1
|
Zhou W, Yang F, Zhang X. Roles of M1 Macrophages and Their Extracellular Vesicles in Cancer Therapy. Cells 2024; 13:1428. [PMID: 39273000 PMCID: PMC11394047 DOI: 10.3390/cells13171428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are inflammatory cells that are important components of the tumor microenvironment. TAMs are functionally heterogeneous and divided into two main subpopulations with distinct and opposite functions: M1 and M2 macrophages. The secretory function of TAMs is essential for combating infections, regulating immune responses, and promoting tissue repair. Extracellular vesicles (EVs) are nanovesicles that are secreted by cells. They play a crucial role in mediating intercellular information transfer between cells. EVs can be secreted by almost all types of cells, and they contain proteins, microRNAs, mRNAs, and even long non-coding RNAs (lncRNAs) that have been retained from the parental cell through the process of biogenesis. EVs can influence the function and behavior of target cells by delivering their contents, thus reflecting, to some extent, the characteristics of their parental cells. Here, we provide an overview of the role of M1 macrophages and their EVs in cancer therapy by exploring the impact of M1 macrophage-derived EVs (M1-EVs) on tumors by transferring small microRNAs. Additionally, we discuss the potential of M1-EVs as drug carriers and the possibility of reprogramming M2 macrophages into M1 macrophages for disease treatment. We propose that M1-EVs play a crucial role in cancer therapy by transferring microRNAs and loading them with drugs. Reprogramming M2 macrophages into M1 macrophages holds great promise in the treatment of cancers.
Collapse
Affiliation(s)
- Wenli Zhou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Xiuzhen Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
2
|
Li T, Wang Y, Zhou D. Manipulation of protein corona for nanomedicines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1982. [PMID: 39004508 DOI: 10.1002/wnan.1982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
Nanomedicines have significantly advanced the development of diagnostic and therapeutic strategies for various diseases, while they still encounter numerous challenges. Upon entry into the human body, nanomedicines interact with biomolecules to form a layer of proteins, which is defined as the protein corona that influences the biological properties of nanomedicines. Traditional approaches have primarily focused on designing stealthy nanomedicines to evade biomolecule adsorption; however, due to the intricacies of the biological environment within body, this method cannot completely prevent biomolecule adsorption. As research on the protein corona progresses, manipulating the protein corona to modulate the in vivo behaviors of nanomedicines has become a research focus. In this review, modern strategies focused on influencing the biological efficacy of nanomedicines in vivo by manipulating protein corona, along with their wide-ranging applications across diverse diseases are critically summarized, highlighted and discussed. Finally, future directions for this important yet challenging research area are also briefly discussed. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Tao Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Southern Medical University, Guangzhou, People's Republic of China
| | - Yupeng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Southern Medical University, Guangzhou, People's Republic of China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
3
|
Chen W, Tang C, Chen G, Li J, Li N, Zhang H, Di L, Wang R. Boosting Checkpoint Immunotherapy with Biomimetic Nanodrug Delivery Systems. Adv Healthc Mater 2024; 13:e2304284. [PMID: 38319961 DOI: 10.1002/adhm.202304284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/26/2024] [Indexed: 02/08/2024]
Abstract
Immune checkpoint blockade (ICB) has achieved unprecedented progress in tumor immunotherapy by blocking specific immune checkpoint molecules. However, the high biodistribution of the drug prevents it from specifically targeting tumor tissues, leading to immune-related adverse events. Biomimetic nanodrug delivery systems (BNDSs) readily applicable to ICB therapy have been widely developed at the preclinical stage to avoid immune-related adverse events. By exploiting or mimicking complex biological structures, the constructed BNDS as a novel drug delivery system has good biocompatibility and certain tumor-targeting properties. Herein, the latest findings regarding the aforementioned therapies associated with ICB therapy are highlighted. Simultaneously, prospective bioinspired engineering strategies can be designed to overcome the four-level barriers to drug entry into lesion sites. In future clinical translation, BNDS-based ICB combination therapy represents a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Wenjing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Chenlu Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Guijin Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Jiale Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Nengjin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Hanwen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| |
