1
|
Chen K, Liang B, Yang P, Li M, Yuan H, Wu J, Gao W, Jin Q. A novel microfluidic chip integrated with Pt micro-thermometer for temperature measurement at the single-cell level. Heliyon 2024; 10:e30649. [PMID: 38774078 PMCID: PMC11107094 DOI: 10.1016/j.heliyon.2024.e30649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/27/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024] Open
Abstract
Noninvasive and sensitive thermometry of a single cell during the normal physiological process is crucial for analyzing fundamental cellular metabolism and applications to cancer treatment. However, current thermometers generally sense the average temperature variation for many cells, thereby failing to obtain real-time and continuous data of an individual cell. In this study, we employed platinum (Pt) electrodes to construct an integrated microfluidic chip as a single-cell thermometer. The single-cell isolation unit in the microchip consisted of a main channel, which was connected to the inlet and outlet of a single-cell capture funnel. A single cell can be trapped in the funnel and the remaining cells can bypass and flow along the main channel to the outlet. The best capture ratio of a single MCF7 cell at a single-cell isolation unit was 90 % under optimal condition. The thermometer in the micro-chip had a temperature resolution of 0.007 °C and showed a good linear relationship in the range of 20-40 °C (R2 = 0.9999). Slight temperature increment of different single tumor cell (MCF7 cell, H1975 cell, and HepG2 cell) cultured on the chip was continuously recorded under normal physiological condition. In addition, the temperature variation of single MCF7 cell in-situ after exposure to a stimulus (4 % paraformaldehyde treatment) was also monitored, showing an amplitude of temperature fluctuations gradually decreased over time. Taken together, this integrated microchip is a practical tool for detecting the change in the temperature of a single cell in real-time, thereby offering valuable information for the drug screening, diagnosis, and treatment of cancer.
Collapse
Affiliation(s)
- Kai Chen
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Baihui Liang
- Healthy & Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, 315336, Zhejiang, China
- Ningbo Fotile Kitchen Ware Company, Ningbo, 315336, Zhejiang, China
| | - Ping Yang
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Min Li
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Haojun Yuan
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jinlei Wu
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Wanlei Gao
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Qinghui Jin
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
2
|
Yu Y, Chen K, Wang J, Zhang Z, Hu B, Liu X, Lin Z, Tan A. Custom-designed, mass silk production in genetically engineered silkworms. PNAS NEXUS 2024; 3:pgae128. [PMID: 38562581 PMCID: PMC10983830 DOI: 10.1093/pnasnexus/pgae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Genetically engineered silkworms have been widely used to obtain silk with modified characteristics especially by introducing spider silk genes. However, these attempts are still challenging due to limitations in transformation strategies and difficulties in integration of the large DNA fragments. Here, we describe three different transformation strategies in genetically engineered silkworms, including transcription-activator-like effector nuclease (TALEN)-mediated fibroin light chain (FibL) fusion (BmFibL-F), TALEN-mediated FibH replacement (BmFibH-R), and transposon-mediated genetic transformation with the silk gland-specific fibroin heavy chain (FibH) promoter (BmFibH-T). As the result, the yields of exogenous silk proteins, a 160 kDa major ampullate spidroin 2 (MaSp2) from the orb-weaving spider Nephila clavipes and a 226 kDa fibroin heavy chain protein (EvFibH) from the bagworm Eumeta variegate, reach 51.02 and 64.13% in BmFibH-R transformed cocoon shells, respectively. Moreover, the presence of MaSp2 or EvFibH significantly enhances the toughness of genetically engineered silk fibers by ∼86% in BmFibH-T and ∼80% in BmFibH-R silkworms, respectively. Structural analysis reveals a substantial ∼40% increase in fiber crystallinity, primarily attributed to the presence of unique polyalanines in the repetitive sequences of MaSp2 or EvFibH. In addition, RNA-seq analysis reveals that BmFibH-R system only causes minor impact on the expression of endogenous genes. Our study thus provides insights into developing custom-designed silk production using the genetically engineered silkworm as the bioreactor.
