1
|
Lu W, Wang W, Gong Y, Li J, Zhou Y, Yang Y. A Noncationic Biocatalytic Nanobiohybrid Platform for Cytosolic Protein Delivery Through Controlled Perturbation of Intracellular Redox Homeostasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407676. [PMID: 39279556 PMCID: PMC11618714 DOI: 10.1002/smll.202407676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Indexed: 09/18/2024]
Abstract
Intracellular delivery of proteins has largely been relying on cationic nanoparticles to induce efficient endosome escape, which, however, poses serious concerns on the inflammatory and cytotoxic effects. Herein, a versatile noncationic nano biohybrid platform is introduced for efficient cytosolic protein delivery by utilizing a nano-confined biocatalytic reaction. This platform is constructed by co-immobilizing glucose oxidase (GOx) and the target protein into nanoscale hydrogen-bonded organic frameworks (HOFs). The biocatalytic reaction of nano-confined GOx is leveraged to induce controlled perturbation of intracellular redox homeostasis by sustained hydrogen peroxide (H2O2) production and diminishing the flux of the pentose phosphate pathway (PPP). This in turn induces the endosome escape of nanobiohybrids. Concomitantly, GOx-mediated hypoxia leads to overexpression of azo reductase that initiated the materials' self-destruction for releasing target proteins. These biological effects collectively induce highly efficient cytosolic protein delivery. The versatility of this delivery platform is further demonstrated for various types of proteins, different protein loading approaches (in situ immobilization or post-adsorption), and in multiple cell lines. Finally, the protein delivery efficiency and biosafety are demonstrated in a tumor-bearing mouse model. This nanohybrid system opens up new avenues for intracellular protein delivery and is expected to be extensively applicable for a broad range of biomolecuels.
Collapse
Affiliation(s)
- Wanyue Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Weidong Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yimin Gong
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Jianing Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yannan Yang
- South Australian ImmunoGENomic Cancer InstituteThe University of AdelaideAdelaideSouth Australia5005Australia
- Institute of OptoelectronicsFudan UniversityShanghai200433China
| |
Collapse
|
2
|
Ma B, Shi J, Zhang Y, Li Z, Yong H, Zhou YN, Liu S, A S, Zhou D. Enzymatically Activatable Polymers for Disease Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306358. [PMID: 37992728 DOI: 10.1002/adma.202306358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Indexed: 11/24/2023]
Abstract
The irregular expression or activity of enzymes in the human body leads to various pathological disorders and can therefore be used as an intrinsic trigger for more precise identification of disease foci and controlled release of diagnostics and therapeutics, leading to improved diagnostic accuracy, sensitivity, and therapeutic efficacy while reducing systemic toxicity. Advanced synthesis strategies enable the preparation of polymers with enzymatically activatable skeletons or side chains, while understanding enzymatically responsive mechanisms promotes rational incorporation of activatable units and predictions of the release profile of diagnostics and therapeutics, ultimately leading to promising applications in disease diagnosis and treatment with superior biocompatibility and efficiency. By overcoming the challenges, new opportunities will emerge to inspire researchers to develop more efficient, safer, and clinically reliable enzymatically activatable polymeric carriers as well as prodrugs.
Collapse
Affiliation(s)
- Bin Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiahao Shi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhe Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ya-Nan Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sigen A
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
3
|
Romanowska A, Rachubik P, Piwkowska A, Wysocka M. Polymers of functionalized diaminopropionic acid are efficient mediators of active exogenous enzyme delivery into cells. Sci Rep 2024; 14:13185. [PMID: 38851838 PMCID: PMC11162485 DOI: 10.1038/s41598-024-64187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024] Open
Abstract
Delivery of active protein especially enzyme is one of the major therapeutic challenge. Replacing or substituted invalid/improper acting protein offer fast and effective treatment of disease. Herein, we describe the synthesis and properties of biotinylated peptidomimetics consisting of oxoacid-modified 2,3, L-diaminopropionic acid residues with guanidine groups on its side chains. Electrophoretic analysis showed that the obtained compounds interact with FITC-labeled streptavidin or a streptavidin-β-galactosidase hybrid in an efficient manner. Complexes formed by the abovementioned molecules are able to cross the cell membranes of cancer or healthy cells and show promising compatibility with live cells. Analysis of β-galactosidase activity inside the cells revealed surprisingly high levels of active enzyme in complex-treated cells compared to controls. This observation was confirmed by immunochemical studies in which the presence of β-galactosidase was detected in the membrane and vesicles of the cells.
