1
|
Xing P, Belshaw NS, Dong J, Li L, Geng Y, Zheng H, Liu X, Zhu Z. Size and isotope analysis of individual nanoparticles by multi-collector ICP-MS using "event-triggered signal capture" with a high-speed oscilloscope. Talanta 2024; 278:126540. [PMID: 39003837 DOI: 10.1016/j.talanta.2024.126540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Accurate quantitative elemental and isotope analysis of nanoparticles at the single-particle level is crucial for better understanding their origin, properties and behaviors. Single particle inductively coupled plasma-mass spectrometry (spICP-MS) has emerged as a promising technique for nanoparticle analysis. However, challenges persist in obtaining accurate and consistent element profiles and ratios for small-sized nanoparticles by conventional quadrupole (QMS) or time-of-flight mass analyzers (TOF-MS) due to their low level and transient nature. In this paper, we present a novel analytical method for single nanoparticle analysis using multiple collector ICP-MS (MC-ICP-MS) combined with a modern high-speed digital oscilloscope. The single particle events are acquired using an "event-triggered signal capture" (ETSC) technique, which enables the simultaneously capture and visualization of multiple isotopes of transient individual particle profiles with nanosecond time resolution. This greatly facilitates precise and efficient analysis of nanoparticles. The minimum detectable particle size is calculated to be as small as 8 nm (∼1 ag 109Ag) for AgNPs. Based on the 109/107Ag ratios obtained from 2000 particles, the precisions of 109/107Ag ratio measurements on 20 nm, 40 nm, 60 nm, 80 nm and 100 nm were approximately 0.086 (SD), 0.063 (SD), 0.051 (SD), 0.040 (SD), and 0.029 (SD), which is limited by counting statistics of the isotopic signals. Furthermore, the achieved standard error of 109/107Ag can be reduced to sub-permil level (0.7 ‰) even for the measurement of 20 nm AgNPs (N = 17,000). These results demonstrate that the ETSC provides a unique method for isotope analysis of single particles, holding great potential for enhancing our understanding of nanoparticles.
Collapse
Affiliation(s)
- Pengju Xing
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430078, China
| | - Nicholas Stanley Belshaw
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430078, China; Retired, Oxford University, Oxford, OX1 3PR, UK
| | - Junhang Dong
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430078, China; Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430078, China
| | - Lujie Li
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430078, China
| | - Yuanhui Geng
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430078, China
| | - Hongtao Zheng
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430078, China
| | - Xing Liu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430078, China
| | - Zhenli Zhu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430078, China; Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430078, China.
| |
Collapse
|
2
|
Liu M, Wei X, Wu C, Liu J, Wei Y, Wang X, Chen ML, Yang T, Wang JH. Single Cell Phenotypic Analysis for Cancer Stem Cell Identification by Dual-Isotope ICP-QMS. Anal Chem 2023; 95:14447-14454. [PMID: 37695163 DOI: 10.1021/acs.analchem.3c02934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Single cell phenotypic analysis is significant for clinical diagnosis, treatment, and prognosis of cancer. Accurate differentiation of cancer stem cell (CSC) subpopulations from a large number of cancer cells may become a cancer surveillance tool and provide important implications for the development of new CSC-targeted therapy strategies. Herein, we report a new approach based on dual-isotope inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) for single cell phenotypic analysis. High-throughput single cell sampling was achieved by a spiral channel microfluidic chip for cell focusing and alignment, and single cell analysis was performed with time-resolved ICP-QMS by identifying the highly specific probes. This enables the monitoring of two surface protein markers (EpCAM and MUC1) of three cell types, i.e., HeLa, MCF-7, and HepG2, at single cell level. The analysis of breast cancer stem cells further confirmed its capability in distinguishing rare cell phenotypes. The present study provides promising possibilities for adopting ICP-QMS in biomedical investigations in terms of cell typing, stemness identification of tumor cells, and cell heterogeneity analysis.