Collapse
Affiliation(s)
- Ye Yu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Kai Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jingxia Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Zhongjie Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Bo Hu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xiaojing Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
3
|
Peng X, Liu Z, Gao J, Zhang Y, Wang H, Li C, Lv X, Gao Y, Deng H, Zhao B, Gao T, Li H. Influence of Spider Silk Protein Structure on Mechanical and Biological Properties for Energetic Material Detection. Molecules 2024; 29:1025. [PMID: 38474537 PMCID: PMC10934110 DOI: 10.3390/molecules29051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Spider silk protein, renowned for its excellent mechanical properties, biodegradability, chemical stability, and low immune and inflammatory response activation, consists of a core domain with a repeat sequence and non-repeating sequences at the N-terminal and C-terminal. In this review, we focus on the relationship between the silk structure and its mechanical properties, exploring the potential applications of spider silk materials in the detection of energetic materials.
Collapse
Affiliation(s)
- Xinying Peng
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Zhiyong Liu
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Junhong Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Yuhao Zhang
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Hong Wang
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Cunzhi Li
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Xiaoqiang Lv
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Yongchao Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Hui Deng
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Bin Zhao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Ting Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Huan Li
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| |
Collapse
|
4
|
Pawar D, Lo Presti D, Silvestri S, Schena E, Massaroni C. Current and future technologies for monitoring cultured meat: A review. Food Res Int 2023; 173:113464. [PMID: 37803787 DOI: 10.1016/j.foodres.2023.113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
The high population growth rate, massive animal food consumption, fast economic progress, and limited food resources could lead to a food crisis in the future. There is a huge requirement for dietary proteins including cultured meat is being progressed to fulfill the need for meat-derived proteins in the diet. However, production of cultured meat requires monitoring numerous bioprocess parameters. This review presents a comprehensive overview of various widely adopted techniques (optical, spectroscopic, electrochemical, capacitive, FETs, resistive, microscopy, and ultrasound) for monitoring physical, chemical, and biological parameters that can improve the bioprocess control in cultured meat. The methods, operating principle, merits/demerits, and the main open challenges are reviewed with the aim to support the readers in advancing knowledge on novel sensing systems for cultured meat applications.
Collapse
Affiliation(s)
- Dnyandeo Pawar
- Microwave Materials Group, Centre for Materials for Electronics Technology (C-MET), Athani P.O, Thrissur, Kerala 680581, India.
| | - Daniela Lo Presti
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Sergio Silvestri
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
5
|
Chen X, Zhao Y, Zhang Y, Li B, Li Y, Jiang L. Optical Manipulation of Soft Matter. SMALL METHODS 2023:e2301105. [PMID: 37818749 DOI: 10.1002/smtd.202301105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/22/2023] [Indexed: 10/13/2023]
Abstract
Optical manipulation has emerged as a pivotal tool in soft matter research, offering superior applicability, spatiotemporal precision, and manipulation capabilities compared to conventional methods. Here, an overview of the optical mechanisms governing the interaction between light and soft matter materials during manipulation is provided. The distinct characteristics exhibited by various soft matter materials, including liquid crystals, polymers, colloids, amphiphiles, thin liquid films, and biological soft materials are highlighted, and elucidate their fundamental response characteristics to optical manipulation techniques. This knowledge serves as a foundation for designing effective strategies for soft matter manipulation. Moreover, the diverse range of applications and future prospects that arise from the synergistic collaboration between optical manipulation and soft matter materials in emerging fields are explored.
