1
|
Zhou Y, Zhang Z, Tang Q, Ma X, Hou X. Enhancing the high-temperature energy storage properties of PEI dielectrics by constructing trap-rich covalently cross-linked networks via POSS-functionalized BNNS. MATERIALS HORIZONS 2024; 11:4348-4358. [PMID: 38919994 DOI: 10.1039/d4mh00299g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Polymer films are ideal dielectric materials for energy storage capacitors due to their light weight and flexibility, but lower energy density and poor heat resistance greatly limit their application in high-temperature energy storage. Unlike the traditional method of solely adding wide-bandgap inorganic fillers to enhance energy density, in this study we constructed trap-rich hybrid covalently cross-linked networks in polyetherimide (PEI) via reactive polyhedral oligomeric silsesquioxane (POSS)-functionalized boron nitride nanosheets (BNNS@POSS), which not only serve as interfacial layers for dielectric transitions and insulating barriers but also create deeper traps and higher energy barriers in the region of cross-linked chains. This strategy based on the co-modulation of interfaces and traps achieved the compatibility of high polarization and high breakdown strength and improved energy storage performance. Therefore, the composite film BNNS@POSS/PEI with the addition of 5 wt% BNNS@POSS achieved a maximum discharge energy density and charge-discharge efficiency at 150 °C of 6.16 J cm-3 and 89.92%, and maintained high values at 200 °C of 4.12 J cm-3 and 88.38%, respectively. Moreover, the glass transition temperature (Tg) of the composite dielectrics increased by 20.2 °C. This work provides a promising candidate material and development directions for research in the field of high-temperature energy storage capacitors.
Collapse
Affiliation(s)
- Yijie Zhou
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Zongwu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Qiufan Tang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
- Xi'an Modern Chemistry Research Institute, Xi'an 10072, PR China
| | - Xiaoyan Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Xiao Hou
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
2
|
Zhang ZH, Wu L, Miao MP, Qin HJ, Chen G, Cai M, Liu L, Zhu LF, Zhang W, Zhai T, Ji W, Fu YS. Discovery and Manipulation of van der Waals Polarons in Sb 2O 3 Ultrathin Molecular Crystal. J Am Chem Soc 2024; 146:18556-18564. [PMID: 38943576 DOI: 10.1021/jacs.4c04450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Manipulating single electrons at the atomic scale is vital for mastering complex surface processes governed by the transfer of individual electrons. Polarons, composed of electrons stabilized by electron-phonon coupling, offer a pivotal medium for such manipulation. Here, using scanning tunneling microscopy and spectroscopy (STM/STS) and density functional theory (DFT) calculations, we report the identification and manipulation of a new type of polaron, dubbed van der Waals (vdW) polaron, within mono- to trilayer ultrathin films composed of Sb2O3 molecules that are bonded via vdW attractions. The Sb2O3 films were grown on a graphene-covered SiC(0001) substrate via molecular beam epitaxy. Unlike prior molecular polarons, STM imaging observed polarons at the interstitial sites of the molecular film, presenting unique electronic states and localized band bending. DFT calculations revealed the lowest conduction band as an intermolecular bonding state, capable of ensnaring an extra electron through locally diminished intermolecular distances, thereby forming an intermolecular vdW polaron. We also demonstrated the ability to generate, move, and erase such vdW polarons using an STM tip. Our work uncovers a new type of polaron stabilized by coupling with intermolecular vibrations where vdW interactions dominate, paving the way for designing atomic-scale electron transfer processes and enabling precise tailoring of electron-related properties and functionalities.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Linlu Wu
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
| | - Mao-Peng Miao
