1
|
Sun M, Chen Y, Fan X, Li D, Song J, Yu K, Zhao Z. Electronic asymmetry of lattice oxygen sites in ZnO promotes the photocatalytic oxidative coupling of methane. Nat Commun 2024; 15:9900. [PMID: 39548121 PMCID: PMC11568292 DOI: 10.1038/s41467-024-54226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Photocatalytic oxidative coupling of methane with oxygen is promising to obtain valuable muti-carbon products, yet suffering low reactivity. Here, we apply cerium modifications on zinc oxide-supported gold catalysts based on the electronic asymmetry design of lattice oxygen to improve the coupling activity. The methane conversion rate exceeds 16000 μmol g-1 h-1 with muti-carbon selectivity of 94.9% and catalytic durability of 3 days, and it can increase to 34000 μmol g-1 h-1 under more thermal assistance, with a turnover frequency of 507 h-1 for ethane and an apparent quantum efficiency of 33.7% at 350 nm. According to systematic characterizations and theoretical analysis, cerium dopants not only can boost the formation of reactive oxygen species but also intervene in the vivacity of lattice oxygen by manipulating metal-oxygen bond strength, thereby leading to favorable methyl desorption to form ethane and quick water release. This work provides insight into the rational design of efficient photocatalysts for aerobic methane-to-ethane conversion.
Collapse
Affiliation(s)
- Mengyao Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Yanjun Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Xiaoqiang Fan
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Dong Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Jiaxin Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Ke Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China.
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China.
| |
Collapse
|
2
|
Wu T, Rankin DM, Golovko VB. Electrochemical Oxidation of Low-Concentration Methane on Pt/Pt and Pt/CP under Ambient Conditions. ACS OMEGA 2024; 9:44549-44558. [PMID: 39524649 PMCID: PMC11541517 DOI: 10.1021/acsomega.4c06665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/29/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Methane is a potent greenhouse gas, and its rapid conversion at low concentrations under ambient conditions is a challenging process where combustion is not an option. Herein, we report an electrochemical method to address this problem. It was achieved by applying an oxidation potential to electrochemically activate methane followed by conducting an anodic cyclic voltammogram to fully oxidize activated methane to carbon dioxide on platinized Pt mesh (Pt/Pt) and carbon paper (Pt/CP). This "dynamic potential" oxidation approach enabled methane conversion with low energy consumption, thanks to the low activation potential. Effects of various experimental conditions (applied potential, reaction time, and methane concentration) were investigated. Pure methane and methane/nitrogen gas mixtures containing a series of low concentrations of methane were tested. It was found that methane conversion is independent of its concentration on both Pt/Pt and Pt/CP. Compared to Pt/Pt electrocatalysis, Pt/CP displayed approximately 10 times higher catalytic activity, which can be attributed to the stronger binding of intermediate CO* to Pt, leading to easier CO* activation in the presence of a carbon substrate. Carbon dioxide was the only compound detected during the electro-oxidation phase for Pt/Pt, while for Pt/CP, carbon dioxide and a small amount of formic acid (after 15 h reaction) were observed. Electrocatalytic conversion of methane to carbon dioxide on Pt/CP using 0.5% methane was measured, giving a methane conversion rate of 7.5 × 10-8 mol L-1 s-1 m-2, while the methane conversion rate on Pt/Pt with 1% methane was only 8.3 × 10-9 mol L-1 s-1 m-2.
Collapse
Affiliation(s)
- Ting Wu
- Lincoln
Agritech Limited, Lincoln University, Engineering Drive, Lincoln 7608, New Zealand
| | - David M. Rankin
- Lincoln
Agritech Limited, Lincoln University, Engineering Drive, Lincoln 7608, New Zealand
| | - Vladimir B. Golovko
- School
of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, New Zealand
- The
MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| |
Collapse
|
3
|
Huang ZX, Wang ZY, Yuan YJ, Chen Y, Wang JH, Hu YH, Tang JP, Shen ZK, Yu ZT, Zou Z. Defect Engineering of Ultrasmall TiO 2 Nanoparticles Enables Highly Efficient Photocatalysts for Solar H 2 Production from Woody Biomass. NANO LETTERS 2024; 24:11968-11975. [PMID: 39259027 DOI: 10.1021/acs.nanolett.4c03361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The conversion of woody biomass to H2 through photocatalysis provides a sustainable strategy to generate renewable hydrogen fuel but was limited by the slow decomposition rate of woody biomass. Here, we fabricate ultrasmall TiO2 nanoparticles with tunable concentration of oxygen vacancy defects (VO-TiO2) as highly efficient photocatalysts for photocatalytic conversion of woody biomass to H2. Owing to the positive role of oxygen vacancy in reducing energy barrier for the generation of •OH which was the critical species to oxidize woody biomass, the obtained VO-TiO2 achieves rapid photocatalytic conversion of α-cellulose and poplar wood chip to H2 in the presence of Pt nanoclusters as the cocatalyst. As expected, the highest H2 generation rate in α-cellulose and poplar wood chip system respectively achieve 1146 and 59 μmol h-1 g-1, and an apparent quantum yield of 4.89% at 380 nm was obtained in α-cellulose aqueous solution.
Collapse
Affiliation(s)
- Ze-Xin Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Zi-Yi Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Yong-Jun Yuan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Yan Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Jia-Hao Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Yun-Hui Hu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Ji-Ping Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Zhi-Kai Shen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhigang Zou
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
4
|
Wang M, Jia J, Meng Z, Xia J, Hu X, Xue F, Peng H, Meng X, Yi J, Chen X, Li J, Guo Y, Xu Y, Huang X. Plasmonic Pd-Sb nanosheets for photothermal CH 4 conversion to HCHO and therapy. SCIENCE ADVANCES 2024; 10:eado9664. [PMID: 39231231 PMCID: PMC11373601 DOI: 10.1126/sciadv.ado9664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Photothermal catalysis effectively increases catalytic activity by using the photothermal effect of metal nanomaterials; however, the combination of strong light absorption and high catalytic performance remains a challenge. Here, we demonstrate hexagonal ~5-nanometer-thick palladium antimony (chemical formula as Pd8Sb3) nanosheets (NSs) that exhibit strong light absorption within full spectral and localized surface plasmon resonance (LSPR) effects in the visible region. Such LSPR features lead to strong photothermal effects, and Pd8Sb3 NSs aqueous dispersion enables enhanced photothermal methane (CH4) conversion to formaldehyde (HCHO) under full-spectrum light irradiation at 1.7 watts per square centimeter, leading to selectivity of ~98.7%, productivity of ~665 millimoles per gram of catalyst, ~700 times higher than that of Pd NSs. Mechanism investigations suggest that different radicals were generated on Pd8Sb3 (·OH) and Pd NSs (·O2-), where Pd8Sb3 NSs displays stronger adsorption strength to CH4 and facilitates CH4 oxidation to HCHO. Besides, the strong light absorption ability of Pd8Sb3 NSs enables photothermal therapy for breast cancer.