Collapse
Affiliation(s)
- A Romanowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-309, Gdańsk, Poland
| | - P Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences, University of Gdansk, 80-308, Gdańsk, Poland
| | - A Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences, University of Gdansk, 80-308, Gdańsk, Poland
| | - M Wysocka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-309, Gdańsk, Poland.
| |
Collapse
|
4
|
Liu J, Zhou Y, Lyu Q, Yao X, Wang W. Targeted protein delivery based on stimuli-triggered nanomedicine. EXPLORATION (BEIJING, CHINA) 2024; 4:20230025. [PMID: 38939867 PMCID: PMC11189579 DOI: 10.1002/exp.20230025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/07/2023] [Indexed: 06/29/2024]
Abstract
Protein-based drugs have shown unique advantages to treat various diseases in recent years. However, most protein therapeutics in clinical use are limited to extracellular targets with low delivery efficiency. To realize targeted protein delivery, a series of stimuli-triggered nanoparticle formulations have been developed to improve delivery efficiency and reduce off-target release. These smart nanoparticles are designed to release cargo proteins in response to either internal or external stimuli at pathological tissues. In this way, varieties of protein-based drugs including antibodies, enzymes, and pro-apoptotic proteins can be effectively delivered to desired sites for the treatment of cancer, inflammation, metabolic diseases, and so on with minimal side effects. In this review, recent advances in the design of stimuli-triggered nanomedicine for targeted protein delivery in different biomedical applications will be discussed. A deeper understanding of these emerging strategies helps develop more efficient protein delivery systems for clinical use in the future.
Collapse
Affiliation(s)
- Jinzhao Liu
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Yang Zhou
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Qingyang Lyu
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Xiaotong Yao
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Department of ChemistryFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Weiping Wang
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| |
Collapse
|
5
|
Li S, Chen X, Guan S, Wang Z, Cao W, Luo G, Ling X. Precisely Amplifying Intracellular Oxidative Storm by Metal-Organic Coordination Polymers to Augment Anticancer Immunity. ACS NANO 2023; 17:15165-15179. [PMID: 37490051 DOI: 10.1021/acsnano.3c04785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Oxidative stress accompanying the reactive oxygen species (ROS) burst governs immunocyte infiltration, activation, and differentiation in tumor microenvironments and thus can elicit robust antitumor immunity. Here, we identify a photoactive metal-organic coordination polymer (MOCP), composed of an organometallic core formed by cytotoxic mitoxantrone (MTX) acylates and photosensitive Ru(BIQ)-HDBB [BIQ = 2,2'-biquinoline, HDBB = 4,4'-di(4-benzoato)-2,2'-bipyridine] linked by Fe(II) ions via coordinate covalent bonds and an amphipathic shell encapsulating cholesterol-modified siRNA against GPX4 (siGPX4) via hydrophobic force, to precisely amplify intracellular oxidative storm. MOCPs simultaneously encapsulated MTX, Ru, and siGPX4 with efficiencies >98% and loaded Fe with efficiencies of ∼0.49%. With longer blood circulation and higher tumor accumulation, MOCPs with a 670 nm LED irradiation generate abundant ROS to induce biomembrane dysfunction and subsequently contribute to ferroptotic and immunogenic cell death, which drive tumor-associated antigen-specific immunity. MTX analogs contributed to Type I immunogenic cell death (ICD), while oxidative storm served as a damager for endo/lysosomal escape, an initiator for ferroptosis, and an inducer for type II ICD. Moreover, the blockade of CD73 that reduces extoATP catabolism unleashes immunosuppression, finally enhancing antitumor immune stimulation of MOCPs to promote orthotopic mammary cancer regression and prevent postoperative advanced cancer from recurrence and metastasis. MOCPs by exposing sufficient antigenicity thus provide a platform to synergize immune checkpoint inhibitors for the treatment of immunologically cold tumors.
