1
|
Guo XJ, Zhu BB, Li J, Guo P, Niu YB, Shi JL, Yokoyama W, Huang QS, Shao DY. Cholesterol metabolism in tumor immunity: Mechanisms and therapeutic opportunities for cancer. Biochem Pharmacol 2025; 234:116802. [PMID: 39954742 DOI: 10.1016/j.bcp.2025.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/25/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Cholesterol is an essential component of the cell membrane which plays a critical role in the survival of immune and tumor cells. Reprogramming of cholesterol metabolism in both tumor cells and immune cells can impact tumor progression and anti-tumor immune responses. Strategies aimed at modulating cholesterol metabolism have been demonstrated to be effective in hindering tumor growth and boosting anti-tumor immune functions. This review provides a thorough analysis of intracellular cholesterol homeostasis regulation in cells, focusing on key genes and signaling pathways. It particularly emphasizes the regulatory mechanisms and importance of the cholesterol presence state (esterified/free), levels of cholesterol, and its metabolites in immune and tumor cells. Additionally, the review thoroughly explores how cholesterol metabolism and sources (endogenous/exogenous) in the tumor microenvironment (TME) contribute to the interplay among tumor cells, immune suppressor cells, and immune effector cells, promoting cancer progression and immune evasion. It also delves into current insights on the influence of cholesterol metabolites and related drugs in regulating tumor development or immunotherapy. Finally, it presents an overview of recent advancements in clinical and preclinical trials investigating the efficacy of targeted cholesterol metabolism treatments and combination therapies in cancer management, while proposing potential future research directions in tumor immunity. This review is poised to offer fresh perspectives and avenues for examining the potential of cancer immunotherapy centered on cholesterol metabolism regulation.
Collapse
Affiliation(s)
- Xiao-Jia Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Bo-Bo Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Jing Li
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710072, PR China
| | - Ping Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Yin-Bo Niu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Jun-Ling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Wallace Yokoyama
- Processed Foods Research Unit, Western Regional Research Center, Agricultural Research Service, USDA, Albany, CA 94710, USA
| | - Qing-Sheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China.
| | - Dong-Yan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45th, Gaoxin South 9th Road, Nanshan District, Shenzhen City 518063, PR China.
| |
Collapse
|
2
|
Song J, Jancik-Prochazkova A, Kawakami K, Ariga K. Lateral nanoarchitectonics from nano to life: ongoing challenges in interfacial chemical science. Chem Sci 2024; 15:18715-18750. [PMID: 39568623 PMCID: PMC11575615 DOI: 10.1039/d4sc05575f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024] Open
Abstract
Lateral nanoarchitectonics is a method of precisely designing functional materials from atoms, molecules, and nanomaterials (so-called nanounits) in two-dimensional (2D) space using knowledge of nanotechnology. Similar strategies can be seen in biological systems; in particular, biological membranes ingeniously arrange and organise functional units within a single layer of units to create powerful systems for photosynthesis or signal transduction and others. When our major lateral nanoarchitectural approaches such as layer-by-layer (LbL) assembly and Langmuir-Blodgett (LB) films are compared with biological membranes, one finds that lateral nanoarchitectonics has potential to become a powerful tool for designing advanced functional nanoscale systems; however, it is still rather not well-developed with a great deal of unexplored possibilities. Based on such a discussion, this review article examines the current status of lateral nanoarchitectonics from the perspective of in-plane functional structure organisation at different scales. These include the extension of functions at the molecular level by on-surface synthesis, monolayers at the air-water interface, 2D molecular patterning, supramolecular polymers, macroscopic manipulation and functionality of molecular machines, among others. In many systems, we have found that while the targets are very attractive, the research is still in its infancy, and many challenges remain. Therefore, it is important to look at the big picture from different perspectives in such a comprehensive review. This review article will provide such an opportunity and help us set a direction for lateral nanotechnology toward more advanced functional organization.