Collapse
Affiliation(s)
- Mengjun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, China
| | - Jun Jia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- School of Electrical Engineering and Automation, Wuhan University, Hubei 430072, China
| | - Zhaodong Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyan Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fei Xue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huiping Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangmin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
- College of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China
| | - Xiaolan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuzheng Guo
- School of Electrical Engineering and Automation, Wuhan University, Hubei 430072, China
| | - Yong Xu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Jia Y, Liu D, Chen D, Jin Y, Ge Y, Zhang W, Chen C, Cheng B, Wang X, Liu T, Li M, Zu M, Wang Z, Cheng H. Realizing Sunlight-Induced Efficiently Dynamic Infrared Emissivity Modulation Based on Aluminum-Doped zinc Oxide Nanocrystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405962. [PMID: 39073318 PMCID: PMC11423185 DOI: 10.1002/advs.202405962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/06/2024] [Indexed: 07/30/2024]
Abstract
Dynamic manipulation of an object's infrared radiation characteristics is a burgeoning technology with significant implications for energy and information fields. However, exploring efficient stimulus-spectral response mechanism and realizing simple device structures remains a formidable challenge. Here, a novel dynamic infrared emissivity regulation mechanism is proposed by controlling the localized surface plasmon resonance absorption of aluminum-doped zinc oxide (AZO) nanocrystals through ultraviolet photocharging/oxidative discharging. A straightforward device architecture that integrates an AZO nanocrystal film with an infrared reflective layer and a substrate, functioning as a photo-induced dynamic infrared emissivity modulator, which can be triggered by weak ultraviolet light in sunlight, is engineered. The modulator exhibits emissivity regulation amount of 0.72 and 0.61 in the 3-5 and 8-13 µm ranges, respectively. Furthermore, the modulator demonstrates efficient light triggering characteristic, broad spectral range, angular-independent emissivity, and long cyclic lifespan. The modulator allows for self-adaptive daytime radiative cooling and nighttime heating depending on the ultraviolet light in sunlight and O2 in air, thereby achieving smart thermal management for buildings with zero-energy expenditure. Moreover, the potential applications of this modulator can extend to rewritable infrared displays and deceptive infrared camouflage.
Collapse
Affiliation(s)
- Yan Jia
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Dongqing Liu
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Desui Chen
- Center for Chemistry of High-Performance and Novel Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yizheng Jin
- Center for Chemistry of High-Performance and Novel Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yufei Ge
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Wenxia Zhang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Chen Chen
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Baizhang Cheng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Xinfei Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Tianwen Liu
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Mingyang Li
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Mei Zu
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Zi Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Haifeng Cheng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China
| |
Collapse
|
6
|
Nie S, Wu L, Zhang Q, Huang Y, Liu Q, Wang X. High-entropy-perovskite subnanowires for photoelectrocatalytic coupling of methane to acetic acid. Nat Commun 2024; 15:6669. [PMID: 39107324 PMCID: PMC11303686 DOI: 10.1038/s41467-024-50977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
The incorporation of multiple immiscible metals in high-entropy oxides can create the unconventional coordination environment of catalytic active sites, while the high formation temperature of high-entropy oxides results in bulk materials with low specific surface areas. Here we develop the high-entropy LaMnO3-type perovskite-polyoxometalate subnanowire heterostructures with periodically aligned high-entropy LaMnO3 oxides and polyoxometalate under a significantly reduced temperature of 100 oC, which is much lower than the temperature required by state-of-the-art calcination methods for synthesizing high-entropy oxides. The high-entropy LaMnO3-polyoxometalate subnanowires exhibit excellent catalytic activity for the photoelectrochemical coupling of methane into acetic acid under mild conditions (1 bar, 25 oC), with a high productivity (up to 4.45 mmol g‒1cat h‒1) and selectivity ( > 99%). Due to the electron delocalization at the subnanometer scale, the contiguous active sites of high-entropy LaMnO3 and polyoxometalate in the heterostructure can efficiently activate C - H bonds and stabilize the resulted *COOH intermediates, which benefits the in situ coupling of *CH3 and *COOH into acetic acid.
Collapse
Affiliation(s)
- Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yunwei Huang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Cao J, Liang H, Yang J, Zhu Z, Deng J, Li X, Elimelech M, Lu X. Depolymerization mechanisms and closed-loop assessment in polyester waste recycling. Nat Commun 2024; 15:6266. [PMID: 39048542 PMCID: PMC11269573 DOI: 10.1038/s41467-024-50702-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Alcoholysis of poly(ethylene terephthalate) (PET) waste to produce monomers, including methanolysis to yield dimethyl terephthalate (DMT) and glycolysis to generate bis-2-hydroxyethyl terephthalate (BHET), is a promising strategy in PET waste management. Here, we introduce an efficient PET-alcoholysis approach utilizing an oxygen-vacancy (Vo)-rich catalyst under air, achieving space time yield (STY) of 505.2 gDMT·gcat-1·h-1 and 957.1 gBHET·gcat-1·h-1, these results represent 51-fold and 28-fold performance enhancements compared to reactions conducted under N2. In situ spectroscopy, in combination with density functional theory calculations, elucidates the reaction pathways of PET depolymerization. The process involves O2-assisted activation of CH3OH to form CH3OH* and OOH* species at Vo-Zn2+-O-Fe3+ sites, highlighting the critical role of Vo-Zn2+-O-Fe3+ sites in ester bond activation and C-O bond cleavage. Moreover, a life cycle assessment demonstrates the viability of our approach in closed-loop recycling, achieving 56.0% energy savings and 44.5% reduction in greenhouse-gas emissions. Notably, utilizing PET textile scrap further leads to 58.4% reduction in initial total operating costs. This research offers a sustainable solution to the challenge of PET waste accumulation.
