1
|
Fang G, Yu W, Wang X, Lin J. Heterogeneous catalysis of methane hydroxylation with nearly total selectivity under mild conditions. Chem Commun (Camb) 2024; 60:11034-11051. [PMID: 39254608 DOI: 10.1039/d4cc02802c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The efficient utilization of methane, a vital component of natural gas, shale gas and methane hydrate, holds significant importance for global energy security and environmental sustainability. However, converting methane into value-added oxygenates presents a formidable challenge due to its inert nature. Direct selective oxidation of methane (DSOM) under mild conditions is essential for reducing energy consumption and carbon emissions compared with traditional indirect routes. Achieving total selectivity in methane hydroxylation remains elusive due to the competitive CO2 formation. This feature article highlights recent advancements in methane hydroxylation using thermo-, photo-, and electro-catalytic systems. Through strategically designing the structure of catalysts to control the reactive oxygen species and optimizing reaction parameters, significant progress has been made in enhancing oxygenate selectivity and minimizing overoxidation. A comprehensive understanding of the mechanisms underlying methane hydroxylation with total selectivity offers insights for improving catalyst design and reaction parameter optimization, promoting sustainable methane utilization.
Collapse
Affiliation(s)
- Geqian Fang
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, Lille F-59000, France
| | - Wenjun Yu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
2
|
Nie S, Wu L, Zhang Q, Huang Y, Liu Q, Wang X. High-entropy-perovskite subnanowires for photoelectrocatalytic coupling of methane to acetic acid. Nat Commun 2024; 15:6669. [PMID: 39107324 PMCID: PMC11303686 DOI: 10.1038/s41467-024-50977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
The incorporation of multiple immiscible metals in high-entropy oxides can create the unconventional coordination environment of catalytic active sites, while the high formation temperature of high-entropy oxides results in bulk materials with low specific surface areas. Here we develop the high-entropy LaMnO3-type perovskite-polyoxometalate subnanowire heterostructures with periodically aligned high-entropy LaMnO3 oxides and polyoxometalate under a significantly reduced temperature of 100 oC, which is much lower than the temperature required by state-of-the-art calcination methods for synthesizing high-entropy oxides. The high-entropy LaMnO3-polyoxometalate subnanowires exhibit excellent catalytic activity for the photoelectrochemical coupling of methane into acetic acid under mild conditions (1 bar, 25 oC), with a high productivity (up to 4.45 mmol g‒1cat h‒1) and selectivity ( > 99%). Due to the electron delocalization at the subnanometer scale, the contiguous active sites of high-entropy LaMnO3 and polyoxometalate in the heterostructure can efficiently activate C - H bonds and stabilize the resulted *COOH intermediates, which benefits the in situ coupling of *CH3 and *COOH into acetic acid.
Collapse
Affiliation(s)
- Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yunwei Huang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Hu Z, Zhu J, Chen R, Wu Y, Zheng K, Liu C, Pan Y, Chen J, Sun Y, Xie Y. High-Rate and Selective C 2H 6-to-C 2H 4 Photodehydrogenation Enabled by Partially Oxidized Pd δ+ Species Anchored on ZnO Nanosheets under Mild Conditions. J Am Chem Soc 2024. [PMID: 38842530 DOI: 10.1021/jacs.4c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Photocatalytic C2H6-to-C2H4 conversion is very promising, yet it remains a long-lasting challenge due to the high C-H bond dissociation energy of 420 kJ mol-1. Herein, partially oxidized Pdδ+ species anchored on ZnO nanosheets are designed to weaken the C-H bond by the electron interaction between Pdδ+ species and H atoms, with efforts to achieve high-rate and selective C2H6-to-C2H4 conversion. X-ray photoelectron spectra, Bader charge calculations, and electronic localization function demonstrate the presence of partially oxidized Pdδ+ sites, while quasi-in situ X-ray photoelectron spectra disclose the Pdδ+ sites initially adopt and then donate the photoexcited electrons for C2H6 dehydrogenation. In situ electron paramagnetic resonance spectra, in situ Fourier transform infrared spectra, and trapping agent experiments verify C2H6 initially converts to CH3CH2OH via ·OH radicals, then dehydroxylates to CH3CH2· and finally to C2H4, accompanied by H2 production. Density-functional theory calculations elucidate that loading Pd site can lengthen the C-H bond of C2H6 from 1.10 to 1.12 Å, which favors the C-H bond breakage, affirmed by a lowered energy barrier of 0.04 eV. As a result, the optimized 5.87% Pd-ZnO nanosheets achieve a high C2H4 yield of 16.32 mmol g-1 with a 94.83% selectivity as well as a H2 yield of 14.49 mmol g-1 from C2H6 dehydrogenation in 4 h, outperforming all the previously reported photocatalysts under similar conditions.