Collapse
Affiliation(s)
- Xixi Chen
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yanan Zhao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yao Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yuchao Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
6
|
Zhang Y, Lu H, Zhang M, Hou Z, Li S, Wang H, Wu XE, Zhang Y. In Situ Mineralizing Spinning of Strong and Tough Silk Fibers for Optical Waveguides. ACS NANO 2023; 17:5905-5912. [PMID: 36892421 DOI: 10.1021/acsnano.2c12855] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biopolymer-based optical waveguides with low-loss light guiding performance and good biocompatibility are highly desired for applications in biomedical photonic devices. Herein, we report the preparation of silk optical fiber waveguides through bioinspired in situ mineralizing spinning, which possess excellent mechanical properties and low light loss. Natural silk fibroin was used as the main precursor for the wet spinning of the regenerated silk fibroin (RSF) fibers. Calcium carbonate nanocrystals (CaCO3 NCs) were in situ grown in the RSF network and served as nucleation templates for mineralization during the spinning, leading to the formation of strong and tough fibers. CaCO3 NCs can guide the structure transformation of silk fibroin from random coils to β-sheets, contributing to enhanced mechanical properties. The tensile strength and toughness of the obtained fibers are up to 0.83 ± 0.15 GPa and 181.98 ± 52.42 MJ·m-3, obviously higher than those of natural silkworm silks and even comparable to spider silks. We further investigated the performance of the fibers as optical waveguides and observed a low light loss of 0.46 dB·cm-1, which is much lower than natural silk fibers. We believed that these silk-based fibers with excellent mechanical and light propagation properties are promising for applications in biomedical light imaging and therapy.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing, 100072, China
| | - Haojie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mingchao Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhishan Hou
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Haomin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xun-En Wu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Bhuckory S, Lahtinen S, Höysniemi N, Guo J, Qiu X, Soukka T, Hildebrandt N. Understanding FRET in Upconversion Nanoparticle Nucleic Acid Biosensors. NANO LETTERS 2023; 23:2253-2261. [PMID: 36729707 DOI: 10.1021/acs.nanolett.2c04899] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Upconversion nanoparticles (UCNPs) have been frequently applied in Förster resonance energy transfer (FRET) bioanalysis. However, the understanding of how surface coatings, bioconjugation, and dye-surface distance influence FRET biosensing performance has not significantly advanced. Here, we investigated UCNP-to-dye FRET DNA-hybridization assays in H2O and D2O using ∼24 nm large NaYF4:Yb3+,Er3+ UCNPs coated with thin layers of silica (SiO2) or poly(acrylic acid) (PAA). FRET resulted in strong distance-dependent PL intensity changes. However, the PL decay times were not significantly altered because of continuous Yb3+-to-Er3+ energy migration during Er3+-to-dye FRET. Direct bioconjugation of DNA to the thin PAA coating combined with the closest possible dye-surface distance resulted in optimal FRET performance with minor influence from competitive quenching by H2O. The better comprehension of UCNP-to-dye FRET was successfully translated into a microRNA (miR-20a) FRET assay with a limit of detection of 100 fmol in a 80 μL sample volume.
Collapse
Affiliation(s)
- Shashi Bhuckory
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- EMEA Clinical Service Operations, NAMSA, 38670 Chasse-sur-Rhône, France
| | - Satu Lahtinen
- University of Turku, Department of Life Technologies/Biotechnology, 20520 Turku, Finland
| | - Niina Höysniemi
- University of Turku, Department of Life Technologies/Biotechnology, 20520 Turku, Finland
| | - Jiajia Guo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Xue Qiu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Tero Soukka
- University of Turku, Department of Life Technologies/Biotechnology, 20520 Turku, Finland
| | - Niko Hildebrandt
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- Université de Rouen Normandie, CNRS, INSA, Normandie Université, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse - UMR6014 & FR3038), 76000 Rouen, France
- Seoul National University, Department of Chemistry, Seoul 08826, South Korea
| |
Collapse
|
8
|
Wang Y, Li W, Ma Y, Hu B, Chen X, Lv R. Thermally activated upconversion luminescence and ratiometric temperature sensing under 1064 nm/808 nm excitation. NANOTECHNOLOGY 2023; 34:235704. [PMID: 36857764 DOI: 10.1088/1361-6528/acc037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In this research, a thermally activated upconversion luminescence (UCL) probe with ratiometric temperature sensing under 1064 nm and 808 nm excitation was designed. Especially, Nd3+, Tm3+and Ce3+were doped in rare earth nanoparticles (RENPs) as UCL modulators. By optimizing the elements and ratios, the excitation wavelength is successfully modulated to 1064 nm excitation with UCL intensity enhanced. Additionally, the prepared RENPs have a significant temperature response at 1064 nm excitation and can be used for thermochromic coatings. The intensity ratio of three-photon UCL (1064 nm excitation) to two-photon UCL (808 nm excitation) as an exponential function of temperature can be used as a ratiometric temperature detector. Therefore, this designed thermochromic coatings may enable new applications in optoelectronic device and industrial sensor.