Collapse
Affiliation(s)
- Jingjing Cao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Huaxing Liang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Jie Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, China
| | - Zhiyang Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Jin Deng
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, China.
| | - Xiaodong Li
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, Germany.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
| | - Xinglin Lu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
8
|
Zheng K, Wu M, Zhu J, Zhang W, Liu S, Zhang X, Wu Y, Li L, Li B, Liu W, Hu J, Liu C, Zhu J, Pan Y, Zhou M, Sun Y, Xie Y. Breaking the Activity-Selectivity Trade-off for CH 4-to-C 2H 6 Photoconversion. J Am Chem Soc 2024; 146:12233-12242. [PMID: 38626786 DOI: 10.1021/jacs.4c03546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Photocatalytic conversion of methane (CH4) to ethane (C2H6) has attracted extensive attention from academia and industry. Typically, the traditional oxidative coupling of CH4 (OCM) reaches a high C2H6 productivity, yet the inevitable overoxidation limits the target product selectivity. Although the traditional nonoxidative coupling of CH4 (NOCM) can improve the product selectivity, it still encounters unsatisfied activity, arising from being thermodynamically unfavorable. To break the activity-selectivity trade-off, we propose a conceptually new mechanism of H2O2-triggered CH4 coupling, where the H2O2-derived ·OH radicals are rapidly consumed for activating CH4 into ·CH3 radicals exothermically, which bypasses the endothermic steps of the direct CH4 activation by photoholes and the interaction between ·CH3 and ·OH radicals, affirmed by in situ characterization techniques, femtosecond transient absorption spectroscopy, and density-functional theory calculation. By this pathway, the designed Au-WO3 nanosheets achieve unprecedented C2H6 productivity of 76.3 mol molAu-1 h-1 with 95.2% selectivity, and TON of 1542.7 (TOF = 77.1 h-1) in a self-designed flow reactor, outperforming previously reported photocatalysts regardless of OCM and NOCM pathways. Also, under outdoor natural sunlight irradiation, the Au-WO3 nanosheets exhibit similar activity and selectivity toward C2H6 production, showing the possibility for practical applications. Interestingly, this strategy can be applied to other various photocatalysts (Au-WO3, Au-TiO2, Au-CeO2, Pd-WO3, and Ag-WO3), showing a certain universality. It is expected that the proposed mechanism adds another layer to our understanding of CH4-to-C2H6 conversion.
Collapse
Affiliation(s)
- Kai Zheng
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Mingyu Wu
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Siying Liu
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiaojing Zhang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wu
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Li Li
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Bangwang Li
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wenxiu Liu
- Instruments Center for Physical Science, University of Science and Technology of China, Hefei 230026, China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yongfu Sun
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Cao Y, Huang Z, Han C, Zhou Y. Product Peroxidation Inhibition in Methane Photooxidation into Methanol. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306891. [PMID: 38234232 DOI: 10.1002/advs.202306891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Methane photooxidation into methanol offers a practical approach for the generation of high-value chemicals and the efficient storage of solar energy. However, the propensity for C─H bonds in the desired products to cleave more easily than those in methane molecules results in a continuous dehydrogenation process, inevitably leading to methanol peroxidation. Consequently, inhibiting methanol peroxidation is perceived as one of the most formidable challenges in the field of direct conversion of methane to methanol. This review offers a thorough overview of the typical mechanisms involved radical mechanism and active site mechanism and the regulatory methods employed to inhibit product peroxidation in methane photooxidation. Additionally, several perspectives on the future research direction of this crucial field are proposed.
Collapse
Affiliation(s)
- Yuehan Cao
- National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Zeai Huang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Chunqiu Han
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Ying Zhou
- National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| |
Collapse
|
10
|
Umar A, Akbar S, Kumar R, Amu-Darko JNO, Hussain S, Ibrahim AA, Alhamami MA, Almehbad N, Almas T, Seliem AF. Ce-doped ZnO nanostructures: A promising platform for NO 2 gas sensing. CHEMOSPHERE 2024; 349:140838. [PMID: 38043612 DOI: 10.1016/j.chemosphere.2023.140838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/19/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
In this comprehensive study, Ce-doped ZnO nanostructures were hydrothermally synthesized with varying Ce concentrations (0.5%, 1.0%, 1.5%, and 2.0%) to explore their gas-sensing capabilities, particularly towards NO2. Structural characterization revealed that as Ce doping increased, crystal size exhibited a slight increment while band gap energies decreased. Notably, the 0.5% Ce-doped ZnO nanostructure demonstrated the highest NO2 gas response of 8.6, underscoring the significance of a delicate balance between crystal size and band gap energy for optimal sensing performance. The selectivity of the 0.5% Ce-doped ZnO nanostructures to NO2 over other gases like H2, acetone, NH3, and CO at a concentration of 100 ppm and an optimized temperature of 250 °C was exceptional, highlighting its discriminatory prowess even in the presence of potential interfering gases. Furthermore, the sensor displayed reliability and reversibility during five consecutive tests, showcasing consistent performance. Long-term stability testing over 30 days revealed that the gas response remained almost constant, indicating the sensor's remarkable durability. In addition to its robustness against humidity variations, maintaining effectiveness even at 41% humidity, the sensor exhibited impressive response and recovery times. While the response time was swift at 11.8 s, the recovery time was slightly prolonged at 56.3 s due to the strong adsorption of NO2 molecules onto the sensing material hindering the desorption process. The study revealed the intricate connection between Ce-doping levels, structure, and gas-sensing. It highlighted the 0.5% Ce-doped ZnO nanostructure as a highly selective, reliable, and durable NO2 gas sensor, with implications for future environmental monitoring and safety.
Collapse
Affiliation(s)
- Ahmad Umar
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA.
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA
| | - Rajesh Kumar
- Department of Chemistry, Jagdish Chandra DAV College, Dasuya, Punjab 144205, India
| | | | - Shahid Hussain
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ahmed A Ibrahim
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia
| | - Mohsen A Alhamami
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia
| | - Noura Almehbad
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia
| | - Tubia Almas
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia
| | - Amal F Seliem
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Wang P, Zhang X, Shi R, Zhao J, Waterhouse GIN, Tang J, Zhang T. Photocatalytic ethylene production by oxidative dehydrogenation of ethane with dioxygen on ZnO-supported PdZn intermetallic nanoparticles. Nat Commun 2024; 15:789. [PMID: 38278813 PMCID: PMC10817976 DOI: 10.1038/s41467-024-45031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
The selective oxidative dehydrogenation of ethane (ODHE) is attracting increasing attention as a method for ethylene production. Typically, thermocatalysts operating at high temperatures are needed for C-H activation in ethane. In this study, we describe a low temperature ( < 140 °C) photocatalytic route for ODHE, using O2 as the oxidant. A photocatalyst containing PdZn intermetallic nanoparticles supported on ZnO is prepared, affording an ethylene production rate of 46.4 mmol g-1 h-1 with 92.6% ethylene selectivity under 365 nm irradiation. When we employ a simulated shale gas feed, the photocatalytic ODHE system achieves nearly 20% ethane conversion while maintaining an ethylene selectivity of about 87%. The robust interface between the PdZn intermetallic nanoparticles and ZnO support plays a crucial role in ethane activation through a photo-assisted Mars-van Krevelen mechanism, followed by a rapid lattice oxygen replenishment to complete the reaction cycle. Our findings demonstrate that photocatalytic ODHE is a promising method for alkane-to-alkene conversions under mild conditions.
