1
|
Bhasin AO, Ceylan YS, Dillon AD, Giri SK, Schatz GC, Gieseking RLM. Plasmon Dynamics in Nanoclusters: Dephasing Revealed by Excited States Evaluation. J Chem Theory Comput 2025; 21:17-28. [PMID: 39807538 DOI: 10.1021/acs.jctc.4c01302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The photocatalytic efficiency of materials such as graphene and noble metal nanoclusters depends on their plasmon lifetimes. Plasmon dephasing and decay in these materials is thought to occur on ultrafast time scales, ranging from a few femtoseconds to hundreds of femtoseconds and longer. Here we focus on understanding the dephasing and decay pathways of excited states in small lithium and silver clusters and in plasmonic states of the π-conjugated molecule anthracene, providing insights that are crucial for interpreting optical properties and photophysics. To do this, we study the time dependence of the electronic density matrix of these molecules using a new approach that expresses the density matrix in terms of TDDFT eigenstates (ESs) of the TDDFT Hamiltonian. This approach, which involves combining linear response time-dependent density functional theory (LR-TDDFT) and real-time time-dependent density functional theory (RT-TDDFT), leads to an analysis of the electron dynamics in terms of ESs, rather than individual molecular orbital (MO) transitions as has typically been done. This circumvents the complexities and subjective biases that traditional MO-based analysis provides. We find in an analysis of the induced dipole moment in these molecules that what had previously been considered to be energy relaxation is actually dephasing associated with the eigenstates that are stationary after the excitation pulse is turned off. We conclude that the ES-basis analysis has significant potential to advance understanding of the electron dynamics of plasmonic nanomaterials, aiding their optimization for photocatalytic and technological applications.
Collapse
Affiliation(s)
- Anant O Bhasin
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Yavuz S Ceylan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
- Department of Chemistry, Massachusetts College of Liberal Arts, 375 Church Street, North Adams, Massachusetts 01247, United States
| | - Alva D Dillon
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Sajal Kumar Giri
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Rebecca L M Gieseking
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
2
|
Zhao J, Zhong Y, Zhang L, Sui L, Wu G, Zhang J, Han K, Zhang Q, Yuan K, Yang X. Relaxation Channels of Two Types of Hot Carriers in Gold Nanostructures. NANO LETTERS 2024. [PMID: 39561255 DOI: 10.1021/acs.nanolett.4c04431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
A fundamental understanding of hot carrier relaxation in metal nanostructures is essential for realizing their application potential in energy conversion and photocatalysis. Despite previous investigations of the relaxation of hot carriers generated by surface plasmon resonance (SPR) excitation and interband transitions (IBTs), the hot carrier relaxation lifetimes and their associated mechanisms remain unclear. Herein, we demonstrate two distinct hot carrier relaxation channels in gold plasmonic nanostructures. The experimental observations reveal that the hot carrier relaxation is faster following SPR excitation than that from IBTs in gold nanoparticles and nanorods. The experimental results and theoretical calculations indicate that the numerous plasmon-induced hot carriers undergo surface-mediated carrier-carrier scattering in large gold nanostructures, whereas almost all IBT-induced hot carriers experience bulk carrier-carrier scattering. These findings advance our understanding of hot carrier relaxation and contribute to a clearer microscopic description of scattering channels in plasmonic nanostructures.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yanyi Zhong
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, P. R. China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, P. R. China
| | - Liyang Zhang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, P. R. China
| | - Laizhi Sui
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Jiangbin Zhang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, P. R. China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, P. R. China
| | - Kai Han
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, P. R. China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, P. R. China
| | - Qi Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, P. R. China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
- Department of Chemistry and Center for Advanced Light Source Research, College of Science, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
3
|
Zhao T, Liu X, Nepal D, Park K, Vaia R, Nealey P, Knappenberger KL. Resolving plasmon-mediated high-order multiphoton excitation pathways in dolmen nanostructures using ultrafast nonlinear optical interferometry. J Chem Phys 2024; 161:054707. [PMID: 39092948 DOI: 10.1063/5.0218363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
The multiphoton excitation pathways of plasmonic nanorod assemblies are described. By using dolmen structures formed from the directed assembly of three gold nanorods, plasmon-mediated three-photon excitation is resolved. These high-order multiphoton excitation channels were accessed by resonantly exciting a hybrid mode of the dolmen structure that was resonant with the 800-nm carrier wavelength of an ultrafast laser system. Rotation of the exciting field polarization to a non-resonant configuration did not generate third-order responses. Hence, the multiphoton excitation and resultant non-equilibrium electron distributions were generated by structure- and mode-selective excitation. Correlation between high-order and resonant plasmon excitation was achieved through sub-cycle time-resolved interferometric detection of incoherent nonlinear emission signals. The results illustrate the advantages of nonlinear optical interferometry and Fourier analysis for distinguishing plasmon-mediated processes from those that do not require plasmon excitation.