Collapse
Affiliation(s)
- Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Wenjing Li
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Yaqun Ma
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Bo Hu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| |
Collapse
|
9
|
Fang WK, Xu DD, Liu D, Li YY, Liu MH, Pang DW, Tang HW. Combining Upconversion Luminescence, Photothermy, and Electrochemistry for Highly Accurate Triple-Signal Detection of Hydrogen Sulfide by Optically Trapping Single Microbeads. Anal Chem 2023; 95:5443-5453. [PMID: 36930753 DOI: 10.1021/acs.analchem.3c00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The detection of hydrogen sulfide (H2S), the third gas signaling molecule, is a promising strategy for identifying the occurrence of certain diseases. However, the conventional single- or dual-signal detection can introduce false-positive or false-negative results, which ultimately decreases the diagnostic accuracy. To address this limitation, we developed a luminescent, photothermal, and electrochemical triple-signal detection platform by optically trapping the synthetic highly doped upconversion coupled SiO2 microbeads coated with metal-organic frameworks H-UCNP-SiO2@HKUST-1 (H-USH) to detect the concentration of H2S. The H-USH was first synthesized and proved to have stable structure and excellent luminescent, photothermal, and electrochemical properties. Under 980 nm optical trapping and 808 nm irradiation, H-USH showed great detection linearity, a low limit of detection, and high specificity for H2S quantification via triple-signal detection. Moreover, H-USH was captured by optical tweezers to realize quantitative detection of H2S content in serum of acute pancreatitis and spontaneously hypertensive rats. Finally, by analyzing the receiver operating characteristic (ROC) curve, we concluded that triple-signal detection of H2S was more accurate than single- or dual-signal detection, which overcame the problem of false-negative/positive results in the detection of H2S in actual serum samples.
Collapse
Affiliation(s)
- Wen-Kai Fang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Da-Di Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Da Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yu-Yao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Meng-Han Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
10
|
Xu H, Fu Z, Wei Y. Optimization of deliquescence-proof perovskite-like Cs 3ErF 6 phosphor and dual-mode luminescent intensity ratio thermometry. OPTICS EXPRESS 2023; 31:9123-9134. [PMID: 36860011 DOI: 10.1364/oe.485500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The susceptibility of Cs-based fluorides to deliquescence has led to the fact that lanthanide-doped Cs-based fluorides and their related applications have hardly been reported. Herein, the method to solve the deliquescence of Cs3ErF6 and its excellent temperature measurement performance were discussed in this work. Initially, the soaking experiment of Cs3ErF6 found that water had irreversible damage to the crystallinity of Cs3ErF6. Subsequently, the luminescent intensity was ensured by the successful isolation of Cs3ErF6 from the deliquescence of vapor by the silicon rubber sheet encapsulation at room temperature. In addition, we also removed moisture by heating samples to obtain temperature-dependent spectra. According to spectral results, two luminescent intensity ratio (LIR) temperature sensing modes were designed. The LIR mode which can quickly respond to temperature parameters by monitoring single band Stark level emission named as "rapid mode". The maximum sensitivity of 7.362%K-1 can be obtained in another "ultra-sensitive mode" thermometer based on the non-thermal coupling energy levels. This work will focus on the deliquescence effect of Cs3ErF6 and the feasibility of silicone rubber encapsulation. At the same time, a dual-mode LIR thermometer is designed for different situations.
Collapse
|
11
|
Xu D, Li C, Li W, Lin B, Lv R. Recent advances in lanthanide-doped up-conversion probes for theranostics. Front Chem 2023; 11:1036715. [PMID: 36846851 PMCID: PMC9949555 DOI: 10.3389/fchem.2023.1036715] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Up-conversion (or anti-Stokes) luminescence refers to the phenomenon whereby materials emit high energy, short-wavelength light upon excitation at longer wavelengths. Lanthanide-doped up-conversion nanoparticles (Ln-UCNPs) are widely used in biomedicine due to their excellent physical and chemical properties such as high penetration depth, low damage threshold and light conversion ability. Here, the latest developments in the synthesis and application of Ln-UCNPs are reviewed. First, methods used to synthesize Ln-UCNPs are introduced, and four strategies for enhancing up-conversion luminescence are analyzed, followed by an overview of the applications in phototherapy, bioimaging and biosensing. Finally, the challenges and future prospects of Ln-UCNPs are summarized.