Collapse
Affiliation(s)
- Pu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingyu Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jiaqi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Junwang Tang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
- Industrial Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Nie S, Wu L, Wang X. Electron-Delocalization-Stabilized Photoelectrocatalytic Coupling of Methane by NiO-Polyoxometalate Sub-1 nm Heterostructures. J Am Chem Soc 2023; 145:23681-23690. [PMID: 37861371 DOI: 10.1021/jacs.3c07984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The oxidative coupling of methane to C2 oxygenates merits great scientific and technological potential yet remains a challenge due to its inferior selectivity. Subnanomaterials (SNMs) with "p-n-p-n"-type heteroconstructions feature enhanced external field coupling properties and tunable electronic structures, serving as promising catalysts for the selective partial oxidation of methane. Here we develop NiO-polyoxometalate (POM) subnanocoils with a thickness of 1.8 nm, showing excellent catalytic activity toward photoelectrochemical coupling of methane into a C2 product under mild conditions (1 bar, 25 °C) with a notable productivity (up to 4.48 mmol gcat-1 h-1) and a high selectivity (>99%). Under photoelectrochemical coupling, C-H bonds can be activated by NiO, and the resulted *COOH intermediates are stabilized by the delocalized electrons in POM clusters. The contiguous active sites of NiO and POM at the molecular level allow the in situ coupling of *COOH into oxalate. This work points out an economic way for the oxidation of methane under mild conditions and may enlighten the design of functional SNMs from fundamental standpoints.
Collapse
Affiliation(s)
- Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Li X, Wang C, Yang J, Xu Y, Yang Y, Yu J, Delgado JJ, Martsinovich N, Sun X, Zheng XS, Huang W, Tang J. PdCu nanoalloy decorated photocatalysts for efficient and selective oxidative coupling of methane in flow reactors. Nat Commun 2023; 14:6343. [PMID: 37816721 PMCID: PMC10564738 DOI: 10.1038/s41467-023-41996-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
Methane activation by photocatalysis is one of the promising sustainable technologies for chemical synthesis. However, the current efficiency and stability of the process are moderate. Herein, a PdCu nanoalloy (~2.3 nm) was decorated on TiO2, which works for the efficient, stable, and selective photocatalytic oxidative coupling of methane at room temperature. A high methane conversion rate of 2480 μmol g-1 h-1 to C2 with an apparent quantum efficiency of ~8.4% has been achieved. More importantly, the photocatalyst exhibits the turnover frequency and turnover number of 116 h-1 and 12,642 with respect to PdCu, representing a record among all the photocatalytic processes (λ > 300 nm) operated at room temperature, together with a long stability of over 112 hours. The nanoalloy works as a hole acceptor, in which Pd softens and weakens C-H bond in methane and Cu decreases the adsorption energy of C2 products, leading to the high efficiency and long-time stability.
Collapse
Affiliation(s)
- Xiyi Li
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Chao Wang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Jianlong Yang
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Youxun Xu
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Yi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Juan J Delgado
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
- IMEYMAT, Instituto de Microscopía Electrónica y Materiales, Puerto Real, 11510, Spain
| | | | - Xiao Sun
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
| | - Xu-Sheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China
| | - Weixin Huang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
- Industrial Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Liu Z, Xu B, Jiang YJ, Zhou Y, Sun X, Wang Y, Zhu W. Photocatalytic Conversion of Methane: Current State of the Art, Challenges, and Future Perspectives. ACS ENVIRONMENTAL AU 2023; 3:252-276. [PMID: 37743954 PMCID: PMC10515711 DOI: 10.1021/acsenvironau.3c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 09/26/2023]
Abstract
With 28-34 times the greenhouse effect of CO2 over a 100-year period, methane is regarded as the second largest contributor to global warming. Reducing methane emissions is a necessary measure to limit global warming to below 1.5 °C. Photocatalytic conversion of methane is a promising approach to alleviate the atmospheric methane concentrations due to its low energy consumption and environmentally friendly characteristics. Meanwhile, this conversion process can produce valuable chemicals and liquid fuels such as CH3OH, CH3CH2OH, C2H6, and C2H4, cutting down the dependence of chemical production on crude oil. However, the development of photocatalysts with a high methane conversion efficiency and product selectivity remains challenging. In this review, we overview recent advances in semiconductor-based photocatalysts for methane conversion and present catalyst design strategies, including morphology control, heteroatom doping, facet engineering, and cocatalysts modification. To gain a comprehensive understanding of photocatalytic methane conversion, the conversion pathways and mechanisms in these systems are analyzed in detail. Moreover, the role of electron scavengers in methane conversion performance is briefly discussed. Subsequently, we summarize the anthropogenic methane emission scenarios on earth and discuss the application potential of photocatalytic methane conversion. Finally, challenges and future directions for photocatalytic methane conversion are presented.
