1
|
Lee W, Kim T, Kim H, Kim Y. Controlled Migration of Lithium Cations by Diamine Bridges in Water-Processable Polymer-Based Solid-State Electrolyte Memory Layers for Organic Synaptic Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403645. [PMID: 39011779 DOI: 10.1002/adma.202403645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/30/2024] [Indexed: 07/17/2024]
Abstract
Synaptic transistors require sufficient retention (memory) performances of current signals to exactly mimic biological synapses. Ion migration has been proposed to achieve high retention characteristics but less attention has been paid to polymer-based solid-state electrolytes (SSEs) for organic synaptic transistors (OSTRs). Here, OSTRs with water-processable polymer-based SSEs, featuring ion migration-controllable molecular bridges, which are prepared by reactions of poly(4-styrenesulfonic acid) (PSSA), diethylenetriamine (DETA), and lithium hydroxide (LiOH) are demonstrated. The ion conductivity of PSSA:LiOH:DETA (1:0.4:X, PLiD) films is remarkably changed by the molar ratio (X) of DETA, which is attributed to the extended distances between the PSSA chains by the DETA bridges. The devices with the PLiD layers deliver noticeably changed hysteresis reaching an optimum at X = 0.2, leading to the longest retention of current signals upon single/double pulses. The long-term potentiation test confirms that the present OSTRs can gradually build up the postsynaptic current by gate pulses of -2 V, while the long-term depression can be adjusted by varying the depression gate pulses (≈0.2-1.2 V). The artificial neural network simulations disclose that the present OSTRs with the ion migration-controlled PLiD layers can perform synaptic processes with an accuracy of ≈96%.
Collapse
Affiliation(s)
- Woongki Lee
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Taehoon Kim
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hwajeong Kim
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
- Priority Research Center, Research Institute of Environmental Science & Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Youngkyoo Kim
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
2
|
Tsuruoka T, Terabe K. Solid polymer electrolyte-based atomic switches: from materials to mechanisms and applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2342772. [PMID: 38766515 PMCID: PMC11100443 DOI: 10.1080/14686996.2024.2342772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
As miniaturization of semiconductor memory devices is reaching its physical and technological limits, there is a demand for memory technologies that operate on new principles. Atomic switches are nanoionic devices that show repeatable resistive switching between high-resistance and low-resistance states under bias voltage applications, based on the transport of metal ions and redox reactions in solids. Their essential structure consists of an ion conductor sandwiched between electrochemically active and inert electrodes. This review focuses on the resistive switching mechanism of atomic switches that utilize a solid polymer electrolyte (SPE) as the ion conductor. Owing to the superior properties of polymer materials such as mechanical flexibility, compatibility with various substrates, and low fabrication costs, SPE-based atomic switches are a promising candidate for the next-generation of volatile and nonvolatile memories. Herein, we describe their operating mechanisms and key factors for controlling the device performance with different polymer matrices. In particular, the effects of moisture absorption in the polymer matrix on the resistive switching behavior are addressed in detail. As potential applications, atomic switches with inkjet-printed SPE and quantum conductance behavior are described. SPE-based atomic switches also have great potential in use for neuromorphic devices. The development of these devices will be enhanced using nanoarchitectonics concepts, which integrate functional materials and devices.
Collapse
Affiliation(s)
- Tohru Tsuruoka
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Kazuya Terabe
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| |
Collapse
|
3
|
Fukazawa H, Okada-Shudo Y. Photosynthetic Protein-Based Retinal Ganglion Cell Receptive Fields for Detecting Edges and Brightness Illusions. NANO LETTERS 2023; 23:10983-10990. [PMID: 38048176 PMCID: PMC10723062 DOI: 10.1021/acs.nanolett.3c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Bacteriorhodopsin, isolated from a halophilic bacterium, is a photosynthetic protein with a structure and function similar to those of the visual pigment rhodopsin. A voltaic cell with bacteriorhodopsin sandwiched between two transparent electrodes exhibits a time-differential response akin to that observed in retinal ganglion cells. It is intriguing as a means to emulate excitation and inhibition in the neural response. Here, we present a neuromorphic device emulating the retinal ganglion cell receptive field fabricated by patterning bacteriorhodopsin onto two transparent electrodes and encapsulating them with an electrolyte solution. This protein-based artificial ganglion cell receptive field is characterized as a bandpass filter that simultaneously replicates excitatory and inhibitory responses within a single element, successfully detecting image edges and phenomena of brightness illusions. The device naturally emulates the highly interacting ganglion cell receptive fields by exploiting the inherent properties of proteins without the need for electronic components, bias power supply, or an external operating circuit.