Collapse
Affiliation(s)
| | | | | | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | | |
Collapse
|
12
|
Zhang W, Huang X, Liu W, Gao Z, Zhong L, Qin Y, Li B, Li J. Semiconductor Plasmon Enhanced Upconversion toward a Flexible Temperature Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4469-4476. [PMID: 36642887 DOI: 10.1021/acsami.2c18412] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Noninvasive and sensitive thermometry is crucial to human health monitoring and applications in disease diagnosis. Despite recent advances in optical temperature detection, the construction of sensitive wearable temperature sensors remains a considerable challenge. Here, a flexible and biocompatible optical temperature sensor is developed by combining plasmonic semiconductor W18O49 enhanced upconversion emission (UCNPs/WO) with flexible poly(lactic acid) (PLA)-based optical fibers. The UCNPs/WO offers highly thermal-sensitive and obviously enhanced dual-wavelength emissions for ratiometric temperature sensing. The PLA polymer endows the sensor with excellent light-transmitting ability for laser excitation and emission collection and high biocompatibility. The fabricated UCNPs/WO-PLA sensor exhibits stable and rapid temperature response in the range 298-368 K, with a high relative sensitivity of 1.53% K-1 and detection limit as low as ±0.4 K. More importantly, this proposed sensor is demonstrated to possess dual function on real-time detection for physiological thermal changes and heat release, exhibiting great potential in wearable health monitoring and biotherapy applications.
Collapse
Affiliation(s)
- Weina Zhang
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Xingwu Huang
- Institute of Nanophotonics, Jinan University, Guangzhou511443, China
| | - Wenjie Liu
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Zhensen Gao
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Liyun Zhong
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Yuwen Qin
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou511443, China
| | - Juan Li
- Institute of Nanophotonics, Jinan University, Guangzhou511443, China
| |
Collapse
|
13
|
Liang H, Yang K, Yang Y, Hong Z, Li S, Chen Q, Li J, Song X, Yang H. A Lanthanide Upconversion Nanothermometer for Precise Temperature Mapping on Immune Cell Membrane. NANO LETTERS 2022; 22:9045-9053. [PMID: 36326607 DOI: 10.1021/acs.nanolett.2c03392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell temperature monitoring is of great importance to uncover temperature-dependent intracellular events and regulate cellular functions. However, it remains a great challenge to precisely probe the localized temperature status in living cells. Herein, we report a strategy for in situ temperature mapping on an immune cell membrane for the first time, which was achieved by using the lanthanide-doped upconversion nanoparticles. The nanothermometer was designed to label the cell membrane by combining metabolic labeling and click chemistry and can leverage ratiometric upconversion luminescence signals to in situ sensitively monitor temperature variation (1.4% K-1). Moreover, a purpose-built upconversion hyperspectral microscope was utilized to synchronously map temperature changes on T cell membrane and visualize intracellular Ca2+ influx. This strategy was able to identify a suitable temperature status for facilitating thermally stimulated calcium influx in T cells, thus enabling high-efficiency activation of immune cells. Such findings might advance understandings on thermally dependent biological processes and their regulation methodology.
Collapse
Affiliation(s)
- Hanyu Liang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Kaidong Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yating Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhongzhu Hong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shihua Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Juan Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, Fujian 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
14
|
Zhao Y, Song W, Xu J, Wu T, Gong Z, Li Y, Li B, Zhang Y. Light-driven upconversion fluorescence micromotors. Biosens Bioelectron 2022; 221:114931. [DOI: 10.1016/j.bios.2022.114931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
|
15
|
Pessoa AR, Galindo JAO, Serge-Correales YE, Amaral AM, Ribeiro SJL, de S Menezes L. 2D Thermal Maps Using Hyperspectral Scanning of Single Upconverting Microcrystals: Experimental Artifacts and Image Processing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38311-38319. [PMID: 35969002 DOI: 10.1021/acsami.2c08709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Whereas lanthanide-based upconverting particles are promising candidates for several micro- and nanothermometry applications, understanding spatially varying effects related to their internal dynamics and interactions with the environment near the surface remains challenging. To separate the bulk from the surface response, this work proposes and performs hyperspectral sample-scanning experiments to obtain spatially resolved thermometric measurements on single microparticles of NaYF4: Yb3+,Er3+. Our results showed that the particle's thermometric response depends on the excitation laser incidence position, which may directly affect the temperature readout. Furthermore, it was noticed that even minor temperature changes (<1 K) caused by room temperature variations at the spectrometer CCD sensor used to record the luminescence signal may significantly modify the measurements. This work also provides some suggestions for building 2D thermal maps that shall be helpful for understanding surface-related effects in micro- and nanothermometers using hyperspectral techniques. Therefore, the results presented herein may impact applications of lanthanide-based nanothermometers, as in the understanding of energy-transfer processes inside systems such as nanoelectronic devices or living cells.