Collapse
Affiliation(s)
- Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Ibaraki Japan
| | - Anna Jancik-Prochazkova
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Ibaraki Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8577 Ibaraki Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Japan
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwa-no-ha Kashiwa 277-8561 Japan
| |
Collapse
|
3
|
Chen Y, Zhang Q, Yang S, Li G, Shi C, Hu X, Asahina S, Asano N, Zhang Y. Formulate Adaptive Biphasic Scaffold via Sequential Protein-Instructed Peptide Co-Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401478. [PMID: 38785178 PMCID: PMC11304238 DOI: 10.1002/advs.202401478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/11/2024] [Indexed: 05/25/2024]
Abstract
To ensure compositional consistency while mitigating potential immunogenicity for stem cell therapy, synthetic scaffolds have emerged as compelling alternatives to native extracellular matrix (ECM). Substantial progress has been made in emulating specific natural traits featuring consistent chemical compositions and physical structures. However, recapitulating the dynamic responsiveness of the native ECM involving chemical transitions and physical remodeling during differentiation, remains a challenging endeavor. Here, the creation of adaptive scaffolds is demonstrated through sequential protein-instructed molecular assembly, utilizing stage-specific proteins, and incorporating in situ assembly technique. The procedure is commenced by introducing a dual-targeting peptide at the onset of stem cell differentiation. In response to highly expressed integrins and heparan sulfate proteoglycans (HSPGs) on human mesenchymal stem cell (hMSC), the peptides assembled in situ, creating customized extracellular scaffolds that adhered to hMSCs promoting osteoblast differentiation. As the expression of alkaline phosphatase (ALP) and collagen (COL-1) increased in osteoblasts, an additional peptide is introduced that interacts with ALP, initiating peptide assembly and facilitating calcium phosphate (CaP) deposition. The growth and entanglement of peptide assemblies with collagen fibers efficiently incorporated CaP into the network resulting in an adaptive biphasic scaffold that enhanced healing of bone injuries.
Collapse
Affiliation(s)
- Yazhou Chen
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhouHenan450003China
| | - Qizheng Zhang
- Active Soft Matter GroupSongshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Shenyu Yang
- Medical 3D Printing CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Guanying Li
- Department of BiophysicsSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxi71006China
| | - Chaochen Shi
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhouHenan450003China
| | - Xunwu Hu
- Active Soft Matter GroupSongshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Shunsuke Asahina
- SM Application Planning GroupJEOL Ltd.AkishimaTokyo196‐8588Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)Tohoku UniversitySendai980‐8572Japan
| | - Natsuko Asano
- SM Application Planning GroupJEOL Ltd.AkishimaTokyo196‐8588Japan
| | - Ye Zhang
- Active Soft Matter GroupSongshan Lake Materials LaboratoryDongguanGuangdong523808China
| |
Collapse
|
4
|
Pinelli M, Makdissi S, Scur M, Parsons BD, Baker K, Otley A, MacIntyre B, Nguyen HD, Kim PK, Stadnyk AW, Di Cara F. Peroxisomal cholesterol metabolism regulates yap-signaling, which maintains intestinal epithelial barrier function and is altered in Crohn's disease. Cell Death Dis 2024; 15:536. [PMID: 39069546 DOI: 10.1038/s41419-024-06925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Intestinal epithelial cells line the luminal surface to establish the intestinal barrier, where the cells play essential roles in the digestion of food, absorption of nutrients and water, protection from microbial infections, and maintaining symbiotic interactions with the commensal microbial populations. Maintaining and coordinating all these functions requires tight regulatory signaling, which is essential for intestinal homeostasis and organismal health. Dysfunction of intestinal epithelial cells, indeed, is linked to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel disease, and gluten-related enteropathies. Emerging evidence suggests that peroxisome metabolic functions are crucial in maintaining intestinal epithelial cell functions and intestinal epithelium regeneration and, therefore, homeostasis. Here, we investigated the molecular mechanisms by which peroxisome metabolism impacts enteric health using the fruit fly Drosophila melanogaster and murine model organisms and clinical samples. We show that peroxisomes control cellular cholesterol, which in turn regulates the conserved yes-associated protein-signaling and contributes to intestinal epithelial structure and epithelial barrier function. Moreover, analysis of intestinal organoid cultures derived from biopsies of patients affected by Crohn's Disease revealed that the dysregulation of peroxisome number, excessive cellular cholesterol, and inhibition of Yap-signaling are markers of disease and could be novel diagnostic and/or therapeutic targets for treating Crohn's Disease. Our studies provided mechanistic insights on peroxisomal signaling in intestinal epithelial cell functions and identified cholesterol as a novel metabolic regulator of yes-associated protein-signaling in tissue homeostasis.
