1
|
Lawson ZR, Ciambriello L, Nieukirk BD, Howe J, Tang R, Servin IA, Gavioli L, Hughes RA, Neretina S. Light-Mediated Growth of Gold Nanoplates Carried Out in Total Darkness. ACS NANO 2025; 19:9378-9389. [PMID: 40007334 DOI: 10.1021/acsnano.5c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The plasmon-mediated growth of noble metal nanoplates through the reduction of metal precursors onto resonantly excited seeds lined with planar defects stands out as one of the triumphs of photochemistry and nanometal synthesis. Such growth modes are, however, not without their drawbacks and, with a lack of suitable alternatives, limitations remain on the use of light as a synthetic control. Herein, a two-reagent seed-mediated gold nanoplate synthesis is demonstrated as a photochemical pathway where the illumination of the growth solution, as opposed to the emerging nanoplates, is the key requirement for growth. With long-lived reaction products, it becomes possible to optically prime the growth solution prior to the insertion of substrate-immobilized seeds and then carry out a seemingly paradoxical synthesis in which light-mediated growth occurs in total darkness. The redox chemistry responsible for nanoplate growth can be induced either through the direct optical excitation of the growth solution using short-wavelength visible light or at longer wavelengths through the plasmonic excitation of spherical colloidal gold nanoparticles added to the growth solution. With the former acting as a high-level wavelength-dependent control over nanoplate synthesis and the latter demonstrating plasmon-mediated metal deposition that is spatially and temporally isolated from the resonant excitation, the study forwards the use of light as an external driver for nanostructure synthesis.
Collapse
Affiliation(s)
- Zachary R Lawson
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Luca Ciambriello
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25133 Brescia, Italy
| | - Brendan D Nieukirk
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - John Howe
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Runze Tang
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Irvin A Servin
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Luca Gavioli
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25133 Brescia, Italy
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Googasian JS, Perkins MP, Chen J, Skrabalak SE. 532- and 52-symmetric Au helicoids synthesized through controlled seed twinning and aspect ratio. NANOSCALE 2025; 17:4415-4422. [PMID: 39810642 DOI: 10.1039/d4nr03731f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Chiral plasmonic crystals with 5-fold symmetries were synthesized from Au icosahedra, decahedra, and pentatwinned nanorods, unraveling the effects of seed twinning and aspect ratio on chiral overgrowth directed by L-glutathione. The influence of seed size on the overgrowth from pentatwinned nanorods was also studied, giving insight into the role volumetric strain plays in chiral crystal formation. Single particle reconstructions were obtained using electron tomography, and optical simulations on the measured structures verify their optical chirality.
Collapse
Affiliation(s)
- Jack S Googasian
- Department of Chemistry, Indiana University - Bloomington, 800 E Kirkwood Ave, Bloomington, IN 47405, USA.
| | - Maxwell P Perkins
- Department of Chemistry, Indiana University - Bloomington, 800 E Kirkwood Ave, Bloomington, IN 47405, USA.
| | - Jun Chen
- Department of Chemistry, Indiana University - Bloomington, 800 E Kirkwood Ave, Bloomington, IN 47405, USA.
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University - Bloomington, 800 E Kirkwood Ave, Bloomington, IN 47405, USA.
| |
Collapse
|
3
|
Wang Q, Yue A, Wang F, Shan S, He Y, Chi Z, Wu W, Ran X, Guo L. GSH Oligomer-Directed Chiral Au-Helicoid Nanoparticles for Discriminating Penicillamine Enantiomers. Inorg Chem 2024; 63:16206-16216. [PMID: 39168940 DOI: 10.1021/acs.inorgchem.4c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Preparing chiral plasmonic nanoparticles (NPs) with strong chiroptical responses is crucial in numerous fields including constructing optical materials, chiral sensing, and chiral-dependent biological processes. However, precise regulation over the chiral optical activity and chiral configuration of plasmonic NPs is still a challenge. In this work, we report Au helicoid NPs with different chiral structures and reversal chirality directed by the oligomeric structure of inducer glutathione (GSH). By precisely controlling the oligomeric structure of GSH and other synthetic parameters, we successfully prepared chiral Au helicoid NPs with a high anisotropy factor of 0.03. The obtained chiral Au NPs demonstrated an excellent performance in discriminating penicillamine (Pen) enantiomers. Our findings provide a construction strategy for chiral Au NPs and contribute insight into the regulation effect of chiral inducers on the growth of chiral metal NPs.