Collapse
Affiliation(s)
- Meijun Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 322, Shenyang 110819, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 322, Shenyang 110819, China
| | - Chengxin Wu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 322, Shenyang 110819, China
| | - Jinhui Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 322, Shenyang 110819, China
| | - Yujia Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 322, Shenyang 110819, China
| | - Xuesheng Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 322, Shenyang 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 322, Shenyang 110819, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 322, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 322, Shenyang 110819, China
| |
Collapse
|
3
|
Haddad M, Frickenstein A, Wilhelm S. High-Throughput Single-Cell Analysis of Nanoparticle-Cell Interactions. Trends Analyt Chem 2023; 166:117172. [PMID: 37520860 PMCID: PMC10373476 DOI: 10.1016/j.trac.2023.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Understanding nanoparticle-cell interactions at single-nanoparticle and single-cell resolutions is crucial to improving the design of next-generation nanoparticles for safer, more effective, and more efficient applications in nanomedicine. This review focuses on recent advances in the continuous high-throughput analysis of nanoparticle-cell interactions at the single-cell level. We highlight and discuss the current trends in continual flow high-throughput methods for analyzing single cells, such as advanced flow cytometry techniques and inductively coupled plasma mass spectrometry methods, as well as their intersection in the form of mass cytometry. This review further discusses the challenges and opportunities with current single-cell analysis approaches and provides proposed directions for innovation in the high-throughput analysis of nanoparticle-cell interactions.
Collapse
Affiliation(s)
- Majood Haddad
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma, Norman, Oklahoma, 73019, USA
| |
Collapse
|
4
|
Guo Y, Walter V, Vanuytsel S, Parperis C, Sengel JT, Weatherill EE, Wallace MI. Real-Time Monitoring and Control of Nanoparticle Formation. J Am Chem Soc 2023; 145:15809-15815. [PMID: 37458572 PMCID: PMC10375529 DOI: 10.1021/jacs.3c02484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Methods capable of controlling synthesis at the level of an individual nanoparticle are a key step toward improved reproducibility and scalability in engineering complex nanomaterials. To address this, we combine the spatially patterned activation of the photoreductant sodium pyruvate with interferometric scattering microscopy to achieve fast, label-free monitoring and control of hundreds of gold nanoparticles in real time. Individual particle growth kinetics are well-described by a two-step nucleation-autocatalysis model but with a distribution of individual rate constants that change with reaction conditions.
Collapse
Affiliation(s)
- Yujie Guo
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Vivien Walter
- Department of Engineering, King's College London, London WC2R 2LS, U.K
| | - Steven Vanuytsel
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Christopher Parperis
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Jason T Sengel
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Eve E Weatherill
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Mark I Wallace
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| |
Collapse
|
5
|
Rodríguez-Gómez FD, Penon O, Monferrer D, Rivera-Gil P. Classification system for nanotechnology-enabled health products with both scientific and regulatory application. Front Med (Lausanne) 2023; 10:1212949. [PMID: 37601794 PMCID: PMC10433195 DOI: 10.3389/fmed.2023.1212949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/23/2023] [Indexed: 08/22/2023] Open
Abstract
The lack of specific regulatory guidelines for nanotechnology-enabled health products (NHPs) is hampering development and patient access to these innovative technologies. Namely, there is an urgent need for harmonized regulatory definitions and classification systems that allow establishing a standardized framework for NHPs regulatory assessment. In this work, a novel classification system for NHPs is proposed. This classification can be applied for sorting nano-based innovations and regulatory guidelines according to the type of NHPs they address. Said methodology combines scientific and regulatory principles and it is based on the following criteria: principal mode of action, chemical composition, medical purpose and nanomanufacturing approach. This classification system could serve as a useful tool to sensor the state of the art of NHPs which is particularly useful for regulators to support strategy development of regulatory guidelines. Additionally, this tool would also allow manufacturers of NHPs to align their development plans with their applicable guidelines and standards and thus fulfill regulators expectations.