Collapse
Affiliation(s)
- Allison R Pessoa
- Department of Physics, Universidade Federal de Pernambuco (UFPE), 50670-901 Recife-PE, Brazil
| | - Jefferson A O Galindo
- Department of Physics, Universidade Federal de Pernambuco (UFPE), 50670-901 Recife-PE, Brazil
| | - York E Serge-Correales
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara-SP, Brazil
| | - Anderson M Amaral
- Department of Physics, Universidade Federal de Pernambuco (UFPE), 50670-901 Recife-PE, Brazil
| | - Sidney J L Ribeiro
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara-SP, Brazil
| | - Leonardo de S Menezes
- Department of Physics, Universidade Federal de Pernambuco (UFPE), 50670-901 Recife-PE, Brazil
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, D-80539 München, Germany
| |
Collapse
|
16
|
Mei M, Mu L, Wang Y, Liang S, Zhao Q, Huang L, She G, Shi W. Simultaneous Monitoring of the Adenosine Triphosphate Levels in the Cytoplasm and Nucleus of a Single Cell with a Single Nanowire-Based Fluorescent Biosensor. Anal Chem 2022; 94:11813-11820. [PMID: 35925790 DOI: 10.1021/acs.analchem.2c02030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Simultaneous monitoring of the ATP levels at various sites of a single cell is crucial for revealing the ATP-related processes and diseases. In this work, we rationally fabricated single nanowire-based fluorescence biosensors, by which the ATP levels of the cytoplasm and nucleus in a single cell can be simultaneously monitored with a high spatial resolution. Utilizing the as-fabricated single nanowire biosensor, we demonstrated that the ATP levels of the cytoplasm were around 20-30% lower than that of the nucleus in both L929 and HeLa cells. Observing the ATP fluctuation of the cytoplasm and nucleus of the L929 and HeLa cells stimulated by Ca2+, oligomycin, or under cisplatin-induced apoptosis, we found that the ATP levels at two cellular sites exhibited discriminative changes, revealing the different mechanisms of the ATP at these two cellular sites in response to the stimulations.
Collapse
Affiliation(s)
- Mingliang Mei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sen Liang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaowen Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lushan Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| |
Collapse
|
17
|
Cheng J, Hu CF, Gan CY, Xia XX, Qian ZG. Functionalization and Reinforcement of Recombinant Spider Dragline Silk Fibers by Confined Nanoparticle Formation. ACS Biomater Sci Eng 2022; 8:3299-3309. [PMID: 35820196 DOI: 10.1021/acsbiomaterials.2c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spider dragline silk is a remarkable protein fiber that is mechanically superior to almost any other natural or synthetic material. As a sustainable supply of natural dragline silk is not feasible, recombinant production of silk fibers with native-like mechanical properties and non-native physiochemical functions is highly desirable for various applications. Here, we report a new strategy for simultaneous functionalization and reinforcement of recombinant spider silk fibers by confined nanoparticle formation. First, a mimic silk protein (N16C) of spider Trichonephila clavipes was recombinantly produced and wet-spun into fibers. Drawing the as-spun fibers in water led to post-drawn fibers more suitable for the templated synthesis of nanoparticles (NPs) with uniform distribution throughout the synthetic fibers. This was exemplified using a chemical precipitation reaction to generate copper sulfide nanoparticle-incorporated fibers. These fibers and the derived fabric displayed a significant photothermal effect as their temperatures could increase to over 40 °C from room temperature within 3 min under near-infrared laser irradiation or simulated sunlight. In addition, the tensile strength and toughness of the nanofunctionalized fibers were greatly enhanced, and the toughness of these synthetic fibers could reach 160.1 ± 21.4 MJ m-3, which even exceeds that of natural spider dragline silk (111.19 ± 30.54 MJ m-3). Furthermore, the confined synthesis of gold NPs via a redox reaction was shown to improve the ultraviolet-protective effect and tensile mechanical properties of synthetic silk fibers. These results suggest that our strategy may have great potential for creating functional and high-performance spider silk fibers and fabrics for wide applications.