Collapse
Affiliation(s)
- Marinella Pinelli
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Stephanie Makdissi
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Brendon D Parsons
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Anthony Otley
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Brad MacIntyre
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Huong D Nguyen
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Peter K Kim
- The Hospital for Sick Children, Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Andrew W Stadnyk
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada.
| |
Collapse
|
5
|
Li J, Song J, Shao L, Zhang X, Wang Z, Li G, Wang J, Zhang J. Acid-assisted self-assembly of pyrene-capped tyrosine ruptures lysosomes to induce cancer cell apoptosis. RSC Adv 2024; 14:15840-15847. [PMID: 38756853 PMCID: PMC11095371 DOI: 10.1039/d4ra01328j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Induced lysosomal membrane permeabilization (LMP) by peptide self-assembly has emerged as an effective platform for lysosome-targeted cancer therapy. In this study, we shift this strategical paradigm and present an innovative approach to LMP induction through amino acid-based self-assembly. Pyrene-capped tyrosine (Py-Tyr), as a proof-of-concept molecule, is designed with acidity-responsive self-assembly. Under acidic conditions (pH 4), Py-Tyr is protonated with reduced charge repulsion, and self-assembles into micrometer-scaled aggregates, which exceed the biological size of lysosomes. Cell experiments showed that Py-Tyr specifically accumulates in lysosomes and induces lysosome rupture, leading to the release of cathepsin B into the cytoplasm for subsequent apoptosis activation in cancer cells. This study capitalizes on the concept of amino acid assembly for efficient LMP induction, providing a simple and versatile platform for precise and effective therapeutic interventions in cancer therapy.
Collapse
Affiliation(s)
- Jing Li
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine Xianyang Shaanxi China
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Liang Shao
- Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Xianpeng Zhang
- Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Ziyi Wang
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine Xianyang Shaanxi China
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Jiansheng Wang
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine Xianyang Shaanxi China
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Jia Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| |
Collapse
|
6
|
Tyagi K, Venkatesh V. Emerging potential approaches in alkaline phosphatase (ALP) activatable cancer theranostics. RSC Med Chem 2024; 15:1148-1160. [PMID: 38665831 PMCID: PMC11042160 DOI: 10.1039/d3md00565h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/09/2024] [Indexed: 04/28/2024] Open
Abstract
Alkaline phosphatase (ALP) is known as one of the most crucial members of the phosphatase family and encompasses the enormous ability to hydrolyze the phosphate group in various biomolecules; by this, it regulates several events in the pool of biological medium. Owing to its overexpression in various cancer cells, recently, its potential has evolved as a prominent biomarker in cancer research. In this article, we have underlined the recent advances (2019 onwards) of alkaline phosphatase in the arena of emerging cancer theranostics. Herein, we mainly focused on phosphate-locked molecular systems such as peptides, prodrugs, and aggregation-induced emission (AIE)-based molecules. When these theranostics encounter cancer cell-overexpressed ALP, it results in the hydrolysis of the phosphate group, which leads to the release of highly cytotoxic agents along with turn-on fluorophore/pre-existing fluorophore.