Collapse
Affiliation(s)
- Qian Wang
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Anyu Yue
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Fengchun Wang
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Songwang Shan
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475001, China
| | - Yulu He
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Zhen Chi
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Wenqiang Wu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475001, China
| | - Xia Ran
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Lijun Guo
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| |
Collapse
|
4
|
Roche B, Vo T, Chang WS. Promoting plasmonic photocatalysis with ligand-induced charge separation under interband excitation. Chem Sci 2023; 14:8598-8606. [PMID: 37592991 PMCID: PMC10430595 DOI: 10.1039/d3sc02167j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
Plasmonic nanoparticles have been demonstrated to enhance photocatalysis due to their strong photon absorption and efficient hot-carrier generation. However, plasmonic photocatalysts suffer from a short lifetime of plasmon-generated hot carriers that decay through internal relaxation pathways before being harnessed for chemical reactions. Here, we demonstrate the enhanced photocatalytic reduction of gold ions on gold nanorods functionalized with polyvinylpyrrolidone. The catalytic activities of the reaction are quantified by in situ monitoring of the spectral evolution of single nanorods using a dark-field scattering microscope. We observe a 13-fold increase in the reduction rate with the excitation of d-sp interband transition compared to dark conditions, and a negligible increase in the reduction rate when excited with intraband transition. The hole scavenger only plays a minor role in the photocatalytic reduction reaction. We attribute the enhanced photocatalysis to an efficient charge separation at the gold-polyvinylpyrrolidone interface, where photogenerated d-band holes at gold transfer to the HOMO of polyvinylpyrrolidone, leading to the prolonged lifetime of the electrons that subsequently reduce gold ions to gold atoms. These results provide new insight into the design of plasmonic photocatalysts with capping ligands.
Collapse
Affiliation(s)
- Ben Roche
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth North Dartmouth Massachusetts 02747 USA
| | - Tamie Vo
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth North Dartmouth Massachusetts 02747 USA
| | - Wei-Shun Chang
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth North Dartmouth Massachusetts 02747 USA
| |
Collapse
|
5
|
Sun L, Tao Y, Yang G, Liu C, Sun X, Zhang Q. Geometric Control and Optical Properties of Intrinsically Chiral Plasmonic Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306297. [PMID: 37572380 DOI: 10.1002/adma.202306297] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Intrinsically chiral plasmonic nanomaterials exhibit intriguing geometry-dependent chiroptical properties, which is due to the combination of plasmonic features with geometric chirality. Thus, chiral plasmonic nanomaterials have become promising candidates for applications in biosensing, asymmetric catalysis, biomedicine, photonics, etc. Recent advances in geometric control and optical tuning of intrinsically chiral plasmonic nanomaterials have further opened up a unique opportunity for their widespread applications in many emerging technological areas. Here, the recent developments in the geometric control of chiral plasmonic nanomaterials are reviewed with special attention given to the quantitative understanding of the chiroptical structure-property relationship. Several important optical spectroscopic tools for characterizing the optical chirality of plasmonic nanomaterials at both ensemble and single-particle levels are also discussed. Three emerging applications of chiral plasmonic nanomaterials, including enantioselective sensing, enantioselective catalysis, and biomedicine, are further highlighted. It is envisioned that these advanced studies in chiral plasmonic nanomaterials will pave the way toward the rational design of chiral nanomaterials with desired optical properties for diverse emerging technological applications.