Collapse
Affiliation(s)
- Junyan Cheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Chun-Fei Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Chao-Yi Gan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
18
|
Huang J, Yan L, Liu S, Tao L, Zhou B. Expanding the toolbox of photon upconversion for emerging frontier applications. MATERIALS HORIZONS 2022; 9:1167-1195. [PMID: 35084000 DOI: 10.1039/d1mh01654g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photon upconversion in lanthanide-based materials has recently shown compelling advantages in a wide range of fields due to their exceptional anti-Stokes luminescence performances and physicochemical properties. In particular, the latest breakthroughs in the optical manipulation of photon upconversion, such as the precise tuning of switchable emission profiles and lifetimes, open up new opportunities for diverse frontier applications from biological imaging to therapy, nanophotonics and three-dimensional displays. A summary and discussion on the recent progress can provide new insights into the fundamental understanding of luminescence mechanisms and also help to inspire new upconversion concepts and promote their frontier applications. Herein, we present a review on the state-of-the-art progress of lanthanide-based upconversion materials, focusing on the newly emerging approaches to the smart control of upconversion in aspects of light intensity, colors, and lifetimes, as well as new concepts. The emerging scientific and technological discoveries based on the well-designed upconversion materials are highlighted and discussed, along with the challenges and future perspectives. This review will contribute to the understanding of the fundamental research of photon upconversion and further promote the development of new classes of efficient upconversion materials towards diversities of frontier applications in the future.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Long Yan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Songbin Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Lili Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
19
|
Jethva P, Momin M, Khan T, Omri A. Lanthanide-Doped Upconversion Luminescent Nanoparticles-Evolving Role in Bioimaging, Biosensing, and Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2374. [PMID: 35407706 PMCID: PMC8999924 DOI: 10.3390/ma15072374] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022]
Abstract
Upconverting luminescent nanoparticles (UCNPs) are "new generation fluorophores" with an evolving landscape of applications in diverse industries, especially life sciences and healthcare. The anti-Stokes emission accompanied by long luminescence lifetimes, multiple absorptions, emission bands, and good photostability, enables background-free and multiplexed detection in deep tissues for enhanced imaging contrast. Their properties such as high color purity, high resistance to photobleaching, less photodamage to biological samples, attractive physical and chemical stability, and low toxicity are affected by the chemical composition; nanoparticle crystal structure, size, shape and the route; reagents; and procedure used in their synthesis. A wide range of hosts and lanthanide ion (Ln3+) types have been used to control the luminescent properties of nanosystems. By modification of these properties, the performance of UCNPs can be designed for anticipated end-use applications such as photodynamic therapy (PDT), high-resolution displays, bioimaging, biosensors, and drug delivery. The application landscape of inorganic nanomaterials in biological environments can be expanded by bridging the gap between nanoparticles and biomolecules via surface modifications and appropriate functionalization. This review highlights the synthesis, surface modification, and biomedical applications of UCNPs, such as bioimaging and drug delivery, and presents the scope and future perspective on Ln-doped UCNPs in biomedical applications.
