliation(s)
- Elzbieta Pach
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Spain;
| | | |
Collapse
|