Collapse
Affiliation(s)
- Kartikay Tyagi
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee Uttarakhand-247667 India
| | - V Venkatesh
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee Uttarakhand-247667 India
| |
Collapse
|
7
|
Kundu S, Jaiswal M, Babu Mullapudi V, Guo J, Kamat M, Basso KB, Guo Z. Investigation of Glycosylphosphatidylinositol (GPI)-Plasma Membrane Interaction in Live Cells and the Influence of GPI Glycan Structure on the Interaction. Chemistry 2024; 30:e202303047. [PMID: 37966101 PMCID: PMC10922586 DOI: 10.1002/chem.202303047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) need to interact with other components in the cell membrane to transduce transmembrane signals. A bifunctional GPI probe was employed for photoaffinity-based proximity labelling and identification of GPI-interacting proteins in the cell membrane. This probe contained the entire core structure of GPIs and was functionalized with photoreactive diazirine and clickable alkyne to facilitate its crosslinking with proteins and attachment of an affinity tag. It was disclosed that this probe was more selective than our previously reported probe containing only a part structure of the GPI core for cell membrane incorporation and an improved probe for studying GPI-cell membrane interaction. Eighty-eight unique membrane proteins, many of which are related to GPIs/GPI-anchored proteins, were identified utilizing this probe. The proteomics dataset is a valuable resource for further analyses and data mining to find new GPI-related proteins and signalling pathways. A comparison of these results with those of our previous probe provided direct evidence for the profound impact of GPI glycan structure on its interaction with the cell membrane.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Centre, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Shao X, Meng C, Song W, Zhang T, Chen Q. Subcellular visualization: Organelle-specific targeted drug delivery and discovery. Adv Drug Deliv Rev 2023; 199:114977. [PMID: 37391014 DOI: 10.1016/j.addr.2023.114977] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Organelles perform critical biological functions due to their distinct molecular composition and internal environment. Disorders in organelles or their interacting networks have been linked to the incidence of numerous diseases, and the research of pharmacological actions at the organelle level has sparked pharmacists' interest. Currently, cell imaging has evolved into a critical tool for drug delivery, drug discovery, and pharmacological research. The introduction of advanced imaging techniques in recent years has provided researchers with richer biological information for viewing and studying the ultrastructure of organelles, protein interactions, and gene transcription activities, leading to the design and delivery of precision-targeted drugs. Therefore, this reviews the research on organelles-targeted drugs based upon imaging technologies and development of fluorescent molecules for medicinal purposes. We also give a thorough analysis of a number of subcellular-level elements of drug development, including subcellular research instruments and methods, organelle biological event investigation, subcellular target and drug identification, and design of subcellular delivery systems. This review will make it possible to promote drug research from the individual/cellular level to the subcellular level, as well as give a new focus based on newly found organelle activities.
Collapse
Affiliation(s)
- Xintian Shao
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Caicai Meng
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Wenjing Song
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China; School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Tao Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250014, PR China
| | - Qixin Chen
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
9
|
Song Y, Zhang Z, Cao Y, Yu Z. Stimulus-Responsive Amino Acids Behind In Situ Assembled Bioactive Peptide Materials. Chembiochem 2023; 24:e202200497. [PMID: 36278304 DOI: 10.1002/cbic.202200497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/18/2022] [Indexed: 02/04/2023]
Abstract
In situ self-assembly of peptides into well-defined nanostructures represents one of versatile strategies for creation of bioactive materials within living cells with great potential in disease diagnosis and treatment. The intimate relationship between amino acid sequences and the assembling propensity of peptides has been thoroughly elucidated over the past few decades. This has inspired development of various controllable self-assembling peptide systems based on stimuli-responsive naturally occurring or non-canonical amino acids, including redox-, pH-, photo-, enzyme-responsive amino acids. This review attempts to summarize the recent progress achieved in manipulating in situ self-assembly of peptides by controllable reactions occurring to amino acids. We will highlight the systems containing non-canonical amino acids developed in our laboratory during the past few years, primarily including acid/enzyme-responsive 4-aminoproline, redox-responsive (seleno)methionine, and enzyme-responsive 2-nitroimidazolyl alanine. Utilization of the stimuli-responsive assembling systems in creation of bioactive materials will be specifically introduced to emphasize their advantages for addressing the concerns lying in disease theranostics. Eventually, we will provide the perspectives for the further development of stimulus-responsive amino acids and thereby demonstrating their great potential in development of next-generation biomaterials.