Collapse
|
4
|
Li W, Ye Q, Jiang Z, Xia D, Yan Z, Wang D, Chen Y, Cao T, Wang J, Lin C, Yang H, Deng J, Lin J. A cross-linked macropore hydrogel based on M1 macrophage lysate and alginate regulates tumor-associated macrophages for the treatment of melanoma. Int J Biol Macromol 2024; 269:132089. [PMID: 38705331 DOI: 10.1016/j.ijbiomac.2024.132089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Pro-inflammatory M1 macrophages possess the ability to change the immunosuppressive tumor microenvironment by releasing various inflammatory factors simultaneously, which can effectively inhibit tumor progression and relapse. Promoting macrophage polarization towards M1 may be an effective way to treat Melanoma. However, the risk of cytokine storm caused by the proliferation and excessive activation of M1 macrophages greatly limits it as a biosafety therapeutic strategy in anti-tumor immunotherapy. Therefore, how to engineer natural M1 macrophage to a biocompatible biomaterial that maintains the duration time of tumor suppressive property duration time still remains a huge challenge. To achieve this goal, we developed an injectable macroporous hydrogel (M1LMHA) using natural M1 macrophage lysates and alginate as raw materials. M1LMHA had excellent biocompatibility, adjustable degradation rate and could sustainably release varieties of natural inflammatory factors, such as tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), and interleukin-12 (IL-12), etc. M1LMHA could repolarize anti-inflammatory M2 macrophages to M1 macrophages by the synergistic effect of released tiny inflammatory factors via the NF-κB pathway. This study supported that M1LMHA might be an effective and safe tool to activate tumor-associated immune cells, improving the efficiency of anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Wanyu Li
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524003, China; Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Qingbang Ye
- The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Zhonghao Jiang
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524003, China; Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Dong Xia
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524003, China; Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zhuo Yan
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524003, China; Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Dan Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Yanan Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Tianshou Cao
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jilong Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Chihao Lin
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Huiling Yang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Junjie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Jiantao Lin
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524003, China; Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
5
|
Kuang Y, Li Z, Chen H, Wang X, Wen Y, Chen J. Advances in self-assembled nanotechnology in tumor therapy. Colloids Surf B Biointerfaces 2024; 237:113838. [PMID: 38484445 DOI: 10.1016/j.colsurfb.2024.113838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/08/2024]
Abstract
The emergence of nanotechnology has opened up a new way for tumor therapy. Among them, self-assembled nanotechnology has received extensive attention in medicine due to its simple preparation process, high drug-loading capacity, low toxicity, and low cost. This review mainly summarizes the preparation methods of self-assembled nano-delivery systems, as well as the self-assembled mechanism of carrier-free nanomedicine, polymer-carried nanomedicine, polypeptide, and metal drugs, and their applications in tumor therapy. In addition, we discuss the advantages and disadvantages, future challenges, and opportunities of these self-assembled nanomedicines, which provide important references for the development and application of self-assembled nanotechnology in the field of medical therapy.
Collapse
Affiliation(s)
- Yanting Kuang
- Inner Mongolia Medical University, No. 5, Xinhua Road, Hohhot, Inner Mongolia 010059, China
| | - Zhaokai Li
- Inner Mongolia Medical University, No. 5, Xinhua Road, Hohhot, Inner Mongolia 010059, China
| | - Hang Chen
- Shanghai Wei Er Lab, Shanghai 201707, China
| | - Xinyu Wang
- Shanghai Wei Er Lab, Shanghai 201707, China
| | - Yan Wen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, No.415, Fengyang Road, Shanghai 200003, China.
| | - Jianming Chen
- Inner Mongolia Medical University, No. 5, Xinhua Road, Hohhot, Inner Mongolia 010059, China; Shanghai Wei Er Lab, Shanghai 201707, China.