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao-Jun Qin
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gang Chen
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Cai
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lixin Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lan-Fang Zhu
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenhao Zhang
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Ji
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
| | - Ying-Shuang Fu
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| |
Collapse
|
3
|
Dong X, Wan B, Zha JW. Versatile Landscape of Low- k Polyimide: Theories, Synthesis, Synergistic Properties, and Industrial Integration. Chem Rev 2024; 124:7674-7711. [PMID: 38847509 DOI: 10.1021/acs.chemrev.3c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The development of microelectronics and large-scale intelligence nowadays promotes the integration, miniaturization, and multifunctionality of electronic and devices but also leads to the increment of signal transmission delays, crosstalk, and energy consumption. The exploitation of materials with low permittivity (low-k) is crucial for realizing innovations in microelectronics. However, due to the high permittivity of conventional interlayer dielectric material (k ∼ 4.0), it is difficult to meet the demands of current microelectronic technology development (k < 3.0). Organic dielectric materials have attracted much attention because of their relatively low permittivity owing to their low material density and low single bond polarization. Polyimide (PI) exhibits better application potential based on its well permittivity tunability (k = 1.1-3.2), high thermal stability (>500 °C), and mechanical property (modulus of elasticity up to 3.0-4.0 GPa). In this review, based on the synergistic relationship of dielectric parameters of materials, the development of nearly 20 years on low-k PI is thoroughly summarized. Moreover, process strategies for modifying low-k PI at the molecular level, multiphase recombination, and interface engineering are discussed exhaustively. The industrial application, technological challenges, and future development of low-k PI are also analyzed, which will provide meaningful guidance for the design and practical application of multifunctional low-k materials.
Collapse
Affiliation(s)
- Xiaodi Dong
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoquan Wan
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun-Wei Zha
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528300, China
| |
Collapse
|
4
|
Ryu H, Kim H, Jeong JH, Kim BC, Watanabe K, Taniguchi T, Lee GH. Van der Waals Epitaxially Grown Molecular Crystal Dielectric Sb 2O 3 for 2D Electronics. ACS NANO 2024; 18:13098-13105. [PMID: 38703120 DOI: 10.1021/acsnano.4c01883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Two-dimensional (2D) semiconducting materials have attracted significant interest as promising candidates for channel materials owing to their high mobility and gate tunability at atomic-layer thickness. However, the development of 2D electronics is impeded due to the difficulty in formation of high-quality dielectrics with a clean and nondestructive interface. Here, we report the direct van der Waals epitaxial growth of a molecular crystal dielectric, Sb2O3, on 2D materials by physical vapor deposition. The grown Sb2O3 nanosheets showed epitaxial relations of 0 and 180° with the 2D template, maintaining high crystallinity and an ultrasharp vdW interface with the 2D materials. As a result, the Sb2O3 nanosheets exhibited a high breakdown field of 18.6 MV/cm for 2L Sb2O3 with a thickness of 1.3 nm and a very low leakage current of 2.47 × 10-7 A/cm2 for 3L Sb2O3 with a thickness of 1.96 nm. We also observed two types of grain boundaries (GBs) with misorientation angles of 0 and 60°. The 0°-GB with a well-stitched boundary showed higher electrical and thermal stabilities than those of the 60°-GB with a disordered boundary. Our work demonstrates a method to epitaxially grow molecular crystal dielectrics on 2D materials without causing any damage, a requirement for high-performance 2D electronics.