Collapse
Affiliation(s)
- Francisco D. Rodríguez-Gómez
- Asphalion SL, Barcelona, Spain
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Medicine and Life Sciences, Universitat Pompeu Fabra Barcelona Biomedicine Research Park (PRBB) Doctor Aiguader, Barcelona, Spain
| | | | | | - Pilar Rivera-Gil
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Medicine and Life Sciences, Universitat Pompeu Fabra Barcelona Biomedicine Research Park (PRBB) Doctor Aiguader, Barcelona, Spain
| |
Collapse
|
6
|
Frickenstein AN, Mukherjee S, Harcourt T, He Y, Sheth V, Wang L, Malik Z, Wilhelm S. Quantification of monodisperse and biocompatible gold nanoparticles by single-particle ICP-MS. Anal Bioanal Chem 2023; 415:4353-4366. [PMID: 36670192 PMCID: PMC10645370 DOI: 10.1007/s00216-023-04540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
Bioanalytical and biomedical applications often require nanoparticles that exhibit narrow size distributions and biocompatibility. Here, we demonstrate how different synthesis methods affect gold nanoparticle (AuNPs) monodispersity and cytotoxicity. Using single particle inductively coupled plasma mass spectrometry (SP-ICP-MS), we found that the size distribution of AuNPs synthesized with a cetyltrimethylammonium chloride (CTAC) cap was significantly improved compared to AuNPs synthesized with citrate capping agents. We determined an up to 4× decrease in the full width at half maximum (FWHM) value of the normal distributions of AuNP diameter and up to a 12% decrease in relative standard deviation (RSD). While the CTAC-capped AuNPs exhibit narrow nanoparticle size distributions, they are cytotoxic, which limits safe and effective bioanalytical and biomedical applications. We sought to impart biocompatibility to CTAC-capped AuNPs through a PEGylation-based surface ligand exchange. We developed a unique ligand exchange method driven by physical force. We demonstrated the successful PEGylation using various PEG derivatives and used these PEGylated nanoparticles to further bioconjugate nucleic acids and peptides. Using cell viability quantification, we confirmed that the monodisperse PEGylated AuNPs were biocompatible. Our monodisperse and biocompatible nanoparticles may advance safe and effective bioanalytical and biomedical applications of nanomaterials.
Collapse
Affiliation(s)
- Alex N Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Shirsha Mukherjee
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Tekena Harcourt
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Yuxin He
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Zain Malik
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
7
|
Sheth V, Chen X, Mettenbrink EM, Yang W, Jones MA, M’Saad O, Thomas AG, Newport RS, Francek E, Wang L, Frickenstein AN, Donahue ND, Holden A, Mjema NF, Green DE, DeAngelis PL, Bewersdorf J, Wilhelm S. Quantifying Intracellular Nanoparticle Distributions with Three-Dimensional Super-Resolution Microscopy. ACS NANO 2023; 17:8376-8392. [PMID: 37071747 PMCID: PMC10643044 DOI: 10.1021/acsnano.2c12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Super-resolution microscopy can transform our understanding of nanoparticle-cell interactions. Here, we established a super-resolution imaging technology to visualize nanoparticle distributions inside mammalian cells. The cells were exposed to metallic nanoparticles and then embedded within different swellable hydrogels to enable quantitative three-dimensional (3D) imaging approaching electron-microscopy-like resolution using a standard light microscope. By exploiting the nanoparticles' light scattering properties, we demonstrated quantitative label-free imaging of intracellular nanoparticles with ultrastructural context. We confirmed the compatibility of two expansion microscopy protocols, protein retention and pan-expansion microscopy, with nanoparticle uptake studies. We validated relative differences between nanoparticle cellular accumulation for various surface modifications using mass spectrometry and determined the intracellular nanoparticle spatial distribution in 3D for entire single cells. This super-resolution imaging platform technology may be broadly used to understand the nanoparticle intracellular fate in fundamental and applied studies to potentially inform the engineering of safer and more effective nanomedicines.
Collapse
Affiliation(s)
- Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Xuxin Chen
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Evan M. Mettenbrink
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Meredith A. Jones
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Ons M’Saad
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, 06520, USA
- Panluminate, Inc. New Haven, Connecticut, 06516, USA
| | - Abigail G. Thomas
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Rylee S. Newport
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Emmy Francek
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Nathan D. Donahue
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alyssa Holden
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Nathan F. Mjema
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Dixy E. Green
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73126, USA
| | - Paul L. DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73126, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, 06520, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, 06510 USA
- Department of Physics, Yale University, New Haven, Connecticut, 06511, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
| |
Collapse
|
8
|
Jiang H, Wang Y, Tan Z, Hu L, Shi J, Liu G, Yin Y, Cai Y, Jiang G. Dissolved metal ion removal by online hollow fiber ultrafiltration for enhanced size characterization of metal-containing nanoparticles with single-particle ICP-MS. J Environ Sci (China) 2023; 126:494-505. [PMID: 36503776 DOI: 10.1016/j.jes.2022.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 06/17/2023]
Abstract
Single particle-inductively coupled plasma mass spectrometry (SP-ICP-MS) is a powerful tool for size-characterization of metal-containing nanoparticles (MCNs) at environmentally relevant concentrations, however, coexisting dissolved metal ions greatly interfere with the accuracy of particle size analysis. The purpose of this study is to develop an online technique that couples hollow fiber ultrafiltration (HFUF) with SP-ICP-MS to improve the accuracy and size detection limit of MCNs by removing metal ions from suspensions of MCNs. Through systematic optimization of conditions including the type and concentration of surfactant and complexing agent, carrier pH, and ion cleaning time, HFUF completely removes metal ions but retains the MCNs in suspension. The optimal conditions include using a mixture of 0.05 vol.% FL-70 and 0.5 mmol/L Na2S2O3 (pH = 8.0) as the carrier and 4 min as the ion cleaning time. At these conditions, HFUF-SP-ICP-MS accurately determines the sizes of MCNs, and the results agree with the size distribution determined by transmission electron microscopy, even when metal ions also are present in the sample. In addition, reducing the ionic background through HFUF also lowers the particle size detection limit with SP-ICP-MS (e.g., from 28.3 to 14.2 nm for gold nanoparticles). This size-based ion-removal principle provided by HFUF is suitable for both cations (e.g., Ag+) and anions (e.g., AuCl4-) and thus has good versatility compared to ion exchange purification and promising prospects for the removal of salts and macromolecules before single particle analysis.