Collapse
Affiliation(s)
- Zhuo Liu
- State
Key Laboratory of Pollution Control and Resource Reuse, Frontiers
Science Center for Critical Earth Material Cycling, School of the
Environment and State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Biyang Xu
- State
Key Laboratory of Pollution Control and Resource Reuse, Frontiers
Science Center for Critical Earth Material Cycling, School of the
Environment and State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Yu-Jing Jiang
- State
Key Laboratory of Pollution Control and Resource Reuse, Frontiers
Science Center for Critical Earth Material Cycling, School of the
Environment and State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Yang Zhou
- Key
Laboratory for Organic Electronics & Information Displays (KLOEID),
Institute of Advanced Materials (IAM), Nanjing
University of Posts & Telecommunications (NJUPT), Nanjing 210046, China
| | - Xiaolian Sun
- State
Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality
Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Wang
- State
Key Laboratory of Pollution Control and Resource Reuse, Frontiers
Science Center for Critical Earth Material Cycling, School of the
Environment and State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Wenlei Zhu
- State
Key Laboratory of Pollution Control and Resource Reuse, Frontiers
Science Center for Critical Earth Material Cycling, School of the
Environment and State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| |
Collapse
|
15
|
Han JT, Su H, Tan L, Li CJ. A light-driven selective protocol for on-demand methanol and formic acid syntheses with a recyclable GaN catalyst. STAR Protoc 2023; 4:102530. [PMID: 37656629 PMCID: PMC10495642 DOI: 10.1016/j.xpro.2023.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/04/2023] [Accepted: 07/28/2023] [Indexed: 09/03/2023] Open
Abstract
Herein, we present a protocol for the on-demand preparation of methanol and formic acid via selective photo-oxidation of methane with H2O and O2 catalyzed by GaN. The detailed photosyntheses of methanol or formic acid from CH4/H2O or CH4/H2O/O2 are described, respectively. In addition, we provide experimental details for the accurate quantifications of the final gas/liquid products and photoexcited oxygenated radicals. Finally, we deliver the procedure for scaling up the transformation. For complete details on the use and execution of this protocol, please refer to Han et al. (2023).1.
Collapse
Affiliation(s)
- Jing-Tan Han
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W., Montreal, QC H3A 0B8, Canada
| | - Hui Su
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W., Montreal, QC H3A 0B8, Canada
| | - Lida Tan
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W., Montreal, QC H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W., Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
16
|
Cao J, Lin Y, Zhou T, Wang W, Zhang Q, Pan B, Jiang W. Molecular oxygen-assisted in defect-rich ZnO for catalytic depolymerization of polyethylene terephthalate. iScience 2023; 26:107492. [PMID: 37609634 PMCID: PMC10440522 DOI: 10.1016/j.isci.2023.107492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 07/23/2023] [Indexed: 08/24/2023] Open
Abstract
Polyethylene terephthalate (PET) is the most produced polyester plastic; its waste has a disruptive impact on the environment and ecosystem. Here, we report a catalytic depolymerization of PET into bis(2-hydroxyethyl) terephthalate (BHET) using molecule oxygen (O2)-assisted in defect-rich ZnO. At air, the PET conversion rate, the BHET yield, and the space-time yield are 3.5, 10.6, and 10.6 times higher than those in nitrogen, respectively. Combining structural characterization with the results of DFT calculations, we conclude that the (100) facet of defect-rich ZnO nanosheets conducive to the formation of reactive oxygen species (∗O2-) and Zn defect, promotes the PET breakage of the ester bond and thus complete the depolymerization processed. This approach demonstrates a sustainable route for PET depolymerization by molecule-assisted defect engineering.
Collapse
Affiliation(s)
- Jingjing Cao
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Organic Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yuheng Lin
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Organic Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tianpeng Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Organic Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- Department of Chemistry and Centre for Pharmacy, University of Bergen, 5007 Bergen, Norway
| | - Quanxing Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Organic Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Organic Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Organic Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Chizhov A, Kutukov P, Gulin A, Astafiev A, Rumyantseva M. Highly Active Nanocrystalline ZnO and Its Photo-Oxidative Properties towards Acetone Vapor. MICROMACHINES 2023; 14:mi14050912. [PMID: 37241536 DOI: 10.3390/mi14050912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023]
Abstract
Zinc oxide is one of the well-known photocatalysts, the potential applications of which are of great importance in photoactivated gas sensing, water and air purification, photocatalytic synthesis, among others. However, the photocatalytic performance of ZnO strongly depends on its morphology, composition of impurities, defect structure, and other parameters. In this paper, we present a route for the synthesis of highly active nanocrystalline ZnO using commercial ZnO micropowder and ammonium bicarbonate as starting precursors in aqueous solutions under mild conditions. As an intermediate product, hydrozincite is formed with a unique morphology of nanoplates with a thickness of about 14-15 nm, the thermal decomposition of which leads to the formation of uniform ZnO nanocrystals with an average size of 10-16 nm. The synthesized highly active ZnO powder has a mesoporous structure with a BET surface area of 79.5 ± 4.0 m2/g, an average pore size of 20 ± 2 nm, and a cumulative pore volume of 0.507 ± 0.051 cm3/g. The defect-related PL of the synthesized ZnO is represented by a broad band with a maximum at 575 nm. The crystal structure, Raman spectra, morphology, atomic charge state, and optical and photoluminescence properties of the synthesized compounds are also discussed. The photo-oxidation of acetone vapor over ZnO is studied by in situ mass spectrometry at room temperature and UV irradiation (λmax = 365 nm). The main products of the acetone photo-oxidation reaction, water and carbon dioxide, are detected by mass spectrometry, and the kinetics of their release under irradiation are studied. The effect of morphology and microstructure on the photo-oxidative activity of ZnO samples is demonstrated.
Collapse
Affiliation(s)
- Artem Chizhov
- Chemistry Department, Moscow State University, Moscow 119991, Russia
| | - Pavel Kutukov
- Chemistry Department, Moscow State University, Moscow 119991, Russia
| | - Alexander Gulin
- N.N. Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences, Moscow 119991, Russia
| | - Artyom Astafiev
- N.N. Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences, Moscow 119991, Russia
| | | |
Collapse
|
18
|
Yang Z, Zhang Q, Song H, Chen X, Cui J, Sun Y, Liu L, Ye J. Partial oxidation of methane by photocatalysis. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
19
|
Xie C, Sun E, Wan G, Zheng J, Gupta R, Majumdar A. Transport Mediating Core-Shell Photocatalyst Architecture for Selective Alkane Oxidation. NANO LETTERS 2023; 23:2039-2045. [PMID: 36689625 DOI: 10.1021/acs.nanolett.2c04567] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The high activation barrier of the C-H bond in methane, combined with the high propensity of methanol and other liquid oxygenates toward overoxidation to CO2, have historically posed significant scientific and industrial challenges to the selective and direct conversion of methane to energy-dense fuels and chemical feedstocks. Here, we report a unique core-shell nanostructured photocatalyst, silica encapsulated TiO2 decorated with AuPd nanoparticles (TiO2@SiO2-AuPd), that prevents methanol overoxidation on its surface and possesses high selectivity and yield of oxygenates even at high UV intensity. This room-temperature approach achieves high selectivity for oxygenates (94.5%) with a total oxygenate yield of 15.4 mmol/gcat·h at 9.65 bar total pressure of CH4 and O2. The working principles of this core-shell photocatalyst were also systematically investigated. This design concept was further demonstrated to be generalizable for the selective oxidation of other alkanes.