Collapse
Affiliation(s)
- Huije Ryu
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjun Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Hwan Jeong
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Byeong Chan Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Gwan-Hyoung Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Chen J, Liu Z, Lv Z, Hou Y, Chen X, Lan L, Cheng TH, Zhang L, Duan Y, Fu H, Fu X, Luo F, Wu J. Controllable Synthesis of Transferable Ultrathin Bi 2Ge(Si)O 5 Dielectric Alloys with Composition-Tunable High-κ Properties. J Am Chem Soc 2024. [PMID: 38615326 DOI: 10.1021/jacs.4c02496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Two-dimensional (2D) alloys hold great promise to serve as important components of 2D transistors, since their properties allow continuous regulation by varying their compositions. However, previous studies are mainly limited to the metallic/semiconducting ones as contact/channel materials, but very few are related to the insulating dielectrics. Here, we use a facile one-step chemical vapor deposition (CVD) method to synthesize ultrathin Bi2SixGe1-xO5 dielectric alloys, whose composition is tunable over the full range of x just by changing the relative ratios of the GeO2/SiO2 precursors. Moreover, their dielectric properties are highly composition-tunable, showing a record-high dielectric constant of >40 among CVD-grown 2D insulators. The vertically grown nature of Bi2GeO5 and Bi2SixGe1-xO5 enables polymer-free transfer and subsequent clean van der Waals integration as the high-κ encapsulation layer to enhance the mobility of 2D semiconductors. Besides, the MoS2 transistors using Bi2SixGe1-xO5 alloy as gate dielectrics exhibit a large Ion/Ioff (>108), ideal subthreshold swing of ∼61 mV/decade, and a small gate hysteresis (∼5 mV). Our work not only gives very few examples on controlled CVD growth of insulating dielectric alloys but also expands the family of 2D single-crystalline high-κ dielectrics.
Collapse
Affiliation(s)
- Jiabiao Chen
- Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhaochao Liu
- Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zunxian Lv
- Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yameng Hou
- Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiang Chen
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071 China
| | - Lan Lan
- Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tong-Huai Cheng
- Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingnan Duan
- Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huixia Fu
- Center of Quantum Materials and Devices & College of Physics, Chongqing University, Chongqing 401331, China
| | - Xuewen Fu
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071 China
| | - Feng Luo
- Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jinxiong Wu
- Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Miao L, Zhan L, Liao S, Li Y, He T, Yin S, Wu L, Qiu H. The Recent Advances of Polymer-POSS Nanocomposites With Low Dielectric Constant. Macromol Rapid Commun 2024; 45:e2300601. [PMID: 38232689 DOI: 10.1002/marc.202300601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/22/2023] [Indexed: 01/19/2024]
Abstract
This study provides a comprehensive overview of the preparation methods for polyhedral oligomeric silsesquioxane (POSS) monomers and polymer/POSS nanocomposites. It focuses on the latest advancements in using POSS to design polymer nanocomposites with reduced dielectric constants. The study emphasizes exploring the potential of POSS, either alone or in combination with other materials, to decrease the dielectric constant and dielectric loss of various polymers, including polyimides, bismaleimide resins, poly(aryl ether)s, polybenzoxazines, benzocyclobutene resins, polyolefins, cyanate ester resins, and epoxy resins. In addition, the research investigates the impact of incorporating POSS on improving the thermal properties, mechanical properties, surface properties, and other aspects of these polymers. The entire study is divided into two parts, discussing systematically the role of POSS in reducing dielectric constants during the preparation of POSS composites using both physical blending and chemical synthesis methods. The goal of this research is to provide valuable strategies for designing a new generation of low dielectric constant materials suitable for large-scale integrated circuits in the semiconductor materials domain.
