1
|
Fischer NG, de Souza Araújo IJ, Daghrery A, Yu B, Dal-Fabbro R, Dos Reis-Prado AH, Silikas N, Rosa V, Aparicio C, Watts DC, Bottino MC. Guidance on biomaterials for periodontal tissue regeneration: Fabrication methods, materials and biological considerations. Dent Mater 2025:S0109-5641(24)00375-0. [PMID: 39794220 DOI: 10.1016/j.dental.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Regeneration of the multiple tissues and interfaces in the periodontal complex necessitates multidisciplinary evaluation to establish structure/function relationships. This article, an initiative of the Academy of Dental Materials, provides guidance for performing chemical, structural, and mechanical characterization of materials for periodontal tissue regeneration, and outlines important recommendations on methods of testing bioactivity, biocompatibility, and antimicrobial properties of biomaterials/scaffolds for periodontal tissue engineering. First, we briefly summarize periodontal tissue engineering fabrication methods. We then highlight critical variables to consider when evaluating a material for periodontal tissue regeneration, and the fundamental tests used to investigate them. The recommended tests and designs incorporate relevant international standards and provide a framework for characterizing newly developed materials focusing on the applicability of those tests for periodontal tissue regeneration. The most common methods of biofabrication (electrospinning, injectable hydrogels, fused deposition modelling, melt electrowriting, and bioprinting) and their specific applications in periodontal tissue engineering are reviewed. The critical techniques for morphological, chemical, and mechanical characterization of different classes of materials used in periodontal regeneration are then described. The major advantages and drawbacks of each assay, sample sizes, and guidelines on specimen preparation are also highlighted. From a biological standpoint, fundamental methods for testing bioactivity, the biocompatibility of materials, and the experimental models for testing the antimicrobial potential are included in this guidance. In conclusion, researchers performing studies on periodontal tissue regeneration will have this guidance as a tool to assess essential properties and characteristics of their materials/scaffold-based strategies.
Collapse
Affiliation(s)
- Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Isaac J de Souza Araújo
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Arwa Daghrery
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan 82943, KSA; Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA
| | - Baiqing Yu
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA
| | - Alexandre H Dos Reis-Prado
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA; Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Nikolaos Silikas
- Dental Biomaterials, Dentistry, The University of Manchester, Manchester, United Kingdom
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore
| | - Conrado Aparicio
- BOBI-Bioinspired Oral Biomaterials and Interfaces, UPC-Universitat Politènica de Catalunya, Barcelona 08010, Spain; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; SCOI - Study and Control of Oral Infections, Faculty of Odontology, UIC Barcelona-Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain; IBEC - Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - David C Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, United Kingdom
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Zhang X, Liu P, Zhang R, Zheng W, Qin D, Liu Y, Wang X, Sun T, Gao Y, Li LL. Action Programmed Nanoantibiotics with pH-Induced Collapse and Negative-Charged-Surface-Induced Deformation against Antibiotic-Resistant Bacterial Peritonitis. Adv Healthc Mater 2024; 13:e2401470. [PMID: 38924797 DOI: 10.1002/adhm.202401470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The incorporation of well-designed antibiotic nanocarriers, along with an antibiotic adjuvant effect, in combination with various antibiotics, offers an opportunity to combat drug-resistant strains. However, precise control over morphology and encapsulated payload release can significantly impact their antibacterial efficacy and synergistic effects when used alongside antibiotics. Here, this study focuses on developing lipopeptide-based nanoantibiotics, which demonstrate an antibiotic adjuvant effect by inducing pH-induced collapse and negative-charged-surface-induced deformation. This enhances the disruption of the bacterial outer membrane and facilitates drug penetration, effectively boosting the antimicrobial activity against drug-resistant strains. The modulation regulations of the lipopeptide nanocarriers with modular design are governed by the authors. The nanoantibiotics, made from lipopeptide and ciprofloxacin (Cip), have a drug loading efficiency of over 80%. The combination with Cip results in a significantly low fractional inhibitory concentration index of 0.375 and a remarkable reduction in the minimum inhibitory concentration of Cip against multidrug-resistant (MDR) Escherichia coli (clinical isolated strains) by up to 32-fold. The survival rate of MDR E. coli peritonitis treated with nanoantibiotics is significantly higher, reaching over 87%, compared to only 25% for Cip and no survival for the control group. Meanwhile, the nanoantibiotic shows no obvious toxicity to major organs.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
| | - Penghui Liu
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
| | - Ran Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
| | - Wenhong Zheng
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
| | - Di Qin
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
| | - Yinghang Liu
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
| | - Xin Wang
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
| | - Tongyi Sun
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
| | - Yuanyuan Gao
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
| | - Li-Li Li
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
| |
Collapse
|
3
|
Chen W, Xian S, Webber B, DeWolf EL, Schmidt CR, Kilmer R, Liu D, Power EM, Webber MJ. Engineering Supramolecular Nanofiber Depots from a Glucagon-Like Peptide-1 Therapeutic. ACS NANO 2024; 18:31274-31285. [PMID: 39471057 DOI: 10.1021/acsnano.4c10248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Diabetes and obesity have emerged as major global health concerns. Glucagon-like peptide-1 (GLP-1), a natural incretin hormone, stimulates insulin production and suppresses glucagon secretion to stabilize and reduce blood glucose levels and control appetite. The therapeutic use of GLP-1 receptor agonists (e.g., semaglutide) has transformed the standard of care in recent years for treating type 2 diabetes and reversing obesity. The native GLP-1 sequence has a very short half-life, and therapeutic advances have come from molecular engineering to alter the pharmacokinetic profile of synthetic GLP-1 receptor agonists to enable once-weekly administration, reduce the frequency of injection, and improve adherence. Efforts to further extend this profile would offer additional convenience or enable entirely different treatment modalities. Here, an injectable GLP-1 receptor agonist depot is engineered through integration of a prosthetic self-assembling peptide motif to enable supramolecular nanofiber formation and hydrogelation. This supramolecular GLP-1 receptor agonistic (PA-GLP1) offers sustained release in vitro for multiple weeks, supporting long-lasting therapy. Moreover, in a rat model of type 2 diabetes, a single injection of the supramolecular PA-GLP1 formulation achieved sustained serum concentrations for at least 40 days, with an overall reduction in blood glucose levels and reduced weight gain, comparing favorably to daily injections of semaglutide. The general and modular approach is also extensible to other next-generation peptide therapies. Accordingly, the formation of supramolecular nanofiber depots offers a more convenient and long-lasting therapeutic option to manage diabetes and treat metabolic disorders.