Collapse
Affiliation(s)
- Haowen Jiang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Wang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami 33199, USA
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami 33199, USA
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Borowska M, Jankowski K. Basic and advanced spectrometric methods for complete nanoparticles characterization in bio/eco systems: current status and future prospects. Anal Bioanal Chem 2023:10.1007/s00216-023-04641-7. [PMID: 36949345 PMCID: PMC10329056 DOI: 10.1007/s00216-023-04641-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/27/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023]
Abstract
The use of engineered nanoparticles in the environment and human life has increased in the last 20 years. The risk assessment concerning application of nanomaterials in biological systems requires their thorough characterization. Understanding the correlations between physicochemical properties of nanoparticles concerning not only the size, particle size distribution, number concentration, degree of aggregation, or agglomeration but also solubility, stability, binding affinity, surface activity, chemical composition, and nanoparticle synthesis yield allows their reliable characterization. Thus, to find the structure-function/property relationship of nanoparticles, multifaceted characterization approach based on more than one analytical technique is required. On the other hand, the increasing demand for identification and characterization of nanomaterials has contributed to the continuous development of spectrometric techniques which enables for their qualitative and quantitative analysis in complex matrices giving reproducible and reliable results. This review is aimed at providing a discussion concerning four main aspects of nanoparticle characterization: nanoparticle synthesis yield, particle size and number concentration, elemental and isotopic composition of nanoparticles, and their surface properties. The conventional and non-conventional spectrometric techniques such as spectrophotometry UV-Vis, mass spectrometric techniques working in conventional and single-particle mode, or those based on optical emission detection systems are described with special emphasis paid on their advantages and drawbacks. The application and recent advances of these methods are also comprehensively reviewed and critically discussed.
Collapse
Affiliation(s)
- Magdalena Borowska
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland.
| | - Krzysztof Jankowski
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| |
Collapse
|
10
|
Tian X, Jiang H, Wang M, Cui W, Guo Y, Zheng L, Hu L, Qu G, Yin Y, Cai Y, Jiang G. Exploring the performance of quadrupole, time-of-flight, and multi-collector ICP-MS for dual-isotope detection on single nanoparticles and cells. Anal Chim Acta 2023; 1240:340756. [PMID: 36641141 DOI: 10.1016/j.aca.2022.340756] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022]
Abstract
To meet the demand for multi-element/isotope analysis at the single nanoparticle (NP) or cell level, different types of inductively coupled plasma mass spectroscopy (ICP-MS) have been used to simultaneously monitor multiple mass-to-charge ratios in single-particle/cell ICP-MS (SP/SC-ICP-MS) analysis. Systematic evaluation and comparison of the performance of these techniques are urgently required. Herein, three ICP-quadrupole (Q)-MS, two ICP-time of flight (TOF)-MS, and one multi-collector (MC)-ICP-MS instruments were employed to simultaneously detect 107Ag and 109Ag on single Ag NPs and Ag-exposed cyanobacteria cells. The evaluation was conducted by comparing the measured event-specific 109Ag:107Ag ratios with the natural ratio. Duration of NP or cell events and time resolution in the peak hopping mode were the main factors affecting the performance of ICP-Q-MS. Under the optimal condition (100 μs for both dwell time and settling time), less than 45% of the NP or cell events had a 109Ag:107Ag ratio deviating <30% from the natural ratio. Most events obtained via ICP-TOF-MS were paired events with both isotopes detected. For large-size NPs and cells with high exposure levels, nearly 80% of the events had a ratio deviation within ±30%. MC-ICP-MS performed particularly well in isotope determination with all the events having a ratio deviation within ±5%. For ICP-TOF-MS and MC-ICP-MS, the signal intensity of the events was the main factor affecting the accuracy of the measured 109Ag:107Ag ratios due to the counting statistics. The established methods and results provide insight on the analyses of two elements/isotopes or more on single NPs or cells. Based on the comparison of the advantages and limitations of these instruments, this study provides a critical reference for future multi-element/isotope SP/SC-ICP-MS analyses.