Collapse
Affiliation(s)
- Li Miao
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P.R. China
| | - Lingling Zhan
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P.R. China
| | - Shenglong Liao
- School of engineering, Hangzhou Normal University, Hangzhou, 311121, P.R. China
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P.R. China
| | - Tian He
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P.R. China
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P.R. China
| | - Lianbin Wu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P.R. China
| | - Huayu Qiu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P.R. China
| |
Collapse
|
7
|
Li P, Zhao Y, Li H, Zhai T. On the Working Mechanisms of Molecules-Based Van der Waals Dielectrics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302230. [PMID: 37287381 DOI: 10.1002/smll.202302230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Indexed: 06/09/2023]
Abstract
Sb2 O3 molecules offer unprecedented opportunities for the integration of a van der Waals (vdW) dielectric and a 2D vdW semiconductor. However, the working mechanisms underlying molecules-based vdW dielectrics remain unclear. Here, the working mechanisms of Sb2 O3 and two Sb2 O3 -like molecules (As2 O3 and Bi2 O3 ) as dielectrics are systematically investigated by combining first-principles calculations and gate leakage current theories. It is revealed that molecules-based vdW dielectrics have a considerable advantage over conventional dielectric materials: defects hardly affect their insulating properties. This shows that it is unnecessary to synthesize high-quality crystals in practical applications, which has been a long-standing challenge for conventional dielectric materials. Further analysis reveals that a large thermionic-emission current renders Sb2 O3 difficult to simultaneously satisfy the requirements of dielectric layers in p-MOS and n-MOS, which hinders its application for complementary metal-oxide-semiconductor (CMOS) devices. Remarkably, it is found that As2 O3 can serve as a dielectric for both p-MOS and n-MOS. This work not only lays a theoretical foundation for the application of molecules-based vdW dielectrics, but also offers an unprecedentedly competitive dielectric (i.e., As2 O3 ) for 2D vdW semiconductors-based CMOS devices, thus having profound implications for future semiconductor industry.
Collapse
Affiliation(s)
- Pengyu Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
8
|
Chen J, Liu Z, Dong X, Gao Z, Lin Y, He Y, Duan Y, Cheng T, Zhou Z, Fu H, Luo F, Wu J. Vertically grown ultrathin Bi 2SiO 5 as high-κ single-crystalline gate dielectric. Nat Commun 2023; 14:4406. [PMID: 37479692 PMCID: PMC10361963 DOI: 10.1038/s41467-023-40123-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023] Open
Abstract
Single-crystalline high-κ dielectric materials are desired for the development of future two-dimensional (2D) electronic devices. However, curent 2D gate insulators still face challenges, such as insufficient dielectric constant and difficult to obtain free-standing and transferrable ultrathin films. Here, we demonstrate that ultrathin Bi2SiO5 crystals grown by chemical vapor deposition (CVD) can serve as excellent gate dielectric layers for 2D semiconductors, showing a high dielectric constant (>30) and large band gap (~3.8 eV). Unlike other 2D insulators synthesized via in-plane CVD on substrates, vertically grown Bi2SiO5 can be easily transferred onto other substrates by polymer-free mechanical pressing, which greatly facilitates its ideal van der Waals integration with few-layer MoS2 as high-κ dielectrics and screening layers. The Bi2SiO5 gated MoS2 field-effect transistors exhibit an ignorable hysteresis (~3 mV) and low drain induced barrier lowering (~5 mV/V). Our work suggests vertically grown Bi2SiO5 nanoflakes as promising candidates to improve the performance of 2D electronic devices.
Collapse
Affiliation(s)
- Jiabiao Chen
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhaochao Liu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xinyue Dong
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhansheng Gao
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuxuan Lin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuyu He
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yingnan Duan
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Tonghuai Cheng
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhengyang Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200093, China
| | - Huixia Fu
- Center of Quantum Materials and Devices & College of Physics, Chongqing University, Chongqing, 401331, China
| | - Feng Luo
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jinxiong Wu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
9
|
Jin Y, Sun J, Zhang L, Yang J, Wu Y, You B, Liu X, Leng K, Liu S. Controllable Oxidation of ZrS 2 to Prepare High-κ, Single-Crystal m-ZrO 2 for 2D Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212079. [PMID: 36815429 DOI: 10.1002/adma.202212079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/27/2023] [Indexed: 05/05/2023]
Abstract
High-κ materials that exhibit large permittivity and band gaps are needed as gate dielectrics to enhance capacitance and prevent leakage current in downsized technology nodes. Among these, monoclinic ZrO2 (m-ZrO2 ) shows good potential because of its inertness and high-κ with respect to SiO2 , but a method to produce ultrathin single crystal is lacking. Here, the controllable preparation of ultrathin m-ZrO2 single crystals via the in situ thermal oxidation of ZrS2 is achieved. As-grown m-ZrO2 presents an equivalent oxide thickness of ≈0.29 nm, a high dielectric constant of ≈19, and a breakdown voltage (EBD ) of ≈7.22 MV cm-1 . MoS2 field effect transistor (FET) by using m-ZrO2 as a dielectric layer shows comparable mobility to that using SiO2 dielectric. The ultraclean interface of m-ZrO2 /MoS2 and high crystalline quality of m-ZrO2 lead to negligible hysteresis in transfer curves. Single crystal m-ZrO2 dielectric shows potential application in digital complementary metal oxidesemiconductor (CMOS) logic FET.