Collapse
Affiliation(s)
- Chenlu Xie
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Eddie Sun
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Gang Wan
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jian Zheng
- Susteon Inc., 5001 Weston Parkway, No. 105, Cary, North Carolina 27513, United States
| | - Raghubir Gupta
- Susteon Inc., 5001 Weston Parkway, No. 105, Cary, North Carolina 27513, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
- Precourt Institute for Energy, Stanford University, Stanford, California 94305, United States
- Department of Photon Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
20
|
Jiang Y, Li S, Wang S, Zhang Y, Long C, Xie J, Fan X, Zhao W, Xu P, Fan Y, Cui C, Tang Z. Enabling Specific Photocatalytic Methane Oxidation by Controlling Free Radical Type. J Am Chem Soc 2023; 145:2698-2707. [PMID: 36649534 DOI: 10.1021/jacs.2c13313] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Selective CH4 oxidation to CH3OH or HCHO with O2 in H2O under mild conditions provides a desired sustainable pathway for synthesis of commodity chemicals. However, manipulating reaction selectivity while maintaining high productivity remains a huge challenge due to the difficulty in the kinetic control of the formation of a desired oxygenate against its overoxidation. Here, we propose a highly efficient strategy, based on the precise control of the type of as-formed radicals by rational design on photocatalysts, to achieve both high selectivity and high productivity of CH3OH and HCHO in CH4 photooxidation for the first time. Through tuning the band structure and the size of active sites (i.e., single atoms or nanoparticles) in our Au/In2O3 catalyst, we show alternative formation of two important radicals, •OOH and •OH, which leads to distinctly different reaction paths to the formation of CH3OH and HCHO, respectively. This approach gives rise to a remarkable HCHO selectivity and yield of 97.62% and 6.09 mmol g-1 on In2O3-supported Au single atoms (Au1/In2O3) and an exceptional CH3OH selectivity and yield of 89.42% and 5.95 mmol g-1 on In2O3-supported Au nanoparticles (AuNPs/In2O3), respectively, upon photocatalytic CH4 oxidation for 3 h at room temperature. This work opens a new avenue toward efficient and selective CH4 oxidation by delicate design of composite photocatalysts.
Collapse
Affiliation(s)
- Yuheng Jiang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China.,Center for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, P. R. China.,University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Siyang Li
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China.,University of Chinese Academy of Sciences, Beijing100049, P. R. China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Shikun Wang
- University of Chinese Academy of Sciences, Beijing100049, P. R. China.,State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Yin Zhang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China
| | - Chang Long
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China.,Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, P. R. China
| | - Jun Xie
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China.,University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Xiaoyu Fan
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China
| | - Wenshi Zhao
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China
| | - Peng Xu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing100190, P. R. China
| | - Yingying Fan
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Analytical and Testing Center, Guangzhou University, Guangzhou510006, P. R. China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, P. R. China
| | - Zhiyong Tang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China.,University of Chinese Academy of Sciences, Beijing100049, P. R. China
| |
Collapse
|
21
|
Zhang J, Shen J, Li D, Long J, Gao X, Feng W, Zhang S, Zhang Z, Wang X, Yang W. Efficiently Light-Driven Nonoxidative Coupling of Methane on Ag/NaTaO 3: A Case for Molecular-Level Understanding of the Coupling Mechanism. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jiangjie Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Jinni Shen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Dongmiao Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Xiaochen Gao
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai201208, P. R. China
| | - Wenhui Feng
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha410022, P. R. China
| | - Shiying Zhang
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha410022, P. R. China
| | - Zizhong Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, P. R. China
| | - Xuxu Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Weimin Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai201208, P. R. China
| |
Collapse
|
22
|
In aqua dual selective photocatalytic conversion of methane to formic acid and methanol with oxygen and water as oxidants without overoxidation. iScience 2023; 26:105942. [PMID: 36711239 PMCID: PMC9876743 DOI: 10.1016/j.isci.2023.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/07/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
The direct and selective transformation of naturally abundant methane (CH4) into high-value-added oxygenates, e.g., methanol, ethanol, and formic acid, is one of the "Holy Grails" in chemistry and chemical productions. However, complex mixtures of products, often due to over-oxidations, make such transformations highly challenging. Herein, gallium nitride (GaN), a methane-active semiconductor, catalyzes the photooxidation of methane and empowers the fine-controlling of chemoselectivity toward methanol and formic acids, simply by regulating the O2 content in water. In contrast to previous methods, no overoxidation products (CO2 and CO) were observed in this process. Mechanistic investigations and the corresponding quantitative experiments indicated that the controllable generation of moderately reactive oxygen radicals (•OOH and •OH) in combination with the direct methane activation triggered by GaN is responsible for the highly selective reactivity and tunability through a photo-generated radical process.
Collapse
|
23
|
Li L, Liu W, Chen R, Shang S, Zhang X, Wang H, Zhang H, Ye B, Xie Y. Atom-Economical Synthesis of Dimethyl Carbonate from CO 2 : Engineering Reactive Frustrated Lewis Pairs on Ceria with Vacancy Clusters. Angew Chem Int Ed Engl 2022; 61:e202214490. [PMID: 36307955 DOI: 10.1002/anie.202214490] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 11/24/2022]
Abstract
The chemical conversion of CO2 to long-chain chemicals is considered as a highly attractive method to produce value-added organics, while the underlying reaction mechanism remains unclear. By constructing surface vacancy-cluster-mediated solid frustrated Lewis pairs (FLPs), the 100 % atom-economical, efficient chemical conversion of CO2 to dimethyl carbonate (DMC) was realized. By taking CeO2 as a model system, we illustrate that FLP sites can efficiently accelerate the coupling and conversion of key intermediates. As demonstrated, CeO2 with rich FLP sites shows improved reaction activity and achieves a high yield of DMC up to 15.3 mmol g-1 . In addition, by means of synchrotron radiation in situ diffuse reflectance infrared Fourier-transform spectroscopy, combined with density functional theory calculations, the reaction mechanism on the FLP site was investigated systematically and in-depth, providing pioneering insights into the underlying pathway for CO2 chemical conversion to long-chain chemicals.