| |
Collapse
|
6
|
Wang L, He S, Liu R, Xue Y, Quan Y, Shi R, Yang X, Lin Q, Sun X, Zhang Z, Zhang L. A pH/ROS dual-responsive system for effective chemoimmunotherapy against melanoma via remodeling tumor immune microenvironment. Acta Pharm Sin B 2024; 14:2263-2280. [PMID: 38799639 PMCID: PMC11119573 DOI: 10.1016/j.apsb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 05/29/2024] Open
Abstract
Chemotherapeutics can induce immunogenic cell death (ICD) in tumor cells, offering new possibilities for cancer therapy. However, the efficiency of the immune response generated is insufficient due to the inhibitory nature of the tumor microenvironment (TME). Here, we developed a pH/reactive oxygen species (ROS) dual-response system to enhance chemoimmunotherapy for melanoma. The system productively accumulated in tumors by specific binding of phenylboronic acid (PBA) to sialic acids (SA). The nanoparticles (NPs) rapidly swelled and released quercetin (QUE) and doxorubicin (DOX) upon the stimulation of tumor microenvironment (TME). The in vitro and in vivo results consistently demonstrated that the NPs improved anti-tumor efficacy and prolonged survival of mice, significantly enhancing the effects of the combination. Our study revealed DOX was an ICD inducer, stimulating immune responses and promoting maturation of dendritic cells (DCs). Additionally, QUE served as a TME regulator by inhibiting the cyclooxygenase-2 (COX2)-prostaglandin E2 (PGE2) axis, which influenced various immune cells, including increasing cytotoxic T cells (CLTs) infiltration, promoting M1 macrophage polarization, and reducing regulatory T cells (Tregs) infiltration. The combination synergistically facilitated chemoimmunotherapy efficacy by remodeling the immunosuppressive microenvironment. This work presents a promising strategy to increase anti-tumor efficiency of chemotherapeutic agents.
Collapse
Affiliation(s)
- Leilei Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shanshan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Quan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rongying Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xueying Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qing Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Wang Y, Wang L, Li T, Ouyang M, Xiong H, Zhou D. Bimetallic nanoparticles as cascade sensitizing amplifiers for low-dose and robust cancer radio-immunotherapy. Acta Pharm Sin B 2024; 14:1787-1800. [PMID: 38572091 PMCID: PMC10985033 DOI: 10.1016/j.apsb.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 04/05/2024] Open
Abstract
Radiotherapy (RT) is one of the most feasible and routinely used therapeutic modalities for treating malignant tumors. In particular, immune responses triggered by RT, known as radio-immunotherapy, can partially inhibit the growth of distantly spreading tumors and recurrent tumors. However, the safety and efficacy of radio-immunotherapy is impeded by the radio-resistance and poor immunogenicity of tumor. Herein, we report oxaliplatin (IV)-iron bimetallic nanoparticles (OXA/Fe NPs) as cascade sensitizing amplifiers for low-dose and robust radio-immunotherapy. The OXA/Fe NPs exhibit tumor-specific accumulation and activation of OXA (II) and Fe2+ in response to the reductive and acidic microenvironment within tumor cells. The cascade reactions of the released metallic drugs can sensitize RT by inducing DNA damage, increasing ROS and O2 levels, and amplifying the immunogenic cell death (ICD) effect after RT to facilitate potent immune activation. As a result, OXA/Fe NPs-based low-dose RT triggered a robust immune response and inhibited the distant and metastatic tumors effectively by a strong abscopal effect. Moreover, a long-term immunological memory effect to protect mice from tumor rechallenging is observed. Overall, the bimetallic NPs-based cascade sensitizing amplifier system offers an efficient radio-immunotherapy regimen that addresses the key challenges.