Collapse
Affiliation(s)
- Yuanyuan Jin
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 100872, P. R. China
| | - Jian Sun
- School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Ling Zhang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Junqiang Yang
- School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Yangwu Wu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Bingying You
- Department of Information Technology, Ghent University, Technologiepark-Zwijnaarde 15, Gent, 9052, Belgium
| | - Xiao Liu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Kai Leng
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 100872, P. R. China
| | - Song Liu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
10
|
Zhou K, Shang G, Hsu HH, Han ST, Roy VAL, Zhou Y. Emerging 2D Metal Oxides: From Synthesis to Device Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207774. [PMID: 36333890 DOI: 10.1002/adma.202207774] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/26/2022] [Indexed: 05/26/2023]
Abstract
2D metal oxides have aroused increasing attention in the field of electronics and optoelectronics due to their intriguing physical properties. In this review, an overview of recent advances on synthesis of 2D metal oxides and their electronic applications is presented. First, the tunable physical properties of 2D metal oxides that relate to the structure (various oxidation-state forms, polymorphism, etc.), crystallinity and defects (anisotropy, point defects, and grain boundary), and thickness (quantum confinement effect, interfacial effect, etc.) are discussed. Then, advanced synthesis methods for 2D metal oxides besides mechanical exfoliation are introduced and classified into solution process, vapor-phase deposition, and native oxidation on a metal source. Later, the various roles of 2D metal oxides in widespread applications, i.e., transistors, inverters, photodetectors, piezotronics, memristors, and potential applications (solar cell, spintronics, and superconducting devices) are discussed. Finally, an outlook of existing challenges and future opportunities in 2D metal oxides is proposed.
Collapse
Affiliation(s)
- Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gang Shang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hsiao-Hsuan Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
11
|
Feng X, Bu K, Liu T, Guo S, Sun Z, Fu T, Xu Y, Liu K, Yang S, Zhao Y, Li H, Lü X, Zhai T. Giant Tunability of Charge Transport in 2D Inorganic Molecular Crystals by Pressure Engineering. Angew Chem Int Ed Engl 2023; 62:e202217238. [PMID: 36461902 DOI: 10.1002/anie.202217238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022]
Abstract
The unique intermolecular van der Waals force in emerging two-dimensional inorganic molecular crystals (2DIMCs) endows them with highly tunable structures and properties upon applying external stimuli. Using high pressure to modulate the intermolecular bonding, here we reveal the highly tunable charge transport behavior in 2DIMCs for the first time, from an insulator to a semiconductor. As pressure increases, 2D α-Sb2 O3 molecular crystal undergoes three isostructural transitions, and the intermolecular bonding enhances gradually, which results in a considerably decreased band gap by 25 % and a greatly enhanced charge transport. Impressively, the in situ resistivity measurement of the α-Sb2 O3 flake shows a sharp drop by 5 orders of magnitude in 0-3.2 GPa. This work sheds new light on the manipulation of charge transport in 2DIMCs and is of great significance for promoting the fundamental understanding and potential applications of 2DIMCs in advanced modern technologies.