Collapse
Affiliation(s)
- Lei Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wenxiu Liu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Runhua Chen
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shu Shang
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China
| | - Xiaodong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China
| | - Hui Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China
| |
Collapse
|
24
|
Sun X, Chen X, Fu C, Yu Q, Zheng XS, Fang F, Liu Y, Zhu J, Zhang W, Huang W. Molecular oxygen enhances H2O2 utilization for the photocatalytic conversion of methane to liquid-phase oxygenates. Nat Commun 2022; 13:6677. [PMID: 36335138 PMCID: PMC9637122 DOI: 10.1038/s41467-022-34563-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
H2O2 is widely used as an oxidant for photocatalytic methane conversion to value-added chemicals over oxide-based photocatalysts under mild conditions, but suffers from low utilization efficiencies. Herein, we report that O2 is an efficient molecular additive to enhance the utilization efficiency of H2O2 by suppressing H2O2 adsorption on oxides and consequent photogenerated holes-mediated H2O2 dissociation into O2. In photocatalytic methane conversion over an anatase TiO2 nanocrystals predominantly enclosed by the {001} facets (denoted as TiO2{001})-C3N4 composite photocatalyst at room temperature and ambient pressure, O2 additive significantly enhances the utilization efficiency of H2O2 up to 93.3%, giving formic acid and liquid-phase oxygenates selectivities respectively of 69.8% and 97% and a formic acid yield of 486 μmolHCOOH·gcatalyst−1·h−1. Efficient charge separation within TiO2{001}-C3N4 heterojunctions, photogenerated holes-mediated activation of CH4 into ·CH3 radicals on TiO2{001} and photogenerated electrons-mediated activation of H2O2 into ·OOH radicals on C3N4, and preferential dissociative adsorption of methanol on TiO2{001} are responsible for the active and selective photocatalytic conversion of methane to formic acid over TiO2{001}-C3N4 composite photocatalyst. The oxidation of methane to formic acid or related oxygenates relies on efficient reaction with H2O2. Here, the authors report a TiO2-based catalyst to selectively form formic acid by using molecular O2 additives to avoid unwanted side reactions.
Collapse
|
25
|
Intermediate stabilization for tuning photocatalytic selective oxidation of CH4 to CH3OH over Co3O4/ZnO. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Jiang Y, Zhao W, Li S, Wang S, Fan Y, Wang F, Qiu X, Zhu Y, Zhang Y, Long C, Tang Z. Elevating Photooxidation of Methane to Formaldehyde via TiO 2 Crystal Phase Engineering. J Am Chem Soc 2022; 144:15977-15987. [PMID: 35969152 DOI: 10.1021/jacs.2c04884] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photocatalytic conversion of methane to value-added products under mild conditions, which represents a long sought-after goal for industrial sustainable production, remains extremely challenging to afford high production and selectivity using cheap catalysts. Herein, we present the crystal phase engineering of commercially available anatase TiO2 via simple thermal annealing to optimize the structure-property correlation. A biphase catalyst with anatase (90%) and rutile (10%) TiO2 with the optimal phase interface concentration exhibits exceptional performance in the oxidation of methane to formaldehyde under the reaction conditions of water solvent, oxygen atmosphere, and full-spectrum light irradiation. An unprecedented production of 24.27 mmol gcat-1 with an excellent selectivity of 97.4% toward formaldehyde is acquired at room temperature after a 3 h reaction. Both experimental results and theoretical calculations disclose that the crystal phase engineering of TiO2 lengthens the lifetime of photogenerated carriers and favors the formation of intermediate methanol species, thus maximizing the efficiency and selectivity in the aerobic oxidation of methane to formaldehyde. More importantly, the feasibility of the scale-up production of formaldehyde is demonstrated by inventing a "pause-flow" reactor. This work opens the avenue toward industrial methane transformation in a sustainable and economical way.
Collapse
Affiliation(s)
- Yuheng Jiang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,Center for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenshi Zhao
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Siyang Li
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shikun Wang
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yingying Fan
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Analytical and Testing Center, Guangzhou University, Guangzhou 510006, P. R. China
| | - Fei Wang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xueying Qiu
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Yanfei Zhu
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Yin Zhang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Chang Long
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Zhiyong Tang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
27
|
Zheng K, Wu Y, Zhu J, Wu M, Jiao X, Li L, Wang S, Fan M, Hu J, Yan W, Zhu J, Sun Y, Xie Y. Room-Temperature Photooxidation of CH 4 to CH 3OH with Nearly 100% Selectivity over Hetero-ZnO/Fe 2O 3 Porous Nanosheets. J Am Chem Soc 2022; 144:12357-12366. [PMID: 35763790 DOI: 10.1021/jacs.2c03866] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The huge challenge for CH4 photooxidation into CH3OH lies in the activation of the inert C-H bond and the inhibition of CH3OH overoxidation. Herein, we design two-dimensional in-plane Z-scheme heterostructures composed of two different metal oxides, with efforts to polarize the symmetrical CH4 molecules and strengthen the O-H bond in CH3OH. As a prototype, we first fabricate ZnO/Fe2O3 porous nanosheets, where high-resolution transmission electron microscopy and in situ X-ray photoelectron spectroscopy affirm their in-plane Z-scheme heterostructure. In situ Fourier transform infrared spectra and in situ electron paramagnetic resonance spectra demonstrate their higher amount of ·CH3 radicals relative to the pristine ZnO porous nanosheets, in which density functional theory calculations validate that the high local charge accumulation on Fe sites lowers the CH4 adsorption energy from 0.14 to 0.06 eV. Moreover, the charge-accumulated Fe sites strengthen the polarity of the O-H bond in CH3OH through transferring electrons to the O atoms, confirmed by the increased barrier from 0.30 to 2.63 eV for *CH3O formation, which inhibits the homolytic O-H bond cleavage and thus suppresses CH3OH overoxidation. Accordingly, the CH3OH selectivity over ZnO/Fe2O3 porous nanosheets reaches up to nearly 100% with an activity of 178.3 μmol-1 gcat-1, outperforming previously reported photocatalysts without adding any oxidants under room temperature and ambient pressure.