Collapse
Affiliation(s)
- Zexun Hu
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Runhua Chen
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wu
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Kai Zheng
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Jiafu Chen
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yongfu Sun
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yi Xie
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Zheng K, Wu M, Zhu J, Zhang W, Liu S, Zhang X, Wu Y, Li L, Li B, Liu W, Hu J, Liu C, Zhu J, Pan Y, Zhou M, Sun Y, Xie Y. Breaking the Activity-Selectivity Trade-off for CH 4-to-C 2H 6 Photoconversion. J Am Chem Soc 2024; 146:12233-12242. [PMID: 38626786 DOI: 10.1021/jacs.4c03546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Photocatalytic conversion of methane (CH4) to ethane (C2H6) has attracted extensive attention from academia and industry. Typically, the traditional oxidative coupling of CH4 (OCM) reaches a high C2H6 productivity, yet the inevitable overoxidation limits the target product selectivity. Although the traditional nonoxidative coupling of CH4 (NOCM) can improve the product selectivity, it still encounters unsatisfied activity, arising from being thermodynamically unfavorable. To break the activity-selectivity trade-off, we propose a conceptually new mechanism of H2O2-triggered CH4 coupling, where the H2O2-derived ·OH radicals are rapidly consumed for activating CH4 into ·CH3 radicals exothermically, which bypasses the endothermic steps of the direct CH4 activation by photoholes and the interaction between ·CH3 and ·OH radicals, affirmed by in situ characterization techniques, femtosecond transient absorption spectroscopy, and density-functional theory calculation. By this pathway, the designed Au-WO3 nanosheets achieve unprecedented C2H6 productivity of 76.3 mol molAu-1 h-1 with 95.2% selectivity, and TON of 1542.7 (TOF = 77.1 h-1) in a self-designed flow reactor, outperforming previously reported photocatalysts regardless of OCM and NOCM pathways. Also, under outdoor natural sunlight irradiation, the Au-WO3 nanosheets exhibit similar activity and selectivity toward C2H6 production, showing the possibility for practical applications. Interestingly, this strategy can be applied to other various photocatalysts (Au-WO3, Au-TiO2, Au-CeO2, Pd-WO3, and Ag-WO3), showing a certain universality. It is expected that the proposed mechanism adds another layer to our understanding of CH4-to-C2H6 conversion.
Collapse
Affiliation(s)
- Kai Zheng
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Mingyu Wu
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Siying Liu
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiaojing Zhang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wu
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Li Li
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Bangwang Li
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wenxiu Liu
- Instruments Center for Physical Science, University of Science and Technology of China, Hefei 230026, China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yongfu Sun
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Liu Z, Xu B, Jiang YJ, Zhou Y, Sun X, Wang Y, Zhu W. Photocatalytic Conversion of Methane: Current State of the Art, Challenges, and Future Perspectives. ACS ENVIRONMENTAL AU 2023; 3:252-276. [PMID: 37743954 PMCID: PMC10515711 DOI: 10.1021/acsenvironau.3c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 09/26/2023]
Abstract
With 28-34 times the greenhouse effect of CO2 over a 100-year period, methane is regarded as the second largest contributor to global warming. Reducing methane emissions is a necessary measure to limit global warming to below 1.5 °C. Photocatalytic conversion of methane is a promising approach to alleviate the atmospheric methane concentrations due to its low energy consumption and environmentally friendly characteristics. Meanwhile, this conversion process can produce valuable chemicals and liquid fuels such as CH3OH, CH3CH2OH, C2H6, and C2H4, cutting down the dependence of chemical production on crude oil. However, the development of photocatalysts with a high methane conversion efficiency and product selectivity remains challenging. In this review, we overview recent advances in semiconductor-based photocatalysts for methane conversion and present catalyst design strategies, including morphology control, heteroatom doping, facet engineering, and cocatalysts modification. To gain a comprehensive understanding of photocatalytic methane conversion, the conversion pathways and mechanisms in these systems are analyzed in detail. Moreover, the role of electron scavengers in methane conversion performance is briefly discussed. Subsequently, we summarize the anthropogenic methane emission scenarios on earth and discuss the application potential of photocatalytic methane conversion. Finally, challenges and future directions for photocatalytic methane conversion are presented.