Collapse
Affiliation(s)
- Xin Feng
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Teng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Songhao Guo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Zongdong Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tonghuan Fu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Yongshan Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Sijie Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
12
|
Dong X, Wan B, Zheng MS, Xu H, Gao J, Chen G, Zha JW. Emerging ionic liquid-induced porous polyimide films toward ultralow permittivity, improved hydrophobic and electromagnetic wave absorption. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Long Q, Li X, Huang Y, Peng Q, Li X, Zhu L, Ma J, Ye X, Yang J. The low dielectric constant hyperbranched polycarbosilane derived resins with spacing groups. J Appl Polym Sci 2022. [DOI: 10.1002/app.52614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Quan Long
- School of Materials Science and Engineering Southwest University of Science and Technology Mianyang 621000 China
- State Key Laboratory of Environmental‐Friendly Energy Materials Southwest University of Science and Technology Mianyang 621000 China
| | - Xia Li
- China Bluestar Chengrand Chemical Co. Ltd. Chengdu 610000 China
| | - Yawen Huang
- State Key Laboratory of Environmental‐Friendly Energy Materials Southwest University of Science and Technology Mianyang 621000 China
| | - Qiuxia Peng
- School of Materials Science and Engineering Southwest University of Science and Technology Mianyang 621000 China
- State Key Laboratory of Environmental‐Friendly Energy Materials Southwest University of Science and Technology Mianyang 621000 China
| | - Xian Li
- School of Materials Science and Engineering Southwest University of Science and Technology Mianyang 621000 China
- State Key Laboratory of Environmental‐Friendly Energy Materials Southwest University of Science and Technology Mianyang 621000 China
| | - Liangbo Zhu
- China Bluestar Chengrand Chemical Co. Ltd. Chengdu 610000 China
| | - Jiajun Ma
- State Key Laboratory of Environmental‐Friendly Energy Materials Southwest University of Science and Technology Mianyang 621000 China
| | - Xu Ye
- School of Materials Science and Engineering Southwest University of Science and Technology Mianyang 621000 China
- School of Adult and Network Education Southwest University of Science and Technology Mianyang 621000 China
| | - Junxiao Yang
- State Key Laboratory of Environmental‐Friendly Energy Materials Southwest University of Science and Technology Mianyang 621000 China
| |
Collapse
|
14
|
Yang W, Xin K, Yang J, Xu Q, Shan C, Wei Z. 2D Ultrawide Bandgap Semiconductors: Odyssey and Challenges. SMALL METHODS 2022; 6:e2101348. [PMID: 35277948 DOI: 10.1002/smtd.202101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
2D ultrawide bandgap (UWBG) semiconductors have aroused increasing interest in the field of high-power transparent electronic devices, deep-ultraviolet photodetectors, flexible electronic skins, and energy-efficient displays, owing to their intriguing physical properties. Compared with dominant narrow bandgap semiconductor material families, 2D UWBG semiconductors are less investigated but stand out because of their propensity for high optical transparency, tunable electrical conductivity, high mobility, and ultrahigh gate dielectrics. At the current stage of research, the most intensively investigated 2D UWBG semiconductors are metal oxides, metal chalcogenides, metal halides, and metal nitrides. This paper provides an up-to-date review of recent research progress on new 2D UWBG semiconductor materials and novel physical properties. The widespread applications, i.e., transistors, photodetector, touch screen, and inverter are summarized, which employ 2D UWBG semiconductors as either a passive or active layer. Finally, the existing challenges and opportunities of the enticing class of 2D UWBG semiconductors are highlighted.
