1
|
Li C, Wang R, Zhang S, Qin Y, Ying Z, Wei B, Dai Z, Guo F, Chen W, Zhang R, Wang B, Wang X, Song F. Observation of giant non-reciprocal charge transport from quantum Hall states in a topological insulator. NATURE MATERIALS 2024; 23:1208-1213. [PMID: 38641696 DOI: 10.1038/s41563-024-01874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Symmetry breaking in quantum materials is of great importance and can lead to non-reciprocal charge transport. Topological insulators provide a unique platform to study non-reciprocal charge transport due to their surface states, especially quantum Hall states under an external magnetic field. Here we report the observation of non-reciprocal charge transport mediated by quantum Hall states in devices composed of the intrinsic topological insulator Sn-Bi1.1Sb0.9Te2S, which is attributed to asymmetric scattering between quantum Hall states and Dirac surface states. A giant non-reciprocal coefficient of up to 2.26 × 105 A-1 is found. Our work not only reveals the properties of non-reciprocal charge transport of quantum Hall states in topological insulators but also paves the way for future electronic devices.
Collapse
Affiliation(s)
- Chunfeng Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Rui Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
- Hefei National Laboratory, Hefei, China
| | - Shuai Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China.
| | - Yuyuan Qin
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Zhe Ying
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Boyuan Wei
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Zheng Dai
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Fengyi Guo
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Wei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Rong Zhang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
- Department of Physics, Xiamen University, Xiamen, China
| | - Baigeng Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China
| | - Xuefeng Wang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Fengqi Song
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing, China.
- Institute of Atom Manufacturing, Nanjing University, Suzhou, China.
| |
Collapse
|
2
|
Zhang H, Chen X, Wang T, Huang X, Chen X, Shao YT, Meng F, Meisenheimer P, N'Diaye A, Klewe C, Shafer P, Pan H, Jia Y, Crommie MF, Martin LW, Yao J, Qiu Z, Muller DA, Birgeneau RJ, Ramesh R. Room-Temperature, Current-Induced Magnetization Self-Switching in A Van Der Waals Ferromagnet. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308555. [PMID: 38016700 DOI: 10.1002/adma.202308555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/30/2023] [Indexed: 11/30/2023]
Abstract
2D layered materials with broken inversion symmetry are being extensively pursued as spin source layers to realize high-efficiency magnetic switching. Such low-symmetry layered systems are, however, scarce. In addition, most layered magnets with perpendicular magnetic anisotropy show a low Curie temperature. Here, the experimental observation of spin-orbit torque magnetization self-switching at room temperature in a layered polar ferromagnetic metal, Fe2.5 Co2.5 GeTe2 is reported. The spin-orbit torque is generated from the broken inversion symmetry along the c-axis of the crystal. These results provide a direct pathway toward applicable 2D spintronic devices.
Collapse
Affiliation(s)
- Hongrui Zhang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Xiang Chen
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Tianye Wang
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Xiaoxi Huang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Xianzhe Chen
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yu-Tsun Shao
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Fanhao Meng
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Peter Meisenheimer
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Alpha N'Diaye
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christoph Klewe
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Padraic Shafer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hao Pan
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Yanli Jia
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Michael F Crommie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Departments of Materials Science and NanoEngineering, Chemistry, and Physics and Astronomy, Rice University, Houston, TX, 77005, USA
- Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA
| | - Jie Yao
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ziqiang Qiu
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Robert J Birgeneau
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Physics, University of California, Berkeley, CA, 94720, USA
- Department of Physics and Astronomy, Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|