Collapse
Affiliation(s)
- Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
6
|
Charconnet M, Korsa MT, Petersen S, Plou J, Hanske C, Adam J, Seifert A. Generalization of Self-Assembly Toward Differently Shaped Colloidal Nanoparticles for Plasmonic Superlattices. SMALL METHODS 2023; 7:e2201546. [PMID: 36807876 DOI: 10.1002/smtd.202201546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Periodic superlattices of noble metal nanoparticles have demonstrated superior plasmonic properties compared to randomly distributed plasmonic arrangements due to near-field coupling and constructive far-field interference. Here, a chemically driven, templated self-assembly process of colloidal gold nanoparticles is investigated and optimized, and the technology is extended toward a generalized assembly process for variously shaped particles, such as spheres, rods, and triangles. The process yields periodic superlattices of homogenous nanoparticle clusters on a centimeter scale. Electromagnetically simulated absorption spectra and corresponding experimental extinction measurements demonstrate excellent agreement in the far-field for all particle types and different lattice periods. The electromagnetic simulations reveal the specific nano-cluster near-field behavior, predicting the experimental findings provided by surface-enhanced Raman scattering measurements. It turns out that periodic arrays of spherical nanoparticles produce higher surface-enhanced Raman scattering enhancement factors than particles with less symmetry as a result of very well-defined strong hotspots.
Collapse
Affiliation(s)
- Mathias Charconnet
- CIC nanoGUNE BRTA, San Sebastián, 20018, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, 20014, Spain
| | - Matiyas Tsegay Korsa
- University of Southern Denmark, SDU Centre for Photonics Engineering, Mads Clausen Institute, Odense, 5230, Denmark
| | - Søren Petersen
- University of Southern Denmark, SDU Centre for Photonics Engineering, Mads Clausen Institute, Odense, 5230, Denmark
| | - Javier Plou
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, 20014, Spain
- CIBER-BBN, ISCIII, San Sebastián, 20014, Spain
| | - Christoph Hanske
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, 20014, Spain
| | - Jost Adam
- University of Southern Denmark, SDU Centre for Photonics Engineering, Mads Clausen Institute, Odense, 5230, Denmark
| | - Andreas Seifert
- CIC nanoGUNE BRTA, San Sebastián, 20018, Spain
- IKERBASQUE - Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
7
|
Tuff WJ, Hughes RA, Golze SD, Neretina S. Ion Beam Milling as a Symmetry-Breaking Control in the Synthesis of Periodic Arrays of Identically Aligned Bimetallic Janus Nanocrystals. ACS NANO 2023; 17:4050-4061. [PMID: 36799807 DOI: 10.1021/acsnano.3c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bimetallic Janus nanostructures represent a highly functional class of nanomaterials due to important physicochemical properties stemming from the union of two chemically distinct metal segments where each maintains a partially exposed surface. Essential to their synthesis is the incorporation of a symmetry-breaking control that is able to induce the regioselective deposition of a secondary metal onto a preexisting nanostructure even though such depositions are, more often than not, in opposition to the innate tendencies of heterogeneous growth modes. Numerous symmetry-breaking controls have been forwarded but the ensuing Janus structure syntheses have not yet achieved anywhere near the same level of control over nanostructure size, shape, and composition as their core-shell and single-element counterparts. Herein, a collimated ion beam is demonstrated as a symmetry-breaking control that allows for the selective removal of a passivating oxide shell from one side of a metal nanostructure to create a configuration that is transformable into a substrate-bound Au-Ag Janus nanostructure. Two different modalities are demonstrated for achieving Janus structures where in one case the oxide dissolves in the growth solution while in the other it remains affixed to form a three-component system. The devised procedures distinguish themselves in their ability to realize complex Janus architectures arranged in periodic arrays where each structure has the same alignment relative to the underlying substrate. The work, hence, provides an avenue for forming precisely tailored Janus structures and, in a broader sense, advances the use of oxides as an effective means for directing nanometal syntheses.