Collapse
Affiliation(s)
- Wen Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Kaiyao Xin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Qun Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key laboratory of Materials Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| |
Collapse
|
15
|
Zhu CY, Qin JK, Huang PY, Sun HL, Sun NF, Shi YL, Zhen L, Xu CY. 2D Indium Phosphorus Sulfide (In 2 P 3 S 9 ): An Emerging van der Waals High-k Dielectrics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104401. [PMID: 34825486 DOI: 10.1002/smll.202104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/16/2021] [Indexed: 06/13/2023]
Abstract
2D van der Waals (vdW) semiconductors hold great potentials for more-than-Moore field-effect transistors (FETs), and the efficient utilization of their theoretical performance requires compatible high-k dielectrics to guarantee the high gate coupling efficiency. The deposition of traditional high-k dielectric oxide films on 2D materials usually generates interface concerns, thereby causing the carrier scattering and degeneration of device performance. Here, utilizing a space-confined epitaxy growth approach, the authors successfully obtained air-stable ultrathin indium phosphorus sulfide (In2 P3 S9 ) nanosheets, the thickness of which can be scaled down to monolayer limit (≈0.69 nm) due to its layered structure. 2D In2 P3 S9 exhibits excellent insulating properties, with a high dielectric constant (≈24) and large breakdown voltage (≈8.1 MV cm-1 ) at room temperature. Serving as gate insulator, ultrathin In2 P3 S9 nanosheet can be integrated into MoS2 FETs with high-quality dielectric/semiconductor interface, thus providing a competitive electrical performance of device with subthreshold swings (SS) down to 88 mV dec-1 and a high ON/OFF ratio of 105 . This study proves an important strategy to prepare 2D vdW high-k dielectrics, and greatly facilitates the ongoing research of 2D materials for functional electronics.
Collapse
Affiliation(s)
- Cheng-Yi Zhu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Jing-Kai Qin
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Pei-Yu Huang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Hai-Lin Sun
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Nie-Feng Sun
- National Key Laboratory of ASIC, Hebei Semiconductor Research Institute, Shijiazhuang, 050051, China
| | - Yan-Lei Shi
- National Key Laboratory of ASIC, Hebei Semiconductor Research Institute, Shijiazhuang, 050051, China
| | - Liang Zhen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
- MOE Key Laboratory of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Cheng-Yan Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
- MOE Key Laboratory of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| |
Collapse
|
16
|
Liu L, Gong P, Liu K, Nie A, Liu Z, Yang S, Xu Y, Liu T, Zhao Y, Huang L, Li H, Zhai T. Scalable Van der Waals Encapsulation by Inorganic Molecular Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106041. [PMID: 34865248 DOI: 10.1002/adma.202106041] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Encapsulation is critical for devices to guarantee their stability and reliability. It becomes an even more essential requirement for devices based on 2D materials with atomic thinness and far inferior stability compared to their bulk counterparts. Here a general van der Waals (vdW) encapsulation method for 2D materials using Sb2 O3 layer of inorganic molecular crystal fabricated via thermal evaporation deposition is reported. It is demonstrated that such a scalable encapsulation method not only maintains the intrinsic properties of typical air-susceptible 2D materials due to their vdW interactions but also remarkably improves their environmental stability. Specifically, the encapsulated black phosphorus (BP) exhibits greatly enhanced structural stability of over 80 days and more sustaining-electrical properties of 19 days, while the bare BP undergoes degradation within hours. Moreover, the encapsulation layer can be facilely removed by sublimation in vacuum without damaging the underlying materials. This scalable encapsulation method shows a promising pathway to effectively enhance the environmental stability of 2D materials, which may further boost their practical application in novel (opto)electronic devices.