Collapse
Affiliation(s)
- Yanqiu Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Yawei Cao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China.,Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin, 300308, P. R. China
| |
Collapse
|
10
|
Chen Z, Yue Z, Yang K, Li S. Nanomaterials: small particles show huge possibilities for cancer immunotherapy. J Nanobiotechnology 2022; 20:484. [DOI: 10.1186/s12951-022-01692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractWith the economy's globalization and the population's aging, cancer has become the leading cause of death in most countries. While imposing a considerable burden on society, the high morbidity and mortality rates have continuously prompted researchers to develop new oncology treatment options. Anti-tumor regimens have evolved from early single surgical treatment to combined (or not) chemoradiotherapy and then to the current stage of tumor immunotherapy. Tumor immunotherapy has undoubtedly pulled some patients back from the death. However, this strategy of activating or boosting the body's immune system hardly benefits most patients. It is limited by low bioavailability, low response rate and severe side effects. Thankfully, the rapid development of nanotechnology has broken through the bottleneck problem of anti-tumor immunotherapy. Multifunctional nanomaterials can not only kill tumors by combining anti-tumor drugs but also can be designed to enhance the body's immunity and thus achieve a multi-treatment effect. It is worth noting that the variety of nanomaterials, their modifiability, and the diversity of combinations allow them to shine in antitumor immunotherapy. In this paper, several nanobiotics commonly used in tumor immunotherapy at this stage are discussed, and they activate or enhance the body's immunity with their unique advantages. In conclusion, we reviewed recent advances in tumor immunotherapy based on nanomaterials, such as biological cell membrane modification, self-assembly, mesoporous, metal and hydrogels, to explore new directions and strategies for tumor immunotherapy.
Collapse
|
11
|
Wang Z, Yang C, Zhang H, Gao Y, Xiao M, Wang Z, Yang L, Zhang J, Ren C, Liu J. In Situ Transformable Supramolecular Nanomedicine Targeted Activating Hippo Pathway for Triple-Negative Breast Cancer Growth and Metastasis Inhibition. ACS NANO 2022; 16:14644-14657. [PMID: 36048539 DOI: 10.1021/acsnano.2c05263] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As it is closely associated with tumor proliferation, metastasis, and the immunosuppressive microenvironment, the dysfunctional Hippo pathway has become an extremely attractive target for treating multiple cancers. However, to date, the corresponding chemotherapeutic nanomedicines have not been developed. Herein, a supramolecular self-delivery nanomedicine with in situ transforming capacity was tailor-constructed for Hippo-pathway restoration, and its inhibitory effect against tumor growth and metastasis was investigated in a highly aggressive triple-negative breast cancer (TNBC) model. Stimulated by overexpressed glutathione (GSH) and esterase in cancer cells, the self-assembled nanomedicine transformed from inactive nanospheres to active nanofibers conjugating tyrosvaline and spatiotemporally synchronously released the covalently linked flufenamic acid in situ, together activating the maladjusted Hippo pathway by simultaneously acting on different targets upstream and downstream. The transcriptional expression of Yes-associated protein (YAP) and related growth-promoted genes were significantly reduced, finally significantly repressing the proliferation and metastasis of cancer cells. Additionally, the Hippo-pathway restoration showed an excellent radiosensitization effect, making the targeted therapy combined with radiotherapy display a prominent synergistic in vivo anticancer effect against TNBC. This work reports a specifically designed smart nanomedicine to restore the function of the Hippo pathway and sensitize radiotherapy, providing an attractive paradigm for targeted drug delivery and cancer combination therapy.