Collapse
Affiliation(s)
- Walker J Tuff
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Spencer D Golze
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
8
|
Neal RD, Lawson ZR, Tuff WJ, Xu K, Kumar V, Korsa MT, Zhukovskyi M, Rosenberger MR, Adam J, Hachtel JA, Camden JP, Hughes RA, Neretina S. Large-Area Periodic Arrays of Atomically Flat Single-Crystal Gold Nanotriangles Formed Directly on Substrate Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205780. [PMID: 36344422 DOI: 10.1002/smll.202205780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The advancement of nanoenabled wafer-based devices requires the establishment of core competencies related to the deterministic positioning of nanometric building blocks over large areas. Within this realm, plasmonic single-crystal gold nanotriangles represent one of the most attractive nanoscale components but where the formation of addressable arrays at scale has heretofore proven impracticable. Herein, a benchtop process is presented for the formation of large-area periodic arrays of gold nanotriangles. The devised growth pathway sees the formation of an array of defect-laden seeds using lithographic and vapor-phase assembly processes followed by their placement in a growth solution promoting planar growth and threefold symmetric side-faceting. The nanotriangles formed in this high-yield synthesis distinguish themselves in that they are epitaxially aligned with the underlying substrate, grown to thicknesses that are not readily obtainable in colloidal syntheses, and present atomically flat pristine surfaces exhibiting gold atoms with a close-packed structure. As such, they express crisp and unambiguous plasmonic modes and form photoactive surfaces with highly tunable and readily modeled plasmon resonances. The devised methods, hence, advance the integration of single-crystal gold nanotriangles into device platforms and provide an overall fabrication strategy that is adaptable to other nanomaterials.
Collapse
Affiliation(s)
- Robert D Neal
- College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Zachary R Lawson
- College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Walker J Tuff
- College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kaikui Xu
- College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Vishal Kumar
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matiyas T Korsa
- Computational Materials Group, SDU Centre for Photonics Engineering, Mads Clausen Institute, University of Southern Denmark, Odense, 5230, Denmark
| | - Maksym Zhukovskyi
- Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | - Jost Adam
- Computational Materials Group, SDU Centre for Photonics Engineering, Mads Clausen Institute, University of Southern Denmark, Odense, 5230, Denmark
| | - Jordan A Hachtel
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
9
|
Sun X, Yang J, Sun L, Yang G, Liu C, Tao Y, Cheng Q, Wang C, Xu H, Zhang Q. Tunable Reversal of Circular Dichroism in the Seed-Mediated Growth of Bichiral Plasmonic Nanoparticles. ACS NANO 2022; 16:19174-19186. [PMID: 36251931 DOI: 10.1021/acsnano.2c08381] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plasmonic nanoparticles with an intrinsic chiral structure have emerged as a promising chiral platform for applications in biosensing, medicine, catalysis, separation, and photonics. Quantitative understanding of the correlation between nanoparticle structure and optical chirality becomes increasingly important but still represents a significantly challenging task. Here we demonstrate that tunable signal reversal of circular dichroism in the seed-mediated chiral growth of plasmonic nanoparticles can be achieved through the hybridization of bichiral centers without inverting the geometric chirality. Both experimental and theoretical results demonstrated the opposite sign of circular dichroism of two different bichiral geometries. Chiral molecules were found to not only contribute to the chirality transfer from molecules to nanoparticles but also manipulate the structural evolution of nanoparticles that synergistically drive the formation of two different chiral centers. By deliberately adjusting the concentration of chiral molecules and other synthetic parameters, such as the reducing agent concentration, the capping surfactant concentration, and the amount of Au precursor, we have been able to fine-tune the circular dichroism reversal of bichiral Au nanoparticles. We further demonstrate that the structure of chiral molecules and the crystal structure of Au seeds play crucial roles in the formation of Au nanoparticles with bichiral centers. The insights gained from this work not only shed light on the underlying mechanisms dictating the intriguing geometric and chirality evolution of bichiral plasmonic nanoparticles but also provide an important knowledge framework that guides the rational design of bichiral plasmonic nanostructures toward chiroptical applications.