Collapse
Affiliation(s)
- Xiangwei Tian
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haowen Jiang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenbin Cui
- R&D Center, Shandong Yingsheng Biotechnology Co., Ltd., Beijing, 100088, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
11
|
Mettenbrink EM, Yang W, Wilhelm S. Bioimaging with Upconversion Nanoparticles. ADVANCED PHOTONICS RESEARCH 2022; 3:2200098. [PMID: 36686152 PMCID: PMC9858112 DOI: 10.1002/adpr.202200098] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bioimaging enables the spatiotemporal visualization of biological processes at various scales empowered by a range of different imaging modalities and contrast agents. Upconversion nanoparticles (UCNPs) represent a distinct type of such contrast agents with the potential to transform bioimaging due to their unique optical properties and functional design flexibilities. This review explores and discusses the opportunities, challenges, and limitations that UCNPs exhibit as bioimaging probes and highlights applications with spatial dimensions ranging from the single nanoparticle level to cellular, tissue, and whole animal imaging. We further summarized recent advancements in bioimaging applications enabled by UCNPs, including super-resolution techniques and multimodal imaging methods, and provide a perspective on the future potential of UCNP-based technologies in bioimaging research and clinical translation. This review may provide a valuable resource for researchers interested in exploring and applying UCNP-based bioimaging technologies.
Collapse
Affiliation(s)
- Evan M. Mettenbrink
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma, Norman, Oklahoma, 73019, USA
| |
Collapse
|
12
|
Chun KH, Lum JTS, Leung KSY. Suppression of spectral interference in dual-elemental analysis of single particles using triple quadrupole ICP-MS. Anal Chim Acta 2022; 1226:340258. [DOI: 10.1016/j.aca.2022.340258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
|
13
|
Koolen CD, Torrent L, Agarwal A, Meili-Borovinskaya O, Gasilova N, Li M, Luo W, Züttel A. High-Throughput Sizing, Counting, and Elemental Analysis of Anisotropic Multimetallic Nanoparticles with Single-Particle Inductively Coupled Plasma Mass Spectrometry. ACS NANO 2022; 16:11968-11978. [PMID: 35876240 DOI: 10.1021/acsnano.2c01840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoparticles (NPs) have wide applications in physical and chemical processes, and their individual properties (e.g., shape, size, and composition) and ensemble properties (e.g., distribution and homogeneity) can significantly affect the performance. However, the extrapolation of information from a single particle to the ensemble remains a challenge due to the lack of suitable techniques. Herein, we report a high-throughput single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS)-based protocol to simultaneously determine the size, count, and elemental makeup of several thousands of (an)isotropic NPs independent of composition, size, shape, and dispersing medium with atomistic precision in a matter of minutes. By introducing highly diluted nebulized aqueous dispersions of NPs directly into the plasma torch of an ICP-MS instrument, individual NPs are atomized and ionized, resulting in ion plumes that can be registered by the mass analyzer. Our proposed protocol includes a phase transfer step for NPs synthesized in organic media, which are otherwise incompatible with ICP-MS instruments, and a modeling tool that extends the measurement of particle morphologies beyond spherical to include cubes, truncated octahedra, and tetrahedra, exemplified by anisotropic Cu NPs. Finally, we demonstrate the versatility of our method by studying the doping of bulk-dilute (<1 at. %) CuAg nanosurface alloys as well as the ease with which ensemble composition distributions of multimetallic NPs (i.e., CuPd and CuPdAg) can be obtained providing different insights in the chemistry of nanomaterials. We believe our combined protocol could deepen the understanding of macroscopic phenomena involving nanoscale structures by bringing about a statistics renaissance in research areas including, among others, materials science, materials chemistry, (nano)physics, (nano)photonics, catalysis, and electrochemistry.