Collapse
Affiliation(s)
- Zhilong Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Hao Zhang
- Laboratory of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Yang Gao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Meng Xiao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Zhongyan Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Lijun Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jiamin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
12
|
Li L, Hu J, Różycki B, Ji J, Song F. Interplay of receptor-ligand binding and lipid domain formation during cell adhesion. Front Mol Biosci 2022; 9:1019477. [PMID: 36203878 PMCID: PMC9531914 DOI: 10.3389/fmolb.2022.1019477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Cell adhesion involved in biological processes such as cell migration, immune responses, and cancer metastasis, is mediated by the specific binding of receptor and ligand proteins. Some of these proteins exhibit affinity for nanoscale lipid clusters in cell membranes. A key question is how these nanoscale lipid clusters influence and react to the receptor-ligand binding during cell adhesion. In this article, we review recent computational studies that shed new light on the interplay of the receptor-ligand binding and the formation of lipid domains in adhering membranes. These studies indicate that the receptor-ligand binding promotes coalescence of lipid clusters into mesoscale domains, which, in turn, enhances both the affinity and cooperativity of the receptor-ligand binding in cell-cell adhesion with mobile ligands. In contrast, in the case of cell-extracellular matrix adhesion with immobile ligands, the receptor-ligand binding and the lipid cluster coalescence can be correlated or anti-correlated, depending strongly on the ligand distribution. These findings deepen our understanding of correlations between cell adhesion and membrane heterogeneities.
Collapse
Affiliation(s)
- Long Li
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, China
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, China
- *Correspondence: Jinglei Hu, ; Bartosz Różycki, ; Jing Ji,
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
- *Correspondence: Jinglei Hu, ; Bartosz Różycki, ; Jing Ji,
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: Jinglei Hu, ; Bartosz Różycki, ; Jing Ji,
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Song J, Zhang Q, Li G, Zhang Y. Constructing ECM-like Structure on the Plasma Membrane via Peptide Assembly to Regulate the Cellular Response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8733-8747. [PMID: 35839338 DOI: 10.1021/acs.langmuir.2c00711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This feature article introduces the design of self-assembling peptides that serve as the basic building blocks for the construction of extracellular matrix (ECM)-like structure in the vicinity of the plasma membrane. By covalently conjugating a bioactive motif, such as membrane protein binding ligand or enzymatic responsive building block, with a self-assembling motif, especially the aromatic peptide, a self-assembling peptide that retains bioactivity is obtained. Instructed by the target membrane protein or enzyme, the bioactive peptides self-assemble into ECM-like structure exerting various stimuli to regulate the cellular response via intracellular signaling, especially mechanotransduction. By briefly summarizing the properties and applications (e.g., wound healing, controlling cell motility and cell fate) of these peptides, we intend to illustrate the basic requirements and promises of the peptide assembly as a true bottom-up approach in the construction of artificial ECM.
Collapse
Affiliation(s)
- Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| | - Qizheng Zhang
- Active Soft Matter Group, CAS Songshan Lake Materials Laboratory, Dongguan 523808, China
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| | - Ye Zhang
- Active Soft Matter Group, CAS Songshan Lake Materials Laboratory, Dongguan 523808, China
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
14
|
Qin Y, Tang X, Chen J, Huang J, Wang D, Zhang X, Zhang Y, Wu F, Wang J. An LHRH peptide-conjugated ruthenium(II) complex as tumor-targeted theranostic anticancer agent. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Hu Y, Miao Y, Zhang J, Chen Y, Qiu L, Lin J, Ye D. Alkaline Phosphatase Enabled Fluorogenic Reaction and in situ Coassembly of Near-Infrared and Radioactive Nanoparticles for in vivo Imaging. NANO LETTERS 2021; 21:10377-10385. [PMID: 34898218 DOI: 10.1021/acs.nanolett.1c03683] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Smart near-infrared (NIR) fluorescence (FL) and positron emission tomography (PET) bimodal probes have shown promise for preoperative and intraoperative imaging of tumors. In this paper, we report an enzyme-activatable probe (P-CyFF-68Ga) and its cold probe (P-CyFF-Ga) using an enzyme-induced fluorogenic reaction and in situ coassembly strategy and demonstrate the utility for NIR FL/PET bimodality imaging of enzymatic activity. P-CyFF-68Ga and P-CyFF-Ga can be converted into dephosphorylated CyFF-68Ga and CyFF-Ga in response to alkaline phosphatase (ALP) and subsequently coassemble into fluorescent and radioactive nanoparticles (NP-68Ga). The ALP-triggered in situ formed NP-68Ga is prone to anchoring on the ALP-positive HeLa cell membrane, permitting the concurrent enrichment of NIR FL and radioactivity. The enhancements in NIR FL and radioactivity enables high sensitivity and deep-tissue imaging of ALP activity, consequently facilitating the delineation of HeLa tumor foci from the normal tissues in vivo.