Collapse
Affiliation(s)
- Tian Zhao
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Xiaoying Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Dhriti Nepal
- Air Force Research Laboratory, 2491 Hobson Way, Wright Patterson Air Force Base, Dayton, Ohio 45433, USA
| | - Kyoungyeon Park
- Air Force Research Laboratory, 2491 Hobson Way, Wright Patterson Air Force Base, Dayton, Ohio 45433, USA
| | - Richard Vaia
- Air Force Research Laboratory, 2491 Hobson Way, Wright Patterson Air Force Base, Dayton, Ohio 45433, USA
| | - Paul Nealey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Kenneth L Knappenberger
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
4
|
Jeffries WR, Jawaid AM, Vaia RA, Knappenberger KL. Thickness-dependent electronic relaxation dynamics in solution-phase redox-exfoliated MoS2 heterostructures. J Chem Phys 2024; 160:144707. [PMID: 38597312 DOI: 10.1063/5.0200398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
Electronic relaxation dynamics of solution-phase redox-exfoliated molybdenum disulfide (MoS2) monolayer and multilayer ensembles are described. MoS2 was exfoliated using polyoxometalate (POM) reductants. This process yields a colloidal heterostructure consisting of MoS2 2D sheet multilayers with surface-bound POM complexes. Using two-dimensional electronic spectroscopy, transient bleaching and photoinduced absorption signals were detected at excitation/detection energies of 1.82/1.87 and 1.82/1.80 eV, respectively. Approximate 100-fs bandgap renormalization (BGR) and subsequent defect- and phonon-mediated relaxation on the picosecond timescale were resolved for several MoS2 thicknesses spanning from 1 to 2 L to ∼20 L. BGR rates were independent of sample thickness and slightly slower than observations for chemical vapor deposition-grown MoS2 monolayers. However, defect-mediated relaxation accelerated ∼10-fold with increased sample thicknesses. The relaxation rates increased from 0.33 ± 0.05 to 1.2 ± 0.1 and 3.1 ± 0.4 ps-1 for 1-2 L, 3-4 L, and 20 L fractions. The thicknesses-dependent relaxation rates for POM-MoS2 heterostructures were modeled using a saturating exponential function that showed saturation at thirteen MoS2 layers. The results suggest that the increased POM surface coverage leads to larger defect density in the POM-MoS2 heterostructure. These are the first descriptions of the influence of sample thickness on electronic relaxation rates in solution-phase redox-exfoliated POM-MoS2 heterostructures. Outcomes of this work are expected to impact the development of solution-phase exfoliation of 2D metal-chalcogenide heterostructures.