Collapse
Affiliation(s)
- Yupeng Wang
- Department of Ultrasonic Diagnosis, Zhujiang Hospital, Key Laboratory of Mental Health of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lina Wang
- Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024, China
| | - Tao Li
- Department of Ultrasonic Diagnosis, Zhujiang Hospital, Key Laboratory of Mental Health of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Min Ouyang
- Department of Ultrasonic Diagnosis, Zhujiang Hospital, Key Laboratory of Mental Health of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hejian Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Dongfang Zhou
- Department of Ultrasonic Diagnosis, Zhujiang Hospital, Key Laboratory of Mental Health of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Liu Y, Xu Y, Wang Y, Lv J, Wang K, Tang Z. Hindering the unlimited proliferation of tumor cells synergizes with destroying tumor blood vessels for effective cancer treatment. Biomater Sci 2024; 12:1294-1306. [PMID: 38258411 DOI: 10.1039/d3bm01858j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The rational combination of chemotherapy drugs can improve the curative effect of cancer treatment. As two early recognized tumor hallmarks, the limitless replicative potential of tumor cells is essential for the development of their malignant growth state, and sustained angiogenesis is a prerequisite to the rapid growth of tumors. Based on this, we propose a combination therapy that hinders the unlimited proliferation of tumor cells and destroys tumor blood vessels. Herein, 7-ethyl-10-hydroxycamptothecin (SN38), a typical topoisomerase I inhibitor, was bonded to poly(L-glutamic acid) (PLG) to prepare the nanodrug SN38-NPs, which hinders the unlimited proliferation of tumor cells. A poly(L-glutamic acid)-combretastatin A4 conjugate (CA4-NPs), a representative vascular disrupting agent (VDA), was used to selectively disrupt the tumor blood vessels, cutting off the necessary nutrients and oxygen for the proliferation of tumor cells. In the 4T1 tumor model with an initial volume of about 400 mm3, the combined treatment of SN38-NPs and CA4-NPs showed an excellent cancer treatment effect with a tumor suppression rate of 94.3% and a synergistic interaction (Q = 1.25). Our study provides a new combination therapy approach for chemotherapy, with the hope of further improving the curative effect of anti-cancer therapy.
Collapse
Affiliation(s)
- Ya Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yajun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Ying Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jianlin Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kun Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Paurević M, Šrajer Gajdošik M, Ribić R. Mannose Ligands for Mannose Receptor Targeting. Int J Mol Sci 2024; 25:1370. [PMID: 38338648 PMCID: PMC10855088 DOI: 10.3390/ijms25031370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The mannose receptor (MR, CD 206) is an endocytic receptor primarily expressed by macrophages and dendritic cells, which plays a critical role in both endocytosis and antigen processing and presentation. MR carbohydrate recognition domains (CRDs) exhibit a high binding affinity for branched and linear oligosaccharides. Furthermore, multivalent mannose presentation on the various templates like peptides, proteins, polymers, micelles, and dendrimers was proven to be a valuable approach for the selective and efficient delivery of various therapeutically active agents to MR. This review provides a detailed account of the most relevant and recent aspects of the synthesis and application of mannosylated bioactive formulations for MR-mediated delivery in treatments of cancer and other infectious diseases. It further highlights recent findings related to the necessary structural features of the mannose-containing ligands for successful binding to the MR.
Collapse
Affiliation(s)
- Marija Paurević
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia; (M.P.); (M.Š.G.)
| | - Martina Šrajer Gajdošik
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia; (M.P.); (M.Š.G.)