Collapse
Affiliation(s)
- Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yinxing Miao
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yinfei Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
16
|
Hu X, Zhang Y. Developing biomaterials to mediate the spatial distribution of integrins. BIOPHYSICS REVIEWS 2021; 2:041302. [PMID: 38504718 PMCID: PMC10903404 DOI: 10.1063/5.0055746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/21/2021] [Indexed: 03/21/2024]
Abstract
Innovation in material design to regulate cell behavior and function is one of the primary tasks in materials science. Integrins, a family of cell surface-adhesion receptors that mechanically connect the extracellular matrix (ECM) to the intracellular cytoskeleton, have long served as primary targets for the design of biomaterials because their activity is not only critical to a wide range of cell and tissue functions but also subject to very tight and complex regulations from the outside environment. To review the recent progress of material innovations targeting the spatial distribution of integrins, we first introduce the interaction mechanisms between cells and the ECM by highlighting integrin-based cell adhesions, describing how integrins respond to environmental stimuli, including variations in ligand presentation, mechanical cues, and topographical variations. Then, we overview the current development of soft materials in guiding cell behaviors and functions via spatial regulation of integrins. Finally, we discuss the current limitations of these technologies and the advances that may be achieved in the future. Undoubtedly, synthetic soft materials that mediate the spatial distribution of integrins play an important role in biomaterial innovations for advancing biomedical applications and addressing fundamental biological questions.
Collapse
Affiliation(s)
- Xunwu Hu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
17
|
Hu B, Song N, Cao Y, Li M, Liu X, Zhou Z, Shi L, Yu Z. Noncanonical Amino Acids for Hypoxia-Responsive Peptide Self-Assembly and Fluorescence. J Am Chem Soc 2021; 143:13854-13864. [PMID: 34410694 DOI: 10.1021/jacs.1c06435] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Design of endogenous stimuli-responsive amino acids allows for precisely modulating proteins or peptides under a biological microenvironment and thereby regulating their performance. Herein we report a noncanonical amino acid 2-nitroimidazol-1-yl alanine and explore its functions in creation of the nitroreductase (NTR)-responsive peptide-based supramolecular probes for efficient hypoxia imaging. On the basis of the reduction potential of the nitroimidazole unit, the amino acid was synthesized via the Mitsunobu reaction between 2-nitroimidazole and a serine derivate. We elucidated the relationship between the NTR-responsiveness of the amino acid and the structural feature of peptides involving a series of peptides. This eventually facilitates development of aromatic peptides undergoing NTR-responsive self-assembly by rationally optimizing the sequences. Due to the intrinsic role of 2-nitroimidazole in the fluorescence quench, we created a morphology-transformable supramolecular probe for imaging hypoxic tumor cells based on NTR reduction. We found that the resulting supramolecular probes penetrated into solid tumors, thus allowing for efficient fluorescence imaging of tumor cells in hypoxic regions. Our findings demonstrate development of a readily synthesized and versatile amino acid with exemplified properties in creating fluorescent peptide nanostructures responsive to a biological microenvironment, thus providing a powerful toolkit for synthetic biology and development of novel biomaterials.