Collapse
Affiliation(s)
- Weike Chen
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sijie Xian
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bernice Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Emily L DeWolf
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Connor R Schmidt
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Rory Kilmer
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Dongping Liu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Elizabeth M Power
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
4
|
Li W, Li L, Hu J, Zhou D, Su H. Design and Applications of Supramolecular Peptide Hydrogel as Artificial Extracellular Matrix. Biomacromolecules 2024; 25:6967-6986. [PMID: 39418328 DOI: 10.1021/acs.biomac.4c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Supramolecular peptide hydrogels (SPHs) consist of peptides containing hydrogelators and functional epitopes, which can first self-assemble into nanofibers and then physically entangle together to form dynamic three-dimensional networks. Their porous structures, excellent bioactivity, and high dynamicity, similar to an extracellular matrix (ECM), have great potential in artificial ECM. The properties of the hydrogel are largely dependent on peptides. The noncovalent interactions among hydrogelators drive the formation of assemblies and further transition into hydrogels, while bioactive epitopes modulate cell-cell and cell-ECM interactions. Therefore, SPHs can support cell growth, making them ideal biomaterials for ECM mimics. This Review outlines the classical molecular design of SPHs from hydrogelators to functional epitopes and summarizes the recent advancements of SPHs as artificial ECMs in nervous system repair, wound healing, bone and cartilage regeneration, and organoid culture. This emerging SPH platform could provide an alternative strategy for developing more effective biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Wenting Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiale Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Yang Y, Sai H, Egner SA, Qiu R, Palmer LC, Stupp SI. Peptide programming of supramolecular vinylidene fluoride ferroelectric phases. Nature 2024; 634:833-841. [PMID: 39385033 DOI: 10.1038/s41586-024-08041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
Ferroelectric structures have spontaneous macroscopic polarization that can be inverted using external electric fields and have potential applications including information storage, energy transduction, ultralow-power nanoelectronics1,2 and biomedical devices3. These functions would benefit from nanoscale control of ferroelectric structure, the ability to switch polarization with lower applied fields (low coercive field) and biocompatibility. Soft ferroelectrics based on poly(vinylidene fluoride) (PVDF)4-6 have a thermodynamically unstable ferroelectric phase in the homopolymer, complex semi-crystalline structures, and high coercive fields. Here we report on ferroelectric materials formed by water-soluble molecules containing only six VDF repeating units covalently conjugated to a tetrapeptide, with the propensity to assemble into the β-sheet structures that are ubiquitous in proteins. This led to the discovery of ribbon-shaped ferroelectric supramolecular assemblies that are thermodynamically stable with their long axes parallel to both the preferred hydrogen-bonding direction of β-sheets and the bistable polar axes of VDF hexamers. Relative to a commonly used ferroelectric copolymer, the biomolecular assemblies exhibit a coercive field that is two orders of magnitude lower, as the result of supramolecular dynamics, and a similar level of remnant polarization, despite having a peptide content of 49 wt%. Furthermore, the Curie temperature of the assemblies is about 40 °C higher than that of a copolymer containing a similar amount of VDF. This supramolecular system was created using a biologically inspired strategy that is attractive in terms of sustainability and that could lead to new functions for soft ferroelectrics.
Collapse
Affiliation(s)
- Yang Yang
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
| | - Hiroaki Sai
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Simon A Egner
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Ruomeng Qiu
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Medicine, Northwestern University, Chicago, IL, USA.
- Center for Bio-inspired Energy Science, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
6
|
Lewis JA, Nemke B, Lu Y, Sather NA, McClendon MT, Mullen M, Yuan SC, Ravuri SK, Bleedorn JA, Philippon MJ, Huard J, Markel MD, Stupp SI. A bioactive supramolecular and covalent polymer scaffold for cartilage repair in a sheep model. Proc Natl Acad Sci U S A 2024; 121:e2405454121. [PMID: 39106310 PMCID: PMC11331086 DOI: 10.1073/pnas.2405454121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/01/2024] [Indexed: 08/09/2024] Open
Abstract
Regeneration of hyaline cartilage in human-sized joints remains a clinical challenge, and it is a critical unmet need that would contribute to longer healthspans. Injectable scaffolds for cartilage repair that integrate both bioactivity and sufficiently robust physical properties to withstand joint stresses offer a promising strategy. We report here on a hybrid biomaterial that combines a bioactive peptide amphiphile supramolecular polymer that specifically binds the chondrogenic cytokine transforming growth factor β-1 (TGFβ-1) and crosslinked hyaluronic acid microgels that drive formation of filament bundles, a hierarchical motif common in natural musculoskeletal tissues. The scaffold is an injectable slurry that generates a porous rubbery material when exposed to calcium ions once placed in cartilage defects. The hybrid material was found to support in vitro chondrogenic differentiation of encapsulated stem cells in response to sustained delivery of TGFβ-1. Using a sheep model, we implanted the scaffold in shallow osteochondral defects and found it can remain localized in mechanically active joints. Evaluation of resected joints showed significantly improved repair of hyaline cartilage in osteochondral defects injected with the scaffold relative to defects injected with the growth factor alone, including implantation in the load-bearing femoral condyle. These results demonstrate the potential of the hybrid biomimetic scaffold as a niche to favor cartilage repair in mechanically active joints using a clinically relevant large-animal model.