Collapse
Affiliation(s)
- Kai Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Mingyu Wu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xingchen Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Li Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shumin Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Minghui Fan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jun Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.,National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Wensheng Yan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.,National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Junfa Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yongfu Sun
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| |
Collapse
|
28
|
Nisbet-Jones PBR, Fernandez JM, Fisher RE, France JL, Lowry D, Waltham DA, Woolley Maisch CA, Nisbet EG. Is the destruction or removal of atmospheric methane a worthwhile option? PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210108. [PMID: 34865528 PMCID: PMC8646139 DOI: 10.1098/rsta.2021.0108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/31/2021] [Indexed: 05/05/2023]
Abstract
Removing methane from the air is possible, but do the costs outweigh the benefits? This note explores the question of whether removing methane from the atmosphere is justifiable. Destruction of methane by oxidation to CO2 eliminates 97% of the warming impact on a 100-yr time scale. Methane can be oxidized by a variety of methods including thermal or ultraviolet photocatalysis and various processes of physical, chemical or biological oxidizers. Each removal method has energy costs (with the risk of causing embedded CO2 emission that cancel the global warming gain), but in specific circumstances, including settings where air with high methane is habitually present, removal may be competitive with direct efforts to cut fugitive methane leaks. In all cases however, great care must be taken to ensure that the destruction has a net positive impact on the total global warming, and that the resources required would not be better used for stopping the methane from being emitted. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.
Collapse
Affiliation(s)
| | - Julianne M. Fernandez
- Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - Rebecca E. Fisher
- Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - James L. France
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - David Lowry
- Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - David A. Waltham
- Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
| | | | - Euan G. Nisbet
- Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
| |
Collapse
|
29
|
Dai Y, Ju T, Tang H, Wang M, Ma Y, Wang M, Zheng G, Sun X. Synergic Photocatalytic CH 4 Conversion to C1 liquid products using Fe oxides species-modified g-C 3N 4. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00779g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CH4 direct conversion into high valued liquid oxygenated products at mild experimental conditions is of great significance to solve both environment and energy problems. Although great effort has been made,...
Collapse
|
30
|
Shi T, Sridhar D, Zeng L, Chen A. Recent Advances in Catalyst Design for the Electrochemical and Photoelectrochemical Conversion of Methane to Value-Added Products. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
31
|
Mal DD, Pradhan D. Recent advances in non-noble metal-based oxide materials as heterogeneous catalysts for C–H activation. Dalton Trans 2022; 51:17527-17542. [DOI: 10.1039/d2dt02613a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This perspective article summarizes the recent developments of non-noble metal-based oxides, as a new class of catalysts for C−H bond activation, focusing on their essential surface properties.
Collapse
Affiliation(s)
- Diptangshu Datta Mal
- Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, W. B., India
| | - Debabrata Pradhan
- Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, W. B., India
| |
Collapse
|
32
|
Hao Y, Mao F, Zhao Y, Sun N, Wei W. Selective oxidation of CH 4 to valuable HCHO over a defective rTiO 2/GO metal-free photocatalyst. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A specially designed metal-free rTiO2/GO catalyst retarded the recombination of photo-generated electrons and holes and improved photocatalytic CH4 conversion performance.
Collapse
Affiliation(s)
- Yingdong Hao
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Mao
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yonghui Zhao
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Nannan Sun
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Wei Wei
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
33
|
Zheng K, Wu Y, Hu Z, Jiao X, Li L, Zhao Y, Wang S, Zhu S, Liu W, Yan W, Sun Y, Xie Y. Selective CH 4 Partial Photooxidation by Positively Charged Metal Clusters Anchored on Carbon Aerogel under Mild Conditions. NANO LETTERS 2021; 21:10368-10376. [PMID: 34898228 DOI: 10.1021/acs.nanolett.1c03682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selective partial photooxidation of CH4 into value-added chemicals under mild conditions still remains a huge bottleneck. Herein, we design positively charged metal clusters anchored on a three-dimensional porous carbon aerogel. With 0.75FeCA800-4 as an example, X-ray photoelectron spectra and Raman spectra disclose that the iron sites are positively charged. In situ electron paramagnetic resonance spectra show that the Feδ+ sites could donate electrons to activate CH4 into CH4- by virtue of the excited-state carbon atoms; meanwhile, they could convert H2O2 into •OH radicals under irradiation. In addition, in situ diffuse Fourier-transform infrared spectra suggest the CH3OOH obtained is derived from CH4 oxidation by the hydroxylation of *CH3 and *CH3O intermediates. Consequently, 0.75FeCA800-4 displays a CH3OOH selectivity of near 100% and a CH3OOH evolution rate of 13.2 mmol gFe-1 h-1, higher than those of most previously reported supported catalysts under similar conditions.
Collapse
Affiliation(s)
- Kai Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yang Wu
- Hefei National Laboratory for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zexun Hu
- Hefei National Laboratory for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Xingchen Jiao
- Hefei National Laboratory for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Li Li
- Hefei National Laboratory for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yuan Zhao
- Hefei National Laboratory for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Shumin Wang
- Hefei National Laboratory for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Shan Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wenxiu Liu
- Hefei National Laboratory for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wensheng Yan
- Hefei National Laboratory for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yongfu Sun
- Hefei National Laboratory for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, People's Republic of China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
34
|
Luo L, Gong Z, Xu Y, Ma J, Liu H, Xing J, Tang J. Binary Au-Cu Reaction Sites Decorated ZnO for Selective Methane Oxidation to C1 Oxygenates with Nearly 100% Selectivity at Room Temperature. J Am Chem Soc 2021; 144:740-750. [PMID: 34928583 DOI: 10.1021/jacs.1c09141] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Direct and efficient oxidation of methane to methanol and the related liquid oxygenates provides a promising pathway for sustainable chemical industry, while still remaining an ongoing challenge owing to the dilemma between methane activation and overoxidation. Here, ZnO with highly dispersed dual Au and Cu species as cocatalysts enables efficient and selective photocatalytic conversion of methane to methanol and one-carbon (C1) oxygenates using O2 as the oxidant operated at ambient temperature. The optimized AuCu-ZnO photocatalyst achieves up to 11225 μmol·g-1·h-1 of primary products (CH3OH and CH3OOH) and HCHO with a nearly 100% selectivity, resulting in a 14.1% apparent quantum yield at 365 nm, much higher than the previous best photocatalysts reported for methane conversion to oxygenates. In situ EPR and XPS disclose that Cu species serve as photoinduced electron mediators to promote O2 activation to •OOH, and simultaneously that Au is an efficient hole acceptor to enhance H2O oxidation to •OH, thus synergistically promoting charge separation and methane transformation. This work highlights the significances of co-modification with suitable dual cocatalysts on simultaneous regulation of activity and selectivity.
Collapse
Affiliation(s)
- Lei Luo
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Zhuyu Gong
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Youxun Xu
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Jiani Ma
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Huifen Liu
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jialiang Xing
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| |
Collapse
|