Collapse
Affiliation(s)
- Shangfei Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China
| | - Xing Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Shuo Guan
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China
| | - Zhiyuan Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China
| | - Wuji Cao
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Guoshun Luo
- Department of Chemistry, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China
| | - Xiang Ling
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China
| |
Collapse
|
6
|
Son H, Shin J, Park J. Recent progress in nanomedicine-mediated cytosolic delivery. RSC Adv 2023; 13:9788-9799. [PMID: 36998521 PMCID: PMC10043881 DOI: 10.1039/d2ra07111h] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Cytosolic delivery of bioactive agents has exhibited great potential to cure undruggable targets and diseases. Because biological cell membranes are a natural barrier for living cells, efficient delivery methods are required to transfer bioactive and therapeutic agents into the cytosol. Various strategies that do not require cell invasive and harmful processes, such as endosomal escape, cell-penetrating peptides, stimuli-sensitive delivery, and fusogenic liposomes, have been developed for cytosolic delivery. Nanoparticles can easily display functionalization ligands on their surfaces, enabling many bio-applications for cytosolic delivery of various cargo, including genes, proteins, and small-molecule drugs. Cytosolic delivery uses nanoparticle-based delivery systems to avoid degradation of proteins and keep the functionality of other bioactive molecules, and functionalization of nanoparticle-based delivery vehicles imparts a specific targeting ability. With these advantages, nanomedicines have been used for organelle-specific tagging, vaccine delivery for enhanced immunotherapy, and intracellular delivery of proteins and genes. Optimization of the size, surface charges, specific targeting ability, and composition of nanoparticles is needed for various cargos and target cells. Toxicity issues with the nanoparticle material must be managed to enable clinical use.
Collapse
Affiliation(s)
- Hangyu Son
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| | - Jeongsu Shin
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| | - Joonhyuck Park
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| |
Collapse
|
7
|
pH-responsive organic/inorganic hybrid nanocolloids for transcellular delivery of ribonucleolytic payloads toward targeted anti-glioma therapy. J Colloid Interface Sci 2023; 634:388-401. [PMID: 36542969 DOI: 10.1016/j.jcis.2022.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Proteins have been appreciated to be a superlative modality of therapeutics in view of their direct roles in regulating diverse sets of biological events, nonetheless, the clinical applications of the proteinic therapeutics have been strictly limited to act on the cell surface receptors owing to their inherent cell-impermeable character of the proteins. To this obstacle, we contrived carboxylation reaction upon the proteins (RNase A) into the overall negatively charged pro-RNase, followed by elaboration of intelligent pH-responsive pro-RNase delivery nanocolloids based on co-precipitation of pro-RNase and Arg-Gly-Asp (RGD)-functionalized poly(ethylene glycol) (PEG)-block-polyanion with aids of inorganic calcium phosphate (CaP). The resulting nanocolloids appeared to actively accumulate into glioma due to the specific binding affinities of RGD and glioma-enriched αVβ3 and αVβ5 integrins. Furthermore, the pH responsiveness to the acidic endolysosomal microenvironment of all compositions of nanocolloids (including: decarboxylation of pro-RNase composition to restore the native RNase A, ionization of CaP composition to elicit osmotic pressure, and charge reversal of PEG-block-polyanion into membrane-disruptive polycation) could stimulate not only efficient endolysosomal escape for translocation into the cytosol but also structural disassembly for ready liberation of the RNase A payloads, eventually exerting non-specific RNA degradation for apoptosis of the affected cells. Systemic dosage of the proposed nanocolloids demonstrated potent anti-tumor efficacies towards xenograft glioma due to massive RNA degradation. Therefore, our proposed RNase A prodrug nanocolloids could represent as a versatile platform for engineering transcellular protein delivery systems, which are expected to spur thriving emergence of a spectrum of proteins in precision intervention of intractable diseases.
Collapse
|
8
|
Sivasubramanian M, Lin LJ, Wang YC, Yang CS, Lo LW. Industrialization’s eye view on theranostic nanomedicine. Front Chem 2022; 10:918715. [PMID: 36059870 PMCID: PMC9437266 DOI: 10.3389/fchem.2022.918715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of nanomedicines (NMs) in the healthcare industry will bring about groundbreaking improvements to the current therapeutic and diagnostic scenario. However, only a few NMs have been developed into clinical applications due to a lack of regulatory experience with them. In this article, we introduce the types of NM that have the potential for clinical translation, including theranostics, multistep NMs, multitherapy NMs, and nanoclusters. We then present the clinical translational challenges associated with NM from the pharmaceutical industry’s perspective, such as NMs’ intrinsic physiochemical properties, safety, scale-up, lack of regulatory experience and standard characterization methods, and cost-effectiveness compared with their traditional counterparts. Overall, NMs face a difficult task to overcome these challenges for their transition from bench to clinical use.