Collapse
Affiliation(s)
- Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Na Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yawei Cao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Mingming Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhifei Zhou
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
18
|
He H, Guo J, Xu J, Wang J, Liu S, Xu B. Dynamic Continuum of Nanoscale Peptide Assemblies Facilitates Endocytosis and Endosomal Escape. NANO LETTERS 2021; 21:4078-4085. [PMID: 33939437 PMCID: PMC8180093 DOI: 10.1021/acs.nanolett.1c01029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Alkaline phosphatase (ALP) enables intracellular targeting by peptide assemblies, but how the ALP substrates enter cells remains elusive. Here we show that nanoscale phosphopeptide assemblies cluster ALP to enable caveolae-mediated endocytosis (CME) and endosomal escape. Specifically, fluorescent phosphopeptides undergo enzyme-catalyzed self-assembly to form nanofibers. Live cell imaging unveils that phosphopeptides nanoparticles, coincubated with HEK293 cells overexpressing red fluorescent protein-tagged tissue-nonspecific ALP (TNAP-RFP), cluster TNAP-RFP in lipid rafts to enable CME. Further dephosphorylation of the phosphopeptides produces peptidic nanofibers for endosomal escape. Inhibiting TNAP, cleaving the membrane anchored TNAP, or disrupting lipid rafts abolishes the endocytosis. Decreasing the transformation to nanofibers prevents the endosomal escape. As the first study establishing a dynamic continuum of nanoscale assemblies for cellular uptake, this work illustrates an effective design for enzyme-responsive supramolecular therapeutics and provides mechanism insights for understanding the dynamics of cellular uptake of proteins or exogenous peptide aggregates.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jiashu Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jiaqing Wang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Shuang Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
19
|
Mang D, Roy SR, Zhang Q, Hu X, Zhang Y. Heparan Sulfate-Instructed Self-Assembly Selectively Inhibits Cancer Cell Migration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17236-17242. [PMID: 33830729 DOI: 10.1021/acsami.1c00934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heparan sulfate (HS) has important emerging roles in oncogenesis, which represents potential therapeutic strategies for human cancers. However, due to the complexity of the HS signaling network, HS-targeted synthetic cancer therapeutics has never been successfully devised. To conquer the challenge, we developed HS-instructed self-assembling peptides by decorating the "Cardin-Weintraub" sequence with aromatic amino acids. The HS-binding interactions induce localized accumulation of synthetic peptides triggering molecular self-assembly in the vicinity of highly expressed Heparan sulfate proteoglycans (HSPGs) on the cancer cell membrane. The nanostructures hinder the binding of HSPG with metastasis promoting protein-heparin-binding EGF-like growth factor (HBEGF) inhibiting the activation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK). Our study proved that HS-instructed self-assembly is a promising synthetic therapeutic strategy for targeted cancer migration inhibition.
Collapse
Affiliation(s)
- Dingze Mang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Sona Rani Roy
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Qizheng Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Xunwu Hu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| |
Collapse
|
20
|
Li G, Hu X, Wu X, Zhang Y. Microtubule-Targeted Self-Assembly Triggers Prometaphase-Metaphase Oscillations Suppressing Tumor Growth. NANO LETTERS 2021; 21:3052-3059. [PMID: 33756080 DOI: 10.1021/acs.nanolett.1c00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microtubules are highly strategic targets of cancer therapies. Small molecule antimitotic agents are so far the best chemotherapeutic medication in cancer treatment. However, the high rate of neuropathy and drug resistance limit their clinical usage. Inspired by the multicomponent-targeting feature of molecular self-assembly (MSA) overcoming drug resistance, we synthesized peptide-based rotor molecules that self-assemble in response to the surrounding environment to target the microtubule array. The MSAs self-adjust morphologically in response to the pH change and viscosity variations during Golgi-endosome trafficking, escape trafficking cargos, and eventually bind to the microtubule array physically in a nonspecific manner. Such unrefined nano-bio interactions suppress regional tubulin polymerization triggering atypical prometaphase--metaphase oscillations to inhibit various cancer cells proliferating without inducing obvious neurotoxicity. The MSA also exerts potent antiproliferative effects in the subcutaneous cervix cancer xenograft tumor model equivalent to Cisplatin, better than the classic antimitotic drug Taxol.
Collapse
Affiliation(s)
- Guanying Li
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xunwu Hu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Xia Wu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|