Collapse
Affiliation(s)
- Cedric David Koolen
- Laboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL) Valais/Wallis, Energypolis, Sion 1951, Switzerland
- Empa Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Laura Torrent
- Bioenergy and Catalysis Laboratory (LBK), Energy and Environment Research Division (ENE), Paul Scherrer Institute (PSI), Villigen 5232, Switzerland
| | - Ayush Agarwal
- Bioenergy and Catalysis Laboratory (LBK), Energy and Environment Research Division (ENE), Paul Scherrer Institute (PSI), Villigen 5232, Switzerland
- School of Architecture, Civil and Environmental Engineering (ENAC IIE GR-LUD), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1035, Switzerland
| | | | - Natalia Gasilova
- Mass Spectrometry and Elemental Analysis Platform (MSEAP), Institute of Chemical Sciences and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL) Valais/Wallis, Energypolis, Sion 1951, Switzerland
| | - Mo Li
- Laboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL) Valais/Wallis, Energypolis, Sion 1951, Switzerland
- Empa Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Wen Luo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Andreas Züttel
- Laboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL) Valais/Wallis, Energypolis, Sion 1951, Switzerland
- Empa Materials Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
14
|
Ding K, Liang S, Xie C, Wan Q, Jin C, Wang S, Tang YT, Zhang M, Qiu R. Discrimination and Quantification of Soil Nanoparticles by Dual-Analyte Single Particle ICP-QMS. Anal Chem 2022; 94:10745-10753. [PMID: 35857440 DOI: 10.1021/acs.analchem.2c01379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study presents the new application of dual-analyte single particle inductively coupled plasma quadrupole mass spectrometry (spICP-QMS) to the discrimination and quantification of two typical soil nanoparticles (kaolinite and goethite nanoparticles, abbr. KNPs and GNPs) in three samples (SA, SB, and SC) with three detection events (Al unpaired event, Fe unpaired event, and paired event). SA was mainly composed of KNPs with a concentration of 28 443 ± 817 particle mL-1 and a mean particle size of 140.7 ± 0.2 nm. SB was mainly composed of GNPs with a concentration of 39 283 ± 702 particle mL-1 and a mean particle size of 141.8 ± 2.9. In SC, the concentrations of KNPs and GNPs were 22 4541 ± 1401 and 70 604 ± 1623 particle mL-1, respectively, and the mean particle sizes of KNPs and GNPs were 140.7 ± 0.2 and 60.2 ± 0.3 nm, respectively. The accuracy of dual-analyte spICP-QMS was determined by spiking experiments, comparing these results with the measurements of other techniques, analyzing the samples in different SA and SB proportions and in different SC concentrations. Our results demonstrated that the dual-analyte spICP-QMS is a promising approach to distinguishing different kinds of natural NPs in soils.
Collapse
Affiliation(s)
- Kengbo Ding
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.,Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Shaoxia Liang
- PerkinElmer, Inc., Guangzhou 510370, People's Republic of China
| | - Candie Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Quan Wan
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.,Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.,Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.,Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Miaoyue Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.,Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.,Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, People's Republic of China
| |
Collapse
|
15
|
Donahue ND, Sheth V, Frickenstein AN, Holden A, Kanapilly S, Stephan C, Wilhelm S. Absolute Quantification of Nanoparticle Interactions with Individual Human B Cells by Single Cell Mass Spectrometry. NANO LETTERS 2022; 22:4192-4199. [PMID: 35510841 PMCID: PMC9486247 DOI: 10.1021/acs.nanolett.2c01037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report on the absolute quantification of nanoparticle interactions with individual human B cells using quadrupole-based inductively coupled plasma mass spectrometry (ICP-MS). This method enables the quantification of nanoparticle-cell interactions at single nanoparticle and single cell levels. We demonstrate the efficient and accurate detection of individually suspended B cells and found an ∼100-fold higher association of colloidally stable positively charged nanoparticles with single B cells than neutrally charged nanoparticles. We confirmed that these nanoparticles were internalized by individual B cells and determined that the internalization occurred via energy-dependent pathways consistent with endocytosis. Using dual analyte ICP-MS, we determined that >80% of single B cells were positive for nanoparticles. Our study demonstrates an ICP-MS workflow for the absolute quantification of nanoparticle-cell interactions with single cell and single nanoparticle resolution. This unique workflow could inform the rational design of various nanomaterials for controlling cellular interactions, including immune cell-nanoparticle interactions.