Collapse
Affiliation(s)
- William R Jeffries
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ali M Jawaid
- Air Force Research Laboratory, 2941 Hobson Way, Wright Patterson Air Force Base, Dayton, Ohio 45433, USA
| | - Richard A Vaia
- Air Force Research Laboratory, 2941 Hobson Way, Wright Patterson Air Force Base, Dayton, Ohio 45433, USA
| | - Kenneth L Knappenberger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
5
|
Toffoletti F, Collini E. Coherent and Incoherent Ultrafast Dynamics in Colloidal Gold Nanorods. J Phys Chem Lett 2024; 15:339-348. [PMID: 38170625 PMCID: PMC10788960 DOI: 10.1021/acs.jpclett.3c03226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
The study of the mechanisms that control the ultrafast dynamics in gold nanoparticles is gaining more attention, as these nanomaterials can be used to create nanoarchitectures with outstanding optical properties. Here pump-probe and two-dimensional electronic spectroscopy have been synergistically employed to investigate the early ultrafast femtosecond processes following photoexcitation in colloidal gold nanorods with low aspect ratio. Complementary insights into the coherent plasmonic dynamics at the femtosecond time scale and incoherent hot electron dynamics over picosecond time scales have been obtained, including important information on the different sensitivity to the pump fluence of the longitudinal and transverse plasmons and their different contributions to the photoinduced broadening and shift.
Collapse
Affiliation(s)
- Federico Toffoletti
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Elisabetta Collini
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Padua
Quantum Technologies Research Center, Via Gradenigo 6/A, 35131 Padova, Italy
| |
Collapse
|
6
|
Roche B, Vo T, Chang WS. Promoting plasmonic photocatalysis with ligand-induced charge separation under interband excitation. Chem Sci 2023; 14:8598-8606. [PMID: 37592991 PMCID: PMC10430595 DOI: 10.1039/d3sc02167j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
Plasmonic nanoparticles have been demonstrated to enhance photocatalysis due to their strong photon absorption and efficient hot-carrier generation. However, plasmonic photocatalysts suffer from a short lifetime of plasmon-generated hot carriers that decay through internal relaxation pathways before being harnessed for chemical reactions. Here, we demonstrate the enhanced photocatalytic reduction of gold ions on gold nanorods functionalized with polyvinylpyrrolidone. The catalytic activities of the reaction are quantified by in situ monitoring of the spectral evolution of single nanorods using a dark-field scattering microscope. We observe a 13-fold increase in the reduction rate with the excitation of d-sp interband transition compared to dark conditions, and a negligible increase in the reduction rate when excited with intraband transition. The hole scavenger only plays a minor role in the photocatalytic reduction reaction. We attribute the enhanced photocatalysis to an efficient charge separation at the gold-polyvinylpyrrolidone interface, where photogenerated d-band holes at gold transfer to the HOMO of polyvinylpyrrolidone, leading to the prolonged lifetime of the electrons that subsequently reduce gold ions to gold atoms. These results provide new insight into the design of plasmonic photocatalysts with capping ligands.
Collapse
Affiliation(s)
- Ben Roche
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth North Dartmouth Massachusetts 02747 USA
| | - Tamie Vo
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth North Dartmouth Massachusetts 02747 USA
| | - Wei-Shun Chang
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth North Dartmouth Massachusetts 02747 USA
| |
Collapse
|
7
|
Lee SA, Kuhs CT, Searles EK, Everitt HO, Landes CF, Link S. d-Band Hole Dynamics in Gold Nanoparticles Measured with Time-Resolved Emission Upconversion Microscopy. NANO LETTERS 2023; 23:3501-3506. [PMID: 37023287 DOI: 10.1021/acs.nanolett.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The performance of photocatalysts and photovoltaic devices can be enhanced by energetic charge carriers produced from plasmon decay, and the lifetime of these energetic carriers greatly affects overall efficiencies. Although hot electron lifetimes in plasmonic gold nanoparticles have been investigated, hot hole lifetimes have not been as thoroughly studied in plasmonic systems. Here, we demonstrate time-resolved emission upconversion microscopy and use it to resolve the lifetime and energy-dependent cooling of d-band holes formed in gold nanoparticles by plasmon excitation and by following plasmon decay into interband and then intraband electron-hole pairs.