Collapse
Affiliation(s)
- Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Yang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qingqing Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hongxing Xu
- The Institute of Advanced Studies, School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
10
|
Porcu S, Secci F, Ricci PC. Advances in Hybrid Composites for Photocatalytic Applications: A Review. Molecules 2022; 27:molecules27206828. [PMID: 36296421 PMCID: PMC9607189 DOI: 10.3390/molecules27206828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Heterogeneous photocatalysts have garnered extensive attention as a sustainable way for environmental remediation and energy storage process. Water splitting, solar energy conversion, and pollutant degradation are examples of nowadays applications where semiconductor-based photocatalysts represent a potentially disruptive technology. The exploitation of solar radiation for photocatalysis could generate a strong impact by decreasing the energy demand and simultaneously mitigating the impact of anthropogenic pollutants. However, most of the actual photocatalysts work only on energy radiation in the Near-UV region (<400 nm), and the studies and development of new photocatalysts with high efficiency in the visible range of the spectrum are required. In this regard, hybrid organic/inorganic photocatalysts have emerged as highly potential materials to drastically improve visible photocatalytic efficiency. In this review, we will analyze the state-of-art and the developments of hybrid photocatalysts for energy storage and energy conversion process as well as their application in pollutant degradation and water treatments.
Collapse
Affiliation(s)
- Stefania Porcu
- Department of Physics, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
| | - Francesco Secci
- Department of Chemical and Geological Science, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
| | - Pier Carlo Ricci
- Department of Physics, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
- Correspondence: ; Tel.: +39-070675-4821
| |
Collapse
|
11
|
Googasian JS, Lewis GR, Woessner ZJ, Ringe E, Skrabalak SE. Seed-directed synthesis of chiroptically active Au nanocrystals of varied symmetries. Chem Commun (Camb) 2022; 58:11575-11578. [PMID: 36168847 DOI: 10.1039/d2cc04126j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral plasmonic nanocrystals with varied symmetries were synthesized by L-glutathione-guided overgrowth from Au tetrahedra, nanoplates, and octahedra, highlighting the importance of chiral molecule adsorption at transient kink sites. Large g-factors are possible and depend on symmetry. Simulations of their chiroptical properties from tomographically obtained nanocrystal models further verify their chirality.
Collapse
Affiliation(s)
- Jack S Googasian
- Department of Chemistry, Indiana University - Bloomington, 800 E. Kirkwood Ave., Bloomington, IN 47405, USA.
| | - George R Lewis
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
| | - Zachary J Woessner
- Department of Chemistry, Indiana University - Bloomington, 800 E. Kirkwood Ave., Bloomington, IN 47405, USA.
| | - Emilie Ringe
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University - Bloomington, 800 E. Kirkwood Ave., Bloomington, IN 47405, USA.
| |
Collapse
|
12
|
Identification of plasmon-driven nanoparticle-coalescence-dominated growth of gold nanoplates through nanopore sensing. Nat Commun 2022; 13:1402. [PMID: 35301326 PMCID: PMC8931024 DOI: 10.1038/s41467-022-29123-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/01/2022] [Indexed: 11/09/2022] Open
Abstract
The fascinating phenomenon that plasmon excitation can convert isotropic silver nanospheres to anisotropic nanoprisms has already been developed into a general synthetic technique since the discovery in 2001. However, the mechanism governing the morphology conversion is described with different reaction processes. So far, the mechanism based on redox reactions dominated anisotropic growth by plasmon-produced hot carriers is widely accepted and developed. Here, we successfully achieved plasmon-driven high yield conversion of gold nanospheres into nanoplates with iodine as the inducer. To investigate the mechanism, nanopore sensing technology is established to statistically study the intermediate species at the single-nanoparticle level. Surprisingly, the morphology conversion is proved as a hot hole-controlled coalescence-dominated growth process. This work conclusively elucidates that a controllable plasmon-driven nanoparticle-coalescence mechanism could enable the production of well-defined anisotropic metal nanostructures and suggests that the nanopore sensing could be of general use for studying the growth process of nanomaterials.