| | - Rosana Ribić
- Department of Nursing, University Center Varaždin, University North, Jurja Križanića 31b, HR-42000 Varaždin, Croatia
| |
Collapse
|
10
|
Luo X. Nanobiotechnology-based strategies in alleviation of chemotherapy-mediated cardiotoxicity. ENVIRONMENTAL RESEARCH 2023; 238:116989. [PMID: 37633635 DOI: 10.1016/j.envres.2023.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The cardiovascular diseases have been among the most common malignancies and the first leading cause of death, even higher than cancer. The cardiovascular diseases can be developed as a result of cardiac dysfunction and damages to heart tissue. Exposure to toxic agents and chemicals that induce cardiac dysfunction has been of interest in recent years. The chemotherapy drugs are commonly used for cancer therapy and in these patients, cardiovascular diseases have been widely observed that is due to negative impact of chemotherapy drugs on the heart. These drugs increase oxidative damage and inflammation, and mediate apoptosis and cardiac dysfunction. Hence, nanotechnological approaches have been emerged as new strategies in attenuation of chemotherapy-mediated cardiotoxicity. The first advantage of nanoparticles can be explored in targeted and selective delivery of drugs to reduce their accumulation in heart tissue. Nanostructures can deliver bioactive and therapeutic compounds in reducing cardiotoxicity and alleviation toxic impacts of chemotherapy drugs. The functionalization of nanostructures increases their selectivity against tumor cells and reduces accumulation of drugs in heart tissue. The bioplatforms such as chitosan and alginate nanostructures can also deliver chemotherapy drugs and reduce their cardiotoxicity. The function of nanostructures is versatile in reduction of cardiotoxicity by chemotherapy drugs and new kind of platforms is hydrogels that can mediate sustained release of drug to reduce its toxic impacts on heart tissue. The various kinds of nanoplatforms have been developed for alleviation of cardiotoxicity and their future clinical application depends on their biocompatibility. High concentration level of chitosan nanoparticles can stimulate cardiotoxicity. Therefore, if nanotechnology is going to be deployed for drug delivery and reducing cardiotoxicity, the first pre-requirement is to lack toxicity on normal cells and have high biocompatibility.
Collapse
Affiliation(s)
- Xuanming Luo
- Department of General Surgery, Zhongshan Hospital, Fudan University, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China.
| |
Collapse
|
11
|
Liu H, Lv H, Duan X, Du Y, Tang Y, Xu W. Advancements in Macrophage-Targeted Drug Delivery for Effective Disease Management. Int J Nanomedicine 2023; 18:6915-6940. [PMID: 38026516 PMCID: PMC10680479 DOI: 10.2147/ijn.s430877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophages play a crucial role in tissue homeostasis and the innate immune system. They perform essential functions such as presenting antigens, regulating cytokines, and responding to inflammation. However, in diseases like cancer, cardiovascular disorders, and autoimmune conditions, macrophages undergo aberrant polarization, which disrupts tissue regulation and impairs their normal behavior. To address these challenges, there has been growing interest in developing customized targeted drug delivery systems specifically designed for macrophage-related functions in different anatomical locations. Nanomedicine, utilizing nanoscale drug systems, offers numerous advantages including improved stability, enhanced pharmacokinetics, controlled release kinetics, and precise temporal drug delivery. These advantages hold significant promise in achieving heightened therapeutic efficacy, specificity, and reduced side effects in drug delivery and treatment approaches. This review aims to explore the roles of macrophages in major diseases and present an overview of current strategies employed in targeted drug delivery to macrophages. Additionally, this article critically evaluates the design of macrophage-targeted delivery systems, highlighting limitations and discussing prospects in this rapidly evolving field. By assessing the strengths and weaknesses of existing approaches, we can identify areas for improvement and refinement in macrophage-targeted drug delivery.
Collapse
Affiliation(s)
- Hanxiao Liu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People’s Republic of China
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Hui Lv
- Department of Pharmacy, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People’s Republic of China
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Xuehui Duan
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Yan Du
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Yixuan Tang
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Wei Xu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People’s Republic of China
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| |
Collapse
|
12
|
Trimaille T, Verrier B. Copolymer Micelles: A Focus on Recent Advances for Stimulus-Responsive Delivery of Proteins and Peptides. Pharmaceutics 2023; 15:2481. [PMID: 37896241 PMCID: PMC10609739 DOI: 10.3390/pharmaceutics15102481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Historically used for the delivery of hydrophobic drugs through core encapsulation, amphiphilic copolymer micelles have also more recently appeared as potent nano-systems to deliver protein and peptide therapeutics. In addition to ease and reproducibility of preparation, micelles are chemically versatile as hydrophobic/hydrophilic segments can be tuned to afford protein immobilization through different approaches, including non-covalent interactions (e.g., electrostatic, hydrophobic) and covalent conjugation, while generally maintaining protein biological activity. Similar to many other drugs, protein/peptide delivery is increasingly focused on stimuli-responsive nano-systems able to afford triggered and controlled release in time and space, thereby improving