Collapse
Affiliation(s)
- Stephen A Lee
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Christopher T Kuhs
- U.S. Army DEVCOM Army Research Laboratory-South, Houston, Texas 77005, United States
| | - Emily K Searles
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Henry O Everitt
- U.S. Army DEVCOM Army Research Laboratory-South, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Stephan Link
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
8
|
Li BL, Luo JJ, Zou HL, Zhang QM, Zhao LB, Qian H, Luo HQ, Leong DT, Li NB. Chiral nanocrystals grown from MoS 2 nanosheets enable photothermally modulated enantioselective release of antimicrobial drugs. Nat Commun 2022; 13:7289. [PMID: 36435865 PMCID: PMC9701227 DOI: 10.1038/s41467-022-35016-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022] Open
Abstract
The transfer of the concept of chirality from molecules to synthesized nanomaterials has attracted attention amongst multidisciplinary teams. Here we demonstrate heterogeneous nucleation and anisotropic accumulation of Au nanoparticles on multilayer MoS2 planes to form chiroptically functional nanomaterials. Thiol amino acids with chiral conformations modulate asymmetric growth of gold nanoarchitectures on seeds of highly faceted Au/MoS2 heterostructures. Consequently, dendritic plasmonic nanocrystals with partial chiral morphologies are synthesized. The chirality of dendritic nanocrystals inherited from cysteine molecules refers to the structural characteristics and includes specific recognition of enantiomeric molecules. With integration of the intrinsic photothermal properties and inherited enantioselective characteristics, dendritic Au/MoS2 heterostructures exhibit chirality-dependent release of antimicrobial drugs from hydrogel substrates when activated by exogenous infrared irradiation. A three-in-one strategy involving synthesis of chiral dendritic heterostructures, enantioselective recognition, and controlled drug release system is presented, which improves nanomaterial synthetic technology and enhances our understanding of crucial chirality information.
Collapse
Affiliation(s)
- Bang Lin Li
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Jun Jiang Luo
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Hao Lin Zou
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Qing-Meng Zhang
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Liu-Bin Zhao
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Hang Qian
- grid.410570.70000 0004 1760 6682Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037 P. R. China
| | - Hong Qun Luo
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - David Tai Leong
- grid.4280.e0000 0001 2180 6431Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585 Singapore
| | - Nian Bing Li
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| |
Collapse
|
9
|
Fagan AM, Jeffries WR, Knappenberger KL, Schaak RE. Synthetic Control of Hot-Electron Thermalization Efficiency in Size-Tunable Au-Pt Hybrid Nanoparticles. ACS NANO 2021; 15:1378-1387. [PMID: 33337141 DOI: 10.1021/acsnano.0c08661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gold nanoparticles are well-known to exhibit size-dependent properties that are responsible for their unique catalytic, optical, and electronic applications. However, electron-phonon coupling, which is important for photocatalysis and light harvesting, is one of the rare properties of gold that is size-independent above a threshold value, e.g., for nanospheres larger than approximately 5 nm in diameter. Here, we show that when interfaced to a comparably sized Pt nanoparticle, the electron-phonon coupling constant of the hybrid material depends on the diameter of the Au domain. This is important because the electron-phonon coupling constant describes the efficiency by which hot electrons are converted to local heat by the primary electron-phonon scattering thermalization channel. We begin by synthesizing a library of Au-Pt hybrid nanoparticle heterodimers by growing size-tunable Au nanoparticles on Pt nanoparticle seeds. By systematically varying reagent concentration and reaction time, the Au domain diameter of the Au-Pt hybrid nanoparticle heterodimers can be tuned between 4.4 and 16 nm while the size of the Pt domain remains constant. Calibration curves allow us to dial in precise Au domain sizes, and microscopic analysis of the Au-Pt heterodimers provides insights into how they grow and how their morphologies evolve. Femtosecond time-resolved transient absorption spectroscopy reveals that for Au-Pt heterodimers having Au domain diameters of 8.7 to 14 nm, the electron-phonon coupling constant decreases by more than 80%, which is not observed for comparably sized Au nanoparticles. Interfacing smaller Au domains with Pt nanoparticle surfaces causes an increase in the density of states near the Fermi level of Au, which results in accelerated thermalization times through an increased number of electron-phonon interactions. The combination of precision hybrid nanoparticle synthesis and size-dependent electron-phonon coupling may be important for designing composite metals for photocatalytic and light-harvesting applications and for engineering different functions into established materials.
Collapse
|