Collapse
|
13
|
Gevorgyan AH. Magnetically induced transparency in helically structured periodic crystals. Phys Rev E 2022; 105:014701. [PMID: 35193277 DOI: 10.1103/physreve.105.014701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/16/2021] [Indexed: 11/07/2022]
Abstract
We investigated the specific properties of magnetically induced transparency (MIT) and magnetically induced absorption (MIA) in helically structured periodic crystals (HSPCs). We showed that for the wavelength of MIT we have an ideal optical diode: The forward signal passes fully, while the backward signal is completely absorbed and not reflected. A formula for the wavelength λ_{t} of MIT and MIA resonance based on the numerical simulations was analytically obtained. The influence of HSPC parameters on the wavelength λ_{t} and on Δλ_{t}, the transparency line half width, was investigated by numerical simulations. The specific properties of light energy density, the ellipticity e_{in}, and azimuth φ_{in} of the total wave excited in the HSPC layer for MIT and MIA modes were investigated, too.
Collapse
Affiliation(s)
- A H Gevorgyan
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| |
Collapse
|
14
|
Besteiro LV, Movsesyan A, Ávalos-Ovando O, Lee S, Cortés E, Correa-Duarte MA, Wang ZM, Govorov AO. Local Growth Mediated by Plasmonic Hot Carriers: Chirality from Achiral Nanocrystals Using Circularly Polarized Light. NANO LETTERS 2021; 21:10315-10324. [PMID: 34860527 PMCID: PMC8704195 DOI: 10.1021/acs.nanolett.1c03503] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/08/2021] [Indexed: 05/05/2023]
Abstract
Plasmonic nanocrystals and their assemblies are excellent tools to create functional systems, including systems with strong chiral optical responses. Here we study the possibility of growing chiral plasmonic nanocrystals from strictly nonchiral seeds of different types by using circularly polarized light as the chirality-inducing mechanism. We present a novel theoretical methodology that simulates realistic nonlinear and inhomogeneous photogrowth processes in plasmonic nanocrystals, mediated by the excitation of hot carriers that can drive surface chemistry. We show the strongly anisotropic and chiral growth of oriented nanocrystals with lowered symmetry, with the striking feature that such chiral growth can appear even for nanocrystals with subwavelength sizes. Furthermore, we show that the chiral growth of nanocrystals in solution is fundamentally challenging. This work explores new ways of growing monolithic chiral plasmonic nanostructures and can be useful for the development of plasmonic photocatalysis and fabrication technologies.
Collapse
Affiliation(s)
- Lucas V. Besteiro
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
- Centre
Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec J3X 1S2, Canada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
| | - Artur Movsesyan
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
- Department
of Physics and Astronomy and the Nanoscale & Quantum Phenomena
Institute, Ohio University, Athens, Ohio 45701, United States
| | - Oscar Ávalos-Ovando
- Department
of Physics and Astronomy and the Nanoscale & Quantum Phenomena
Institute, Ohio University, Athens, Ohio 45701, United States
| | - Seunghoon Lee
- Chair
in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | | | - Zhiming M. Wang
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
- Institute
for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Alexander O. Govorov
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
- Department
of Physics and Astronomy and the Nanoscale & Quantum Phenomena
Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
15
|
|