Collapse
Affiliation(s)
- Jacob A. Lewis
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL60611
| | - Brett Nemke
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI53706
| | - Yan Lu
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI53706
| | - Nicholas A. Sather
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL60611
| | - Mark T. McClendon
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL60611
| | - Michael Mullen
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO81657
| | - Shelby C. Yuan
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL60611
| | - Sudheer K. Ravuri
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO81657
| | - Jason A. Bleedorn
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI53706
| | - Marc J. Philippon
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO81657
| | - Johnny Huard
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO81657
| | - Mark D. Markel
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI53706
| | - Samuel I. Stupp
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL60611
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL60208
- Department of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
7
|
Sangji MH, Lee SR, Sai H, Weigand S, Palmer LC, Stupp SI. Self-Sorting vs Coassembly in Peptide Amphiphile Supramolecular Nanostructures. ACS NANO 2024; 18:15878-15887. [PMID: 38848478 DOI: 10.1021/acsnano.4c03083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The functionality of supramolecular nanostructures can be expanded if systems containing multiple components are designed to either self-sort or mix into coassemblies. This is critical to gain the ability to craft self-assembling materials that integrate functions, and our understanding of this process is in its early stages. In this work, we have utilized three different peptide amphiphiles with the capacity to form β-sheets within supramolecular nanostructures and found binary systems that self-sort and others that form coassemblies. This was measured using atomic force microscopy to reveal the nanoscale morphology of assemblies and confocal laser scanning microscopy to determine the distribution of fluorescently labeled monomers. We discovered that PA assemblies with opposite supramolecular chirality self-sorted into chemically distinct nanostructures. In contrast, the PA molecules that formed a mixture of right-handed, left-handed, and flat nanostructures on their own were able to coassemble with the other PA molecules. We attribute this phenomenon to the energy barrier associated with changing the handedness of a β-sheet twist in a coassembly of two different PA molecules. This observation could be useful for designing biomolecular nanostructures with dual bioactivity or interpenetrating networks of PA supramolecular assemblies.
Collapse
Affiliation(s)
- M Hussain Sangji
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sieun Ruth Lee
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Hiroaki Sai
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E Superior St., Chicago, Illinois 60611, United States
| | - Steven Weigand
- DuPont-Northwestern-Dow Collaborative Access Team Synchrotron Research Center, Northwestern University, Advanced Photon Source/Argonne National Laboratory 432-A004, Argonne, Illinois 60439, United States
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E Superior St., Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E Superior St., Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, 676 N St. Clair Street, Chicago, Illinois 60611, United States
| |
Collapse
|
8
|
Bellavita R, Piccolo M, Leone L, Ferraro MG, Dardano P, De Stefano L, Nastri F, Irace C, Falanga A, Galdiero S. Tuning Peptide-Based Nanofibers for Achieving Selective Doxorubicin Delivery in Triple-Negative Breast Cancer. Int J Nanomedicine 2024; 19:6057-6084. [PMID: 38911501 PMCID: PMC11193445 DOI: 10.2147/ijn.s453958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/10/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction The design of delivery tools that efficiently transport drugs into cells remains a major challenge in drug development for most pathological conditions. Triple-negative breast cancer (TNBC) is a very aggressive subtype of breast cancer with poor prognosis and limited effective therapeutic options. Purpose In TNBC treatment, chemotherapy remains the milestone, and doxorubicin (Dox) represents the first-line systemic treatment; however, its non-selective distribution causes a cascade of side effects. To address these problems, we developed a delivery platform based on the self-assembly of amphiphilic peptides carrying several moieties on their surfaces, aimed at targeting, enhancing penetration, and therapy. Methods Through a single-step self-assembly process, we used amphiphilic peptides to obtain nanofibers decorated on their surfaces with the selected moieties. The surface of the nanofiber was decorated with a cell-penetrating peptide (gH625), an EGFR-targeting peptide (P22), and Dox bound to the cleavage sequence selectively recognized and cleaved by MMP-9 to obtain on-demand drug release. Detailed physicochemical and cellular analyses were performed. Results The obtained nanofiber (NF-Dox) had a length of 250 nm and a diameter of 10 nm, and it was stable under dilution, ionic strength, and different pH environments. The biological results showed that the presence of gH625 favored the complete internalization of NF-Dox after 1h in MDA-MB 231 cells, mainly through a translocation mechanism. Interestingly, we observed the absence of toxicity of the carrier (NF) on both healthy cells such as HaCaT and TNBC cancer lines, while a similar antiproliferative effect was observed on TNBC cells after the treatment with the free-Dox at 50 µM and NF-Dox carrying 7.5 µM of Dox. Discussion We envision that this platform is extremely versatile and can be used to efficiently carry and deliver diverse moieties. The knowledge acquired from this study will provide important guidelines for applications in basic research and biomedicine.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Napoli, Italy
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Napoli, Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Napoli “Federico II”, Naples, Italy
| | - Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Napoli, Italy
- School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli “Federico II”, Naples, Italy
| | - Carlo Irace
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Napoli, Italy
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples “Federico II”, Portici, Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Napoli, Italy
| |
Collapse
|
9
|
Juković M, Ratkaj I, Kalafatovic D, Bradshaw NJ. Amyloids, amorphous aggregates and assemblies of peptides - Assessing aggregation. Biophys Chem 2024; 308:107202. [PMID: 38382283 DOI: 10.1016/j.bpc.2024.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Amyloid and amorphous aggregates represent the two major categories of aggregates associated with diseases, and although exhibiting distinct features, researchers often treat them as equivalent, which demonstrates the need for more thorough characterization. Here, we compare amyloid and amorphous aggregates based on their biochemical properties, kinetics, and morphological features. To further decipher this issue, we propose the use of peptide self-assemblies as minimalistic models for understanding the aggregation process. Peptide building blocks are significantly smaller than proteins that participate in aggregation, however, they make a plausible means to bridge the gap in discerning the aggregation process at the more complex, protein level. Additionally, we explore the potential use of peptide-inspired models to research the liquid-liquid phase separation as a feasible mechanism preceding amyloid formation. Connecting these concepts can help clarify our understanding of aggregation-related disorders and potentially provide novel drug targets to impede and reverse these serious illnesses.
Collapse
Affiliation(s)
- Maja Juković
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Ratkaj
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Daniela Kalafatovic
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia.
| | - Nicholas J Bradshaw
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia.
| |
Collapse
|
10
|
Kashyap S, Pal VK, Mohanty S, Roy S. Exploring a Solvent Dependent Strategy to Control Self-Assembling Behavior and Cellular Interaction in Laminin-Mimetic Short Peptide based Supramolecular Hydrogels. Chembiochem 2024; 25:e202300835. [PMID: 38390634 DOI: 10.1002/cbic.202300835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Self-assembled hydrogels, fabricated through diverse non-covalent interactions, have been extensively studied in regenerative medicines. Inspired from bioactive functional motifs of ECM protein, short peptide sequences have shown remarkable abilities to replicate the intrinsic features of the natural extracellular milieu. In this direction, we have fabricated two short hydrophobic bioactive sequences derived from the laminin protein i. e., IKVAV and YIGSR. Based on the substantial hydrophobicity of these peptides, we selected a co-solvent approach as a suitable gelation technique that included different concentrations of DMSO as an organic phase along with an aqueous solution containing 0.1 % TFA. These hydrophobic laminin-based bioactive peptides with limited solubility in aqueous physiological environment showed significantly enhanced solubility with higher DMSO content in water. The enhanced solubility resulted in extensive intermolecular interactions that led to the formation of hydrogels with a higher-order entangled network along with improved mechanical properties. Interestingly, by simply modulating DMSO content, highly tunable gels were accessed in the same gelator domain that displayed differential physicochemical properties. Further, the cellular studies substantiated the potential of these laminin-derived hydrogels in enhancing cell-matrix interactions, thereby reinforcing their applications in tissue engineering.
Collapse
Affiliation(s)
- Shambhavi Kashyap
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Vijay Kumar Pal
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Sweta Mohanty
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Sangita Roy
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| |
Collapse
|
11
|
Bellotto O, Scarel E, Pierri G, Rozhin P, Kralj S, Polentarutti M, Bandiera A, Rossi B, Vargiu AV, Tedesco C, Marchesan S. Supramolecular Hydrogels and Water Channels of Differing Diameters from Dipeptide Isomers. Biomacromolecules 2024; 25:2476-2485. [PMID: 38551400 DOI: 10.1021/acs.biomac.3c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Dipeptides stereoisomers and regioisomers composed of norleucine (Nle) and phenylalanine (Phe) self-assemble into hydrogels under physiological conditions that are suitable for cell culture. The supramolecular behavior, however, differs as the packing modes comprise amphipathic layers or water channels, whose diameter is defined by either four or six dipeptide molecules. A variety of spectroscopy, microscopy, and synchrotron-radiation-based techniques unveil fine details of intermolecular interactions that pinpoint the relationship between the chemical structure and ability to form supramolecular architectures that define soft biomaterials.
Collapse
Affiliation(s)
- Ottavia Bellotto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Erica Scarel
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Giovanni Pierri
- Department Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Slavko Kralj
- Department Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Department Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | | - Antonella Bandiera
- Department Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127 Trieste, Italy
| | - Barbara Rossi
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy
| | - Attilio V Vargiu
- Department Physics, University of Cagliari, Cittadella Universitaria S.P. 8 km. 0.7, 09042 Monserrato, CA Italy
| | - Consiglia Tedesco
- Department Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
12
|
Lee S, Carrow JK, Fraser LA, Yan J, Jeyamogan S, Sambandam Y, Clemons TD, Kolberg-Edelbrock AN, He J, Mathew J, Zhang ZJ, Leventhal JP, Gallon L, Palmer LC, Stupp SI. Single-cell coating with biomimetic extracellular nanofiber matrices. Acta Biomater 2024; 177:50-61. [PMID: 38331132 DOI: 10.1016/j.actbio.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Cell therapies offer great promise in the treatment of diseases and tissue regeneration, but their clinical use has many challenges including survival, optimal performance in their intended function, or localization at sites where they are needed for effective outcomes. We report here on a method to coat a biodegradable matrix of biomimetic nanofibers on single cells that could have specific functions ranging from cell signaling to targeting and helping cells survive when used for therapies. The fibers are composed of peptide amphiphile (PA) molecules that self-assemble into supramolecular nanoscale filaments. The PA nanofibers were able to create a mesh-like coating for a wide range of cell lineages with nearly 100 % efficiency, without interrupting the natural cellular phenotype or functions. The targeting abilities of this system were assessed in vitro using human primary regulatory T (hTreg) cells coated with PAs displaying a vascular cell adhesion protein 1 (VCAM-1) targeting motif. This approach provides a biocompatible method for single-cell coating that does not negatively alter cellular phenotype, binding capacity, or immunosuppressive functionality, with potential utility across a broad spectrum of cell therapies. STATEMENT OF SIGNIFICANCE: Cell therapies hold great promise in the treatment of diseases and tissue regeneration, but their clinical use has been limited by cell survival, targeting, and function. We report here a method to coat single cells with a biodegradable matrix of biomimetic nanofibers composed of peptide amphiphile (PA) molecules. The nanofibers were able to coat cells, such as human primary regulatory T cells, with nearly 100 % efficiency, without interrupting the natural cellular phenotype or functions. The approach provides a biocompatible method for single-cell coating that does not negatively alter cellular phenotype, binding capacity, or immunosuppressive functionality, with potential utility across a broad spectrum of cell therapies.
Collapse
Affiliation(s)
- Slgirim Lee
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States
| | - James K Carrow
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States
| | - Lewis A Fraser
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States
| | - Jianglong Yan
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States
| | - Shareni Jeyamogan
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Yuvaraj Sambandam
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Tristan D Clemons
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States; Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Alexandra N Kolberg-Edelbrock
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, United States
| | - Jie He
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - James Mathew
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States; Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Zheng Jenny Zhang
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States; Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Joseph P Leventhal
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States; Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Lorenzo Gallon
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States; Department of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States; Department of Chemistry, Northwestern University, Evanston, IL 60208, United States.
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States; Department of Chemistry, Northwestern University, Evanston, IL 60208, United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, United States; Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, United States; Department of Medicine, Northwestern University, Chicago, IL 60611, United States.
| |
Collapse
|
13
|
Wang B, Liu S, Li H, Dong W, Liu H, Zhang J, Tian C, Dong S. Facile Preparation of Carbohydrate-Containing Adjuvants Based on Self-Assembling Glycopeptide Conjugates. Angew Chem Int Ed Engl 2024; 63:e202309140. [PMID: 37950683 DOI: 10.1002/anie.202309140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/13/2023]
Abstract
Carbohydrates are intriguing biomolecules possessing diverse biological activities, including immune stimulating capability. However, their biomedical applications have been limited by their complex and heterogeneous structures. In this study, we have utilized a self-assembling glycopeptide conjugate (GPC) system to produce uniform nanoribbons appending homogeneous oligosaccharides with multivalency. This system successfully translates the nontrivial structural differences of oligomannoses into varied binding affinities to C-type lectin receptors (CLRs). We have shown that GPCs could promote the CLR-mediated endocytosis of ovalbumin (OVA) antigen, and two mannotriose-modified peptides F3m2 and F3m5 exhibit potent activity in inducing antigen-presenting cell maturation, as indicated by increased CD86 and MHCII expression. In vivo studies demonstrated that GPCs, combined with OVA antigen, significantly enhanced OVA-specific antibody production. Specifically, F3m2 and F3m5 exhibited the highest immunostimulatory effects, eliciting both Th1- and Th2-biased immune responses and promoting differentiation of CD4+ and CD8+ T cells. These findings highlight the potential of GPCs as vaccine adjuvants, and showcase their versatility in exploiting the biological functions of carbohydrates.
Collapse
Affiliation(s)
- Biao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Sijin Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Haoting Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Weidong Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Haiyun Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chao Tian
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
14
|
Cho Y, Choi YJ, Kaser SJ, Meacham R, Christoff-Tempesta T, Wu S, Zuo X, Ortony JH. Geometric Transformations Afforded by Rotational Freedom in Aramid Amphiphile Nanostructures. J Am Chem Soc 2023; 145:22954-22963. [PMID: 37819710 DOI: 10.1021/jacs.3c04598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Molecular self-assembly in water leads to nanostructure geometries that can be tuned owing to the highly dynamic nature of amphiphiles. There is growing interest in strongly interacting amphiphiles with suppressed dynamics, as they exhibit ultrastability in extreme environments. However, such amphiphiles tend to assume a limited range of geometries upon self-assembly due to the specific spatial packing induced by their strong intermolecular interactions. To overcome this limitation while maintaining structural robustness, we incorporate rotational freedom into the aramid amphiphile molecular design by introducing a diacetylene moiety between two aramid units, resulting in diacetylene aramid amphiphiles (D-AAs). This design strategy enables rotations along the carbon-carbon sp hybridized bonds of an otherwise fixed aramid domain. We show that varying concentrations and equilibration temperatures of D-AA in water lead to self-assembly into four different nanoribbon geometries: short, extended, helical, and twisted nanoribbons, all while maintaining robust structure with thermodynamic stability. We use advanced microscopy, X-ray scattering, spectroscopic techniques, and two-dimensional (2D) NMR to understand the relationship between conformational freedom within strongly interacting amphiphiles and their self-assembly pathways.
Collapse
Affiliation(s)
- Yukio Cho
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yu-Jin Choi
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel J Kaser
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rebecca Meacham
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ty Christoff-Tempesta
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Siyu Wu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaobing Zuo
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Julia H Ortony
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Wang Y, Wang K, Zhao X, Xu X, Sun T. Influence of pH on the self-assembly of diphenylalanine peptides: molecular insights from coarse-grained simulations. SOFT MATTER 2023; 19:5749-5757. [PMID: 37462931 DOI: 10.1039/d3sm00739a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Nanostructures fabricated from peptide self-assemblies are attracting increasing attention owing to their possible applications in biology and nanotechnology. A known example is an aromatic dipeptide (diphenylalanine, FF) which is extracted from Alzheimer's β-amyloid polypeptide as the core recognition motif for molecular self-assembly. Many studies have been carried out to organize FF peptides into various functional ordered nanostructures. For potential applications of self-assembled FF-based nanomaterials, it becomes important to consider some influencing factors (e.g., solvents, peptide concentrations, pH, temperature, etc.) on the self-assembly process. Among these factors, the effect of pH on the self-assembly process of FF peptides into assembled nanostructures through simulation studies is the main focus of the present work. In the current study, we have investigated the assembly pathway of 1000 FF peptides and qualitatively evaluated the morphological changes of FF-based nanostructures at different pH values by performing extensive coarse-grained molecular dynamics (CG-MD) simulations. Structural analyses suggest that FF peptides can spontaneously assemble into nanotubes with different shapes under acidic, neutral and basic conditions. Based on the analysis of FF nanostructure formation pathways in different pH solutions, the self-assembly of the nanotube involves the aggregation of molecules to form a bilayer, the curling of a bilayer to form a vesicle and the transformation of a vesicle into a tubular structure. It is noted that a flat hollow columnar structure is observed as a special intermediate state during the transformation process of a vesicle-like to a tube-like structure. Energetic analysis suggests that the aggregation of FF peptides is driven by the vdW interactions but the aggregation shape is mainly affected by the electrostatic interactions. Overall, this study provides further understanding of the self-assembly behavior of aromatic short peptide derivatives in different pH solutions.
Collapse
Affiliation(s)
- Yan Wang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310008, China.
| | - Kang Wang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310008, China.
| | - Xinyi Zhao
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310008, China.
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China
| | - Tingting Sun
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310008, China.
| |
Collapse
|
16
|
Caimi F, Zanchetta G. Twisted Structures in Natural and Bioinspired Molecules: Self-Assembly and Propagation of Chirality Across Multiple Length Scales. ACS OMEGA 2023; 8:17350-17361. [PMID: 37251126 PMCID: PMC10210192 DOI: 10.1021/acsomega.3c01822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Several biomolecules can form dynamic aggregates in water, whose nanometric structures often reflect the chirality of the monomers in unexpected ways. Their twisted organization can be further propagated to the mesoscale, in chiral liquid crystalline phases, and even to the macroscale, where chiral, layered architectures contribute to the chromatic and mechanical properties of various plant, insect, and animal tissues. At all scales, the resulting organization is determined by a subtle balance among chiral and nonchiral interactions, whose understanding and fine-tuning is fundamental also for applications. We present recent advances in the chiral self-assembly and mesoscale ordering of biological and bioinspired molecules in water, focusing on systems based on nucleic acids or related aromatic molecules, oligopeptides, and their hybrid stuctures. We highlight the common features and key mechanisms governing this wide range of phenomena, together with novel characterization approaches.
Collapse
|
17
|
Kolberg-Edelbrock J, Cotey TJ, Ma SY, Kapsalis LM, Bondoc DM, Lee SR, Sai H, Smith CS, Chen F, Kolberg-Edelbrock AN, Strong ME, Stupp SI. Biomimetic Extracellular Scaffolds by Microfluidic Superstructuring of Nanofibers. ACS Biomater Sci Eng 2023; 9:1251-1260. [PMID: 36808976 DOI: 10.1021/acsbiomaterials.2c01098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The extracellular matrix is a dynamic framework bearing chemical and morphological cues that support many cellular functions, and artificial analogs with well-defined chemistry are of great interest for biomedical applications. Herein, we describe hierarchical, extracellular-matrix-mimetic microgels, termed "superbundles" (SBs) composed of peptide amphiphile (PA) supramolecular nanofiber networks created using flow-focusing microfluidic devices. We explore the effects of altered flow rate ratio and PA concentration on the ability to create SBs and develop design rules for producing SBs with both cationic and anionic PA nanofibers and gelators. We demonstrate the morphological similarities of SBs to decellularized extracellular matrices and showcase their ability to encapsulate and retain proteinaceous cargos with a wide variety of isoelectric points. Finally, we demonstrate that the novel SB morphology does not affect the well-established biocompatibility of PA gels.
Collapse
Affiliation(s)
- Jack Kolberg-Edelbrock
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Morton 1-670, Chicago, Illinois 60611-3008, United States
| | - Thomas J Cotey
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
| | - Steven Y Ma
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
| | - Litsa M Kapsalis
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
| | - Delaney M Bondoc
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, 2145 Sheridan Road, Tech K148, Evanston, Illinois 60208-0834, United States
| | - Sieun Ruth Lee
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
| | - Hiroaki Sai
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Lurie 11, Chicago, Illinois 60611-3015, United States
| | - Cara S Smith
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, Illinois 60208-0893, United States
| | - Feng Chen
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Lurie 11, Chicago, Illinois 60611-3015, United States
| | - Alexandra N Kolberg-Edelbrock
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, Illinois 60208-0893, United States
| | - Madison E Strong
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, Illinois 60208-0893, United States
| | - Samuel I Stupp
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, 2145 Sheridan Road, Tech K148, Evanston, Illinois 60208-0834, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Lurie 11, Chicago, Illinois 60611-3015, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, Illinois 60208-0893, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North Saint Clair Street, Arkes Suite 2330, Chicago, Illinois 60611-2915, United States
| |
Collapse
|
18
|
Simple Complexity: Incorporating Bioinspired Delivery Machinery within Self-Assembled Peptide Biogels. Gels 2023; 9:gels9030199. [PMID: 36975648 PMCID: PMC10048788 DOI: 10.3390/gels9030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Bioinspired self-assembly is a bottom-up strategy enabling biologically sophisticated nanostructured biogels that can mimic natural tissue. Self-assembling peptides (SAPs), carefully designed, form signal-rich supramolecular nanostructures that intertwine to form a hydrogel material that can be used for a range of cell and tissue engineering scaffolds. Using the tools of nature, they are a versatile framework for the supply and presentation of important biological factors. Recent developments have shown promise for many applications such as therapeutic gene, drug and cell delivery and yet are stable enough for large-scale tissue engineering. This is due to their excellent programmability—features can be incorporated for innate biocompatibility, biodegradability, synthetic feasibility, biological functionality and responsiveness to external stimuli. SAPs can be used independently or combined with other (macro)molecules to recapitulate surprisingly complex biological functions in a simple framework. It is easy to accomplish localized delivery, since they can be injected and can deliver targeted and sustained effects. In this review, we discuss the categories of SAPs, applications for gene and drug delivery, and their inherent design challenges. We highlight selected applications from the literature and make suggestions to advance the field with SAPs as a simple, yet smart delivery platform for emerging BioMedTech applications.
Collapse
|
19
|
Ghosh A, Dubey SK, Patra M, Mandal J, Ghosh NN, Das P, Bhowmick A, Sarkar K, Mukherjee S, Saha R, Bhattacharjee S. Solvent‐ and Substrate‐Induced Chiroptical Inversion in Amphiphilic, Biocompatible Glycoconjugate Supramolecules: Shape‐Persistent Gelation, Self‐Healing, and Antibacterial Activity. Chemistry 2022; 28:e202201621. [DOI: 10.1002/chem.202201621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Angshuman Ghosh
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
- TCG Lifescience, Block BN Sector V Saltlake Kolkata 700156 West Bengal India
| | - Soumen Kumar Dubey
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Maxcimilan Patra
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Jishu Mandal
- CIF Biophysical Laboratory CSIR-Indian Institute of Chemical Biology Jadavpur Kolkata 700032 West Bengal India
| | - Narendra Nath Ghosh
- Department of Chemistry University of Gour Banga Mokdumpur 732103 West Bengal India
| | - Priyanka Das
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Arpita Bhowmick
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Keka Sarkar
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Suprabhat Mukherjee
- Department of Animal Science Kazi Nazrul University Asansol 713340 West Bengal India
| | - Rajat Saha
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | | |
Collapse
|
20
|
McCourt J, Kewalramani S, Gao C, Roth EW, Weigand SJ, Olvera de la Cruz M, Bedzyk MJ. Electrostatic Control of Shape Selection and Nanoscale Structure in Chiral Molecular Assemblies. ACS CENTRAL SCIENCE 2022; 8:1169-1181. [PMID: 36032772 PMCID: PMC9413830 DOI: 10.1021/acscentsci.2c00447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 06/01/2023]
Abstract
How molecular chirality manifests at the nano- to macroscale has been a scientific puzzle since Louis Pasteur discovered biochirality. Chiral molecules assemble into meso-shapes such as twisted and helical ribbons, helicoidal scrolls (cochleates), or möbius strips (closed twisted ribbons). Here we analyze self-assembly for a series of amphiphiles, C n -K, consisting of an ionizable amino acid [lysine (K)] coupled to alkyl tails with n = 12, 14, or 16 carbons. This simple system allows us to probe the effects of electrostatic and van der Waals interactions in chiral assemblies. Small/wide-angle X-ray scattering (SAXS/WAXS) reveals that at low pH, where the headgroups are ionized (+1), C16-K forms high aspect ratio, planar crystalline bilayers. Molecular dynamics (MD) simulations reveal that tilted tails of the bilayer leaflets are interdigitated. SAXS shows that, with increasing salt concentration, C16-K molecules assemble into cochleates, whereas at elevated pH (reduced degree of ionization), helices are observed for all C n -K assemblies. The shape selection between helices and scrolls is explained by a membrane energetics model. The nano- to meso-scale structure of the chiral assemblies can be continuously controlled by solution ionic conditions. Overall, our study represents a step toward an electrostatics-based approach for shape selection and nanoscale structure control in chiral assemblies.
Collapse
Affiliation(s)
- Joseph
M. McCourt
- Department
of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Sumit Kewalramani
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Changrui Gao
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Eric W. Roth
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Steven J. Weigand
- DuPont-Northwestern-Dow
Collaborative Access Team, Northwestern
University Synchrotron Research Center, Advanced Photon Source, Argonne, Illinois 60439, United States
| | - Monica Olvera de la Cruz
- Department
of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael J. Bedzyk
- Department
of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
Liu Z, Zhou L, Zhang H, Han J. Cyclodextrin-pillar[ n]arene hybridized macrocyclic systems. Org Biomol Chem 2022; 20:4278-4288. [PMID: 35552579 DOI: 10.1039/d2ob00671e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclodextrin (CD) and pillar[n]arene are significant macrocyclic host molecules in supramolecular chemistry, and have either similar or contrasting physicochemical properties, for example, both can provide capable cavities available for recognizing various favorite guest molecules, while they usually possess different solubility in aqueous solutions, and exhibit diverse chiral characteristics. To balance their similarity and differences inherited from each chemical structure and incorporate both advantages, the CD-pillar[n]arene hybrid macrocyclic system was recently developed. In this review, we will focus on the preparation and application of CD-pillar[n]arene hybrid macrocyclic systems. Both noncovalent interactions and covalent bonds were employed in the synthesis strategies of building the hybrid macrocyclic system, which was in the form of host-guest inclusion, self-assembly, conjugated molecules, and polymeric structures. Furthermore, the CD-pillar[n]arene hybrid macrocyclic system has been primarily applied for the removal of organic pollutants from water, induced chirality, as well as photocatalysis due to the integration of both cavities from CD and pillar[n]arene as hybrid hosts and chiral characteristics inherited from their chemical structures.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China.
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
22
|
Anderson CF, Chakroun RW, Grimmett ME, Domalewski CJ, Wang F, Cui H. Collagen-Binding Peptide-Enabled Supramolecular Hydrogel Design for Improved Organ Adhesion and Sprayable Therapeutic Delivery. NANO LETTERS 2022; 22:4182-4191. [PMID: 35522052 PMCID: PMC9844543 DOI: 10.1021/acs.nanolett.2c00967] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Spraying serves as an attractive, minimally invasive means of administering hydrogels for localized delivery, particularly due to high-throughput deposition of therapeutic depots over an entire target site of uneven surfaces. However, it remains a great challenge to design systems capable of rapid gelation after shear-thinning during spraying and adhering to coated tissues in wet, physiological environments. We report here on the use of a collagen-binding peptide to enable a supramolecular design of a biocompatible, bioadhesive, and sprayable hydrogel for sustained release of therapeutics. After spraying, the designed peptide amphiphile-based supramolecular filaments exhibit fast, physical cross-linking under physiological conditions. Our ex vivo studies suggest that the hydrogelator strongly adheres to the wet surfaces of multiple organs, and the extent of binding to collagen influences release kinetics from the gel. We envision that the sprayable organ-adhesive hydrogel can serve to enhance the efficacy of incorporated therapeutics for many biomedical applications.
Collapse
Affiliation(s)
- Caleb F Anderson
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rami W Chakroun
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Maria E Grimmett
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Christopher J Domalewski
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
23
|
Lv N, Yin X, Yang Z, Ma T, Qin H, Xiong B, Jiang H, Zhu J. Electrostatically Controlled ex Situ and in Situ Polymerization of Diacetylene-Containing Peptide Amphiphiles in Living Cells. ACS Macro Lett 2022; 11:223-229. [PMID: 35574773 DOI: 10.1021/acsmacrolett.1c00735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precise control of diacetylene-containing peptide amphiphile (DPA) based supramolecular architectures is important for their in cellulo polymerization behaviors and biomedical applications. Herein, we reported two DPAs (cationic PA-NH2 and zwitterionic PA-OH) with a similar molecular structure, which exhibited completely opposite polymerization behaviors in aqueous solution and living cells. Specifically, PA-NH2 was unpolymerizable in aqueous solution but underwent in cellulo polymerization to respond to the intracellular microenvironment. On the contrary, zwitterionic PA-OH was polymerized in solution, rather than inside living cells. Based on the results of cell viability and total internal reflection fluorescent microscopy measurement, PA-OH exhibited higher affinity with cell membranes and lower cytotoxicity than those of PA-NH2. Therefore, it is suggested that the in cellulo polymerization of PA-NH2 should be responsive for greater cytotoxicity, rather than the membrane affinity. This study provides an in-depth understanding of the role of charge properties in the polymerization behavior of DPAs and seeks their potential biomedical applications.
Collapse
Affiliation(s)
- Niannian Lv
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xiaoyan Yin
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zhuoran Yang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Teng Ma
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Huimin Qin
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Bijin Xiong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Hao Jiang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
24
|
Crystalline Supramolecular Polymers: Dynamics, Chirality, and Function. Isr J Chem 2021. [DOI: 10.1002/ijch.202100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Hendrikse SIS, Contreras-Montoya R, Ellis AV, Thordarson P, Steed JW. Biofunctionality with a twist: the importance of molecular organisation, handedness and configuration in synthetic biomaterial design. Chem Soc Rev 2021; 51:28-42. [PMID: 34846055 DOI: 10.1039/d1cs00896j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The building blocks of life - nucleotides, amino acids and saccharides - give rise to a large variety of components and make up the hierarchical structures found in Nature. Driven by chirality and non-covalent interactions, helical and highly organised structures are formed and the way in which they fold correlates with specific recognition and hence function. A great amount of effort is being put into mimicking these highly specialised biosystems as biomaterials for biomedical applications, ranging from drug discovery to regenerative medicine. However, as well as lacking the complexity found in Nature, their bio-activity is sometimes low and hierarchical ordering is missing or underdeveloped. Moreover, small differences in folding in natural biomolecules (e.g., caused by mutations) can have a catastrophic effect on the function they perform. In order to develop biomaterials that are more efficient in interacting with biomolecules, such as proteins, DNA and cells, we speculate that incorporating order and handedness into biomaterial design is necessary. In this review, we first focus on order and handedness found in Nature in peptides, nucleotides and saccharides, followed by selected examples of synthetic biomimetic systems based on these components that aim to capture some aspects of these ordered features. Computational simulations are very helpful in predicting atomic orientation and molecular organisation, and can provide invaluable information on how to further improve on biomaterial designs. In the last part of the review, a critical perspective is provided along with considerations that can be implemented in next-generation biomaterial designs.
Collapse
Affiliation(s)
- Simone I S Hendrikse
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia. .,School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Pall Thordarson
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | |
Collapse
|
26
|
Xiong Q, Stupp SI, Schatz GC. Molecular Insight into the β-Sheet Twist and Related Morphology of Self-Assembled Peptide Amphiphile Ribbons. J Phys Chem Lett 2021; 12:11238-11244. [PMID: 34762436 DOI: 10.1021/acs.jpclett.1c03243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-assembly of high-aspect-ratio filaments containing β-sheets has attracted much attention due to potential use in bioengineering and biomedicine. However, precisely predicting the assembled morphologies remains a grand challenge because of insufficient understanding of the self-assembly process. We employed an atomistic model to study the self-assembly of peptide amphiphiles (PAs) containing valine-glutamic acid (VE) dimeric repeats. By changing of the sequence length, the assembly morphology changes from flat ribbon to left-handed twisted ribbon, implying a relationship between β-sheet twist and strength of interstrand hydrogen bonds. The calculations are used to quantify this relationship including both magnitude and sign of the ribbon twist angle. Interestingly, a change in chirality is observed when we introduce the RGD epitope into the C-terminal of VE repeats, suggesting arginine and glycine's role in suppressing right-handed β-sheet formation. This study provides insight into the relationship between β-sheet twist and self-assembled nanostructures including a possible design rule for PA self-assembly.
Collapse
Affiliation(s)
- Qinsi Xiong
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Samuel I Stupp
- Department of Chemistry, Center for BioInspired Energy Science, and Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|