Collapse
Affiliation(s)
- Lixin Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Penglai Gong
- Department of Physics, Southern University of Science and Technology, Shenzhen, 5158055, P. R. China
- Key Laboratory of Optic-Electronic Information and Materials of Hebei Province, Institute of Life Science and Green Development, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Anmin Nie
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Zhongyuan Liu
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Sanjun Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yongshan Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Teng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Li Huang
- Department of Physics, Southern University of Science and Technology, Shenzhen, 5158055, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
17
|
Messalea KA, Syed N, Zavabeti A, Mohiuddin M, Jannat A, Aukarasereenont P, Nguyen CK, Low MX, Walia S, Haas B, Koch CT, Mahmood N, Khoshmanesh K, Kalantar-Zadeh K, Daeneke T. High- k 2D Sb 2O 3 Made Using a Substrate-Independent and Low-Temperature Liquid-Metal-Based Process. ACS NANO 2021; 15:16067-16075. [PMID: 34623147 DOI: 10.1021/acsnano.1c04631] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High dielectric constant (high-k) ultrathin films are required as insulating gate materials. The well-known high-k dielectrics, including HfO2, ZrO2, and SrTiO3, feature three-dimensional lattice structures and are thus not easily obtained in the form of distinct ultrathin sheets. Therefore, their deposition as ultrathin layers still imposes challenges for electronic industries. Consequently, new high-k nanomaterials with k in the range of 40 to 100 and a band gap exceeding 4 eV are highly sought after. Antimony oxide nanosheets appear as a potential candidate that could fulfill these characteristics. Here, we report on the stoichiometric cubic polymorph of 2D antimony oxide (Sb2O3) as an ideal high-k dielectric sheet that can be synthesized via a low-temperature, substrate-independent, and silicon-industry-compatible liquid metal synthesis technique. A bismuth-antimony alloy was produced during the growth process. Preferential oxidation caused the surface of the melt to be dominated by α-Sb2O3. This ultrathin α-Sb2O3 was then deposited onto desired surfaces via a liquid metal print transfer. A tunable sheet thickness between ∼1.5 and ∼3 nm was achieved, while the lateral dimensions were within the millimeter range. The obtained α-Sb2O3 exhibited high crystallinity and a wide band gap of ∼4.4 eV. The relative permittivity assessment revealed a maximum k of 84, while a breakdown electric field of ∼10 MV/cm was observed. The isolated 2D α-Sb2O3 nanosheets were utilized in top-gated field-effect transistors that featured low leakage currents, highlighting that the obtained material is a promising gate oxide for conventional and van der Waals heterostructure-based electronics.
Collapse
Affiliation(s)
- Kibret A Messalea
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Nitu Syed
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Md Mohiuddin
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Azmira Jannat
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | | | - Chung K Nguyen
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Mei Xian Low
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Benedikt Haas
- Department of Physics & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Christoph T Koch
- Department of Physics & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Nasir Mahmood
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | | | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
18
|
Wu C, Peng J, Pu W, Lu S, Zhang C, Wu N, Sun Z, Zhang H, Wang HT. Elastic Properties of High-Symmetry Sb 4O 6 Cage-Molecular Crystal. J Phys Chem Lett 2021; 12:9011-9019. [PMID: 34515494 DOI: 10.1021/acs.jpclett.1c02160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The cubic-phase antimony trioxide (α-Sb2O3) is a room-temperature stable molecular crystal, composed of cage-like tetraantimony hexoxide (Sb4O6) molecules. Despite its versatile functionality, the van der Waals (vdW) bond-dominated nanomechanics is still unclear. Here, the bending plate-like linear behaviors of high-quality α-Sb2O3 nanoflakes were observed using the nanoindentation method. It is found that the cage-molecular crystal owns a very low in-plane Young's modulus of 14.9 ± 0.8 GPa and a remarkable maximum tensile strain of 6.0-8.8%, corresponding to a rupture strength of 0.89-1.31 GPa. Elucidated by the atomistic simulations, the compliant elastic modulus and the unexpectedly strong rupture strain are associated with the high-symmetry vdW bonding structure. The vdW nanomechanics is of fundamental and technological relevance to nanoelectronics.
Collapse
Affiliation(s)
- Congcong Wu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Jun Peng
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Weiwen Pu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Shengnan Lu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Chao Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
- Shanghai Institute of Microsystem and Information Technology, 865 Changning Road, Shanghai 200050, China
| | - Nan Wu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Zhaoru Sun
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Hongti Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Hung-Ta Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| |
Collapse
|