Collapse
Affiliation(s)
- Nathan D. Donahue
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alyssa Holden
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | | | | | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
| |
Collapse
|
16
|
Resano M, Aramendía M, García-Ruiz E, Bazo A, Bolea-Fernandez E, Vanhaecke F. Living in a transient world: ICP-MS reinvented via time-resolved analysis for monitoring single events. Chem Sci 2022; 13:4436-4473. [PMID: 35656130 PMCID: PMC9020182 DOI: 10.1039/d1sc05452j] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
After 40 years of development, inductively coupled plasma-mass spectrometry (ICP-MS) can hardly be considered as a novel technique anymore. ICP-MS has become the reference when it comes to multi-element bulk analysis at (ultra)trace levels, as well as to isotope ratio determination for metal(loid)s. However, over the last decade, this technique has managed to uncover an entirely new application field, providing information in a variety of contexts related to the individual analysis of single entities (e.g., nanoparticles, cells, or micro/nanoplastics), thus addressing new societal challenges. And this profound expansion of its application range becomes even more remarkable when considering that it has been made possible in an a priori simple way: by providing faster data acquisition and developing the corresponding theoretical substrate to relate the time-resolved signals thus obtained with the elemental composition of the target entities. This review presents the underlying concepts behind single event-ICP-MS, which are needed to fully understand its potential, highlighting key areas of application (e.g., single particle-ICP-MS or single cell-ICP-MS) as well as of future development (e.g., micro/nanoplastics).
Collapse
Affiliation(s)
- M Resano
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - M Aramendía
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
- Centro Universitario de la Defensa de Zaragoza Carretera de Huesca s/n 50090 Zaragoza Spain
| | - E García-Ruiz
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - A Bazo
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - E Bolea-Fernandez
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit Campus Sterre, Krijgslaan 281-S12 9000 Ghent Belgium
| | - F Vanhaecke
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit Campus Sterre, Krijgslaan 281-S12 9000 Ghent Belgium
| |
Collapse
|
17
|
Yang W, Wang L, Fang M, Sheth V, Zhang Y, Alyssa M. Holden, Donahue ND, Green DE, Frickenstein AN, Mettenbrink EM, Schwemley TA, Francek ER, Haddad M, Hossen MN, Mukherjee S, Wu S, DeAngelis PL, Wilhelm S. Nanoparticle Surface Engineering with Heparosan Polysaccharide Reduces Serum Protein Adsorption and Enhances Cellular Uptake. NANO LETTERS 2022; 22:2103-2111. [PMID: 35166110 PMCID: PMC9540343 DOI: 10.1021/acs.nanolett.2c00349] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Nanoparticle modification with poly(ethylene glycol) (PEG) is a widely used surface engineering strategy in nanomedicine. However, since the artificial PEG polymer may adversely impact nanomedicine safety and efficacy, alternative surface modifications are needed. Here, we explored the "self" polysaccharide heparosan (HEP) to prepare colloidally stable HEP-coated nanoparticles, including gold and silver nanoparticles and liposomes. We found that the HEP-coating reduced the nanoparticle protein corona formation as efficiently as PEG coatings upon serum incubation. Liquid chromatography-mass spectrometry revealed the protein corona profiles. Heparosan-coated nanoparticles exhibited up to 230-fold higher uptake in certain innate immune cells, but not in other tested cell types, than PEGylated nanoparticles. No noticeable cytotoxicity was observed. Serum proteins did not mediate the high cell uptake of HEP-coated nanoparticles. Our work suggests that HEP polymers may be an effective surface modification technology for nanomedicines to safely and efficiently target certain innate immune cells.
Collapse
Affiliation(s)
- Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Yushan Zhang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Alyssa M. Holden
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Nathan D. Donahue
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Dixy E. Green
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Evan M. Mettenbrink
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Tyler A. Schwemley
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Emmy R. Francek
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Majood Haddad
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Md Nazir Hossen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA, 95757, USA
| | - Shirsha Mukherjee
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Paul L. DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma, Norman, Oklahoma, 73019, USA
| |
Collapse
|