Collapse
Affiliation(s)
- Palak Jethva
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India;
| | - Munira Momin
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India;
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E2C6, Canada
| |
Collapse
|
20
|
Wang J, Zhang H, Tang Y, Wen M, Yao B, Yuan S, Zhang W, Lei H. Metal-Nanostructure-Decorated Spider Silk for Highly Sensitive Refractive Index Sensing. ACS Biomater Sci Eng 2022; 8:1060-1066. [PMID: 35212530 DOI: 10.1021/acsbiomaterials.1c01565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly sensitive detection of refractive index (RI) is essential for the analysis of the bio-microenvironment and basic cellular reactions. To achieve this, optic-fiber RI sensors based on localized surface plasmon resonance (LSPR) have been widely used for their flexibility and high sensitivity. However, the current optic-fiber RI sensors are mainly fabricated using glass, which makes them face the challenges in biocompatibility and biosafety. In this work, a RI sensor with high sensitivity is fabricated using metal-nanostructure-decorated spider silk. The spider silk, which is directly dragged from Araneus ventricosus, is natural protein-based biopolymer with low attenuation, good biocompatibility and biodegradability, large RI, great flexibility, and easy functionalization. Hence, the spider silk can be an ideal alternative to glass for sensing in biological environments with a wide RI range. Different kinds of metal nanostructures, such as gold nanorods (GNRs), gold nanobipyramids (GNBP), and Ag@GNRs, are decorated on the surface of the spider silk utilizing the surface viscidity of the silk. By directing a beam of white light into the spider silk, the LSPR of the metal nanostructures was excited and a highly sensitive RI sensing (the highest sensitivity of 1746 nm per refractive index was achieved on the GNBP-decorated spider silk) was obtained. This work may pave a new way to precise and sensitive biosensing and bioanalysis.
Collapse
Affiliation(s)
- Jiale Wang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Hao Zhang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjie Tang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Mingcong Wen
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Benjun Yao
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Shun Yuan
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Weina Zhang
- School of Information Engineering, Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongxiang Lei
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
21
|
Lin H, Cheng Z, Xu D, Zheng X, Liu T, Xu L, Ma Y, Zhang Y. Second Near-Infrared Upconverting and Downshifting Luminescence in a Core-Multishell Nanophotoswitch. NEW J CHEM 2022. [DOI: 10.1039/d2nj01793h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of NIR-II (near-infrared-II: 1000-1700 nm) nanophotoswitch is urgently needed, due to their deeper-tissue penetration and higher-resolution imaging. In this work, a new type of NIR-II upconversion (UC) and...
Collapse
|
22
|
Wu T, Chen X, Gong Z, Yan J, Guo J, Zhang Y, Li Y, Li B. Intracellular Thermal Probing Using Aggregated Fluorescent Nanodiamonds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103354. [PMID: 34813176 PMCID: PMC8787390 DOI: 10.1002/advs.202103354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/02/2021] [Indexed: 05/05/2023]
Abstract
Intracellular thermometry provides important information about the physiological activity of single cells and has been implemented using diverse temperature-sensitive materials as nanoprobes. However, measuring the temperature of specific organelles or subcellular structures is challenging because it requires precise positioning of the nanoprobes. Here, it is shown that dispersed fluorescent nanodiamonds (FNDs) endocytosed in living cells can be aggregated into microspheres using optical forces and used as intracellular temperature probes. The aggregation of the FNDs and electromagnetic resonance between individual nanodiamonds in the microspheres lead to a sevenfold intensity enhancement of 546-nm laser excitation. With the assistance of a scanning optical tweezing system, the FND microspheres can be precisely patterned and positioned within the cells. By measuring the fluorescence spectra of the microspheres, the temperatures at different locations within the cells are detected. The method provides an approach to the constructing and positioning of nanoprobes in an intracellular manner, which has potential applications in high-precision and flexible single-cell analysis.
Collapse
Affiliation(s)
- Tianli Wu
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Xixi Chen
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Zhiyong Gong
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Jiahao Yan
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Jinghui Guo
- Department of Physiology, School of MedicineJinan UniversityGuangzhou510632China
| | - Yao Zhang
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Yuchao Li
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Baojun Li
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| |
Collapse
|
23
|
Feng G, Zhang H, Zhu X, Zhang J, Fang J. Fluorescence Thermometer: Intermediation of the Fontal Temperature and Light. Biomater Sci 2022; 10:1855-1882. [DOI: 10.1039/d1bm01912k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid advance of thermal materials and fluorescence spectroscopy has extensively promoted micro-scale fluorescence thermometry development in recent years. Based on the advantages of fast response, high sensitivity, simple operation,...
Collapse
|