Collapse
Affiliation(s)
- Zhuo Liu
- State
Key Laboratory of Pollution Control and Resource Reuse, Frontiers
Science Center for Critical Earth Material Cycling, School of the
Environment and State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Biyang Xu
- State
Key Laboratory of Pollution Control and Resource Reuse, Frontiers
Science Center for Critical Earth Material Cycling, School of the
Environment and State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Yu-Jing Jiang
- State
Key Laboratory of Pollution Control and Resource Reuse, Frontiers
Science Center for Critical Earth Material Cycling, School of the
Environment and State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Yang Zhou
- Key
Laboratory for Organic Electronics & Information Displays (KLOEID),
Institute of Advanced Materials (IAM), Nanjing
University of Posts & Telecommunications (NJUPT), Nanjing 210046, China
| | - Xiaolian Sun
- State
Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality
Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Wang
- State
Key Laboratory of Pollution Control and Resource Reuse, Frontiers
Science Center for Critical Earth Material Cycling, School of the
Environment and State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Wenlei Zhu
- State
Key Laboratory of Pollution Control and Resource Reuse, Frontiers
Science Center for Critical Earth Material Cycling, School of the
Environment and State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| |
Collapse
|
6
|
Yang Z, Zhang Q, Song H, Chen X, Cui J, Sun Y, Liu L, Ye J. Partial oxidation of methane by photocatalysis. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
7
|
Song H, Ye J. Direct photocatalytic conversion of methane to value-added chemicals. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Zheng K, Wu Y, Zhu J, Wu M, Jiao X, Li L, Wang S, Fan M, Hu J, Yan W, Zhu J, Sun Y, Xie Y. Room-Temperature Photooxidation of CH 4 to CH 3OH with Nearly 100% Selectivity over Hetero-ZnO/Fe 2O 3 Porous Nanosheets. J Am Chem Soc 2022; 144:12357-12366. [PMID: 35763790 DOI: 10.1021/jacs.2c03866] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The huge challenge for CH4 photooxidation into CH3OH lies in the activation of the inert C-H bond and the inhibition of CH3OH overoxidation. Herein, we design two-dimensional in-plane Z-scheme heterostructures composed of two different metal oxides, with efforts to polarize the symmetrical CH4 molecules and strengthen the O-H bond in CH3OH. As a prototype, we first fabricate ZnO/Fe2O3 porous nanosheets, where high-resolution transmission electron microscopy and in situ X-ray photoelectron spectroscopy affirm their in-plane Z-scheme heterostructure. In situ Fourier transform infrared spectra and in situ electron paramagnetic resonance spectra demonstrate their higher amount of ·CH3 radicals relative to the pristine ZnO porous nanosheets, in which density functional theory calculations validate that the high local charge accumulation on Fe sites lowers the CH4 adsorption energy from 0.14 to 0.06 eV. Moreover, the charge-accumulated Fe sites strengthen the polarity of the O-H bond in CH3OH through transferring electrons to the O atoms, confirmed by the increased barrier from 0.30 to 2.63 eV for *CH3O formation, which inhibits the homolytic O-H bond cleavage and thus suppresses CH3OH overoxidation. Accordingly, the CH3OH selectivity over ZnO/Fe2O3 porous nanosheets reaches up to nearly 100% with an activity of 178.3 μmol-1 gcat-1, outperforming previously reported photocatalysts without adding any oxidants under room temperature and ambient pressure.
Collapse
Affiliation(s)
- Kai Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Mingyu Wu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xingchen Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Li Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shumin Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Minghui Fan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jun Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.,National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Wensheng Yan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.,National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Junfa Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yongfu Sun
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| |
Collapse
|