Collapse
|
9
|
Meng Z, Wang B, Liu Y, Wan Y, Liu Q, Xu H, Liang R, Shi Y, Tu P, Wu H, Xu C. Mitochondria-targeting Polydopamine-coated Nanodrugs for Effective Photothermal- and Chemo- Synergistic therapies Against Lung Cancer. Regen Biomater 2022; 9:rbac051. [PMID: 35958515 PMCID: PMC9362997 DOI: 10.1093/rb/rbac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Targeting mitochondria via nano platform emerged as an attractive anti-tumor pathway due to the central regulation role in cellar apoptosis and drug resistance. Here, a mitochondria-targeting nanoparticle (TOS-PDA-PEG-TPP) was designed to precisely deliver polydopamine (PDA) as the photothermal agent and alpha-tocopherol succinate (α-TOS) as the chemotherapeutic drug to the mitochondria of the tumor cells, which inhibits the tumor growth through chemo- and photothermal- synergistic therapies. TOS-PDA-PEG-TPP was constructed by coating PDA on the surface of TOS NPs self-assembled by α-TOS, followed by grafting PEG and triphenylphosphonium (TPP) on their surface to prolong the blood circulation time and target delivery of TOS and PDA to the mitochondria of tumor cells. In vitro studies showed that TOS-PDA-PEG-TPP could be efficiently internalized by tumor cells and accumulated at mitochondria, resulting in cellular apoptosis and synergistic inhibition of tumor cell proliferation. In vivo studies demonstrated that TOS-PDA-PEG-TPP could be efficiently localized at tumor sites and significantly restrain the tumor growth under NIR irradiation without apparent toxicity or deleterious effects. Conclusively, the combination strategy adopted for functional nanodrugs construction aimed at target-delivering therapeutic agents with different action mechanisms to the same intracellular organelles can be extended to other nanodrugs-dependent therapeutic systems.
Collapse
Affiliation(s)
- Ziyu Meng
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Binchao Wang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yiqiang Liu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Yejian Wan
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Qianshi Liu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Huasheng Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Renchuan Liang
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Ying Shi
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Peng Tu
- Correspondence address: Tel: +86-28-85420852, E-mail: (P.T); (H.W); (C.X)
| | - Hong Wu
- Correspondence address: Tel: +86-28-85420852, E-mail: (P.T); (H.W); (C.X)
| | - Chuan Xu
- Correspondence address: Tel: +86-28-85420852, E-mail: (P.T); (H.W); (C.X)
| |
Collapse
|
10
|
Liu Y, Zeng S, Wu M. Novel insights into noncanonical open reading frames in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188755. [PMID: 35777601 DOI: 10.1016/j.bbcan.2022.188755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022]
Abstract
With technological advances, previously neglected noncanonical open reading frames (nORFs) are drawing ever-increasing attention. However, the translation potential of numerous putative nORFs remains elusive, and the functions of noncanonical peptides have not been systemically summarized. Moreover, the relationship between noncanonical peptides and their counterpart protein or RNA products remains elusive and the clinical implementation of noncanonical peptides has not been explored. In this review, we highlight how recent technological advances such as ribosome profiling, bioinformatics approaches and CRISPR/Cas9 facilitate the research of noncanonical peptides. We delineate the features of each nORF category and the evolutionary process underneath the nORFs. Most importantly, we summarize the diversified functions of noncanonical peptides in cancer based on their subcellular location, which reflect their extensive participation in key pathways and essential cellular activities in cancer cells. Meanwhile, the equilibrium between noncanonical peptides and their corresponding transcripts or counterpart products may be dysregulated under pathological states, which is essential for their roles in cancer. Lastly, we explore their underestimated potential in clinical application as diagnostic biomarkers and treatment targets against cancer.
Collapse
Affiliation(s)
- Yihan Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Minghua Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|