Collapse
Affiliation(s)
- Hikaru Fukazawa
- Department of Engineering Science, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Yoshiko Okada-Shudo
- Department of Engineering Science, The University of Electro-Communications, Tokyo 182-8585, Japan
| |
Collapse
|
4
|
Shibata K, Nishioka D, Namiki W, Tsuchiya T, Higuchi T, Terabe K. Redox-based ion-gating reservoir consisting of (104) oriented LiCoO 2 film, assisted by physical masking. Sci Rep 2023; 13:21060. [PMID: 38030675 PMCID: PMC10687094 DOI: 10.1038/s41598-023-48135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
Reservoir computing (RC) is a machine learning framework suitable for processing time series data, and is a computationally inexpensive and fast learning model. A physical reservoir is a hardware implementation of RC using a physical system, which is expected to become the social infrastructure of a data society that needs to process vast amounts of information. Ion-gating reservoirs (IGR) are compact and suitable for integration with various physical reservoirs, but the prediction accuracy and operating speed of redox-IGRs using WO3 as the channel are not sufficient due to irreversible Li+ trapping in the WO3 matrix during operation. Here, in order to enhance the computation performance of redox-IGRs, we developed a redox-based IGR using a (104) oriented LiCoO2 thin film with high electronic and ionic conductivity as a trap-free channel material. The subject IGR utilizes resistance change that is due to a redox reaction (LiCoO2 ⟺ Li1-xCoO2 + xLi+ + xe-) with the insertion and desertion of Li+. The prediction error in the subject IGR was reduced by 72% and the operation speed was increased by 4 times compared to the previously reported WO3, which changes are due to the nonlinear and reversible electrical response of LiCoO2 and the high dimensionality enhanced by a newly developed physical masking technique. This study has demonstrated the possibility of developing high-performance IGRs by utilizing materials with stronger nonlinearity and by increasing output dimensionality.
Collapse
Affiliation(s)
- Kaoru Shibata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Applied Physics, Faculty of Science, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan
| | - Daiki Nishioka
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Applied Physics, Faculty of Science, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan
| | - Wataru Namiki
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takashi Tsuchiya
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
- Department of Applied Physics, Faculty of Science, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan.
| | - Tohru Higuchi
- Department of Applied Physics, Faculty of Science, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan
| | - Kazuya Terabe
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
5
|
Mohanty HN, Tsuruoka T, Mohanty JR, Terabe K. Proton-Gated Synaptic Transistors, Based on an Electron-Beam Patterned Nafion Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19279-19289. [PMID: 37023114 DOI: 10.1021/acsami.3c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neuromorphic processors using artificial neural networks are the center of attention for energy-efficient analog computing. Artificial synapses act as building blocks in such neural networks for parallel information processing and data storage. Herein we describe the fabrication of a proton-gated synaptic transistor using a Nafion electrolyte thin film, which is patterned by electron-beam lithography (EBL). The device has an active channel of indium-zinc-oxide (IZO) between the source and drain electrodes, which shows Ohmic behavior with a conductance level on the order of 100 μS. Under voltage applications to the gate electrode, the channel conductance is changed due to the injection and extraction of protons between the IZO channel and the Nafion electrolyte, emulating various synaptic functions with short-term and long-term plasticity. When positive (negative) gate voltage pulses are consecutively applied, the device exhibits long-term potentiation (depression) at the same number of steps as the number of input pulses. Based on these characteristics, an artificial neural network using this transistor shows ∼84% image recognition accuracy for handwritten digits. The subject transistor also successfully mimics paired-pulse facilitation and depression, Hebbian spike-timing-dependent plasticity, and Pavlovian associative learning followed by extinction activities. Finally, dynamical pattern image memorization is demonstrated in a 5 × 5 array of these synaptic transistors. The results indicate that EBL patternable Nafion electrolytes have great potential for use in the fabrication and circuit-level integration of synaptic devices for neuromorphic computing applications.
Collapse
Affiliation(s)
- Himadri Nandan Mohanty
- Nanomagnetism and Microscopy Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba 305-004, Japan
| | - Tohru Tsuruoka
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba 305-004, Japan
| | - Jyoti Ranjan Mohanty
- Nanomagnetism and Microscopy Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Kazuya Terabe
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba 305-004, Japan
| |
Collapse
|
6
|
Hu M, Yu J, Chen Y, Wang S, Dong B, Wang H, He Y, Ma Y, Zhuge F, Zhai T. A non-linear two-dimensional float gate transistor as a lateral inhibitory synapse for retinal early visual processing. MATERIALS HORIZONS 2022; 9:2335-2344. [PMID: 35820170 DOI: 10.1039/d2mh00466f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Synaptic transistors that accommodate concurrent signal transmission and learning in a neural network are attracting enormous interest for neuromorphic sensory processing. To remove redundant sensory information while keeping important features, artificial synaptic transistors with non-linear conductance are desired to apply filter processing to sensory inputs. Here, we report the realization of non-linear synapses using a two-dimensional van der Waals (vdW) heterostructure (MoS2/h-BN/graphene) based float gate memory device, in which the semiconductor channel is tailored via a surface acceptor (ZnPc) for subthreshold operation. In addition to usual synaptic plasticity, the memory device exhibits highly non-linear conductance (rectification ratio >106), allowing bidirectional yet only negative/inhibitory current to pass through. We demonstrate that in a lateral coupling network, such a float gate memory device resembles the key lateral inhibition function of horizontal cells for the formation of an ON-center/OFF-surround receptive field. When combined with synaptic plasticity, the lateral inhibition weights are further tunable to enable adjustable edge enhancement for early visual processing. Our results here hopefully open a new scheme toward early sensory perception via lateral inhibitory synaptic transistors.
Collapse
Affiliation(s)
- Man Hu
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China.
| | - Jun Yu
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China.
| | - Yangyang Chen
- School of optoelectronic and information, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China
| | - Siqi Wang
- School of optoelectronic and information, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China
| | - Boyi Dong
- School of optoelectronic and information, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China
| | - Han Wang
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China.
| | - Yuhui He
- School of optoelectronic and information, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China
| | - Ying Ma
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China.
| | - Fuwei Zhuge
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China.
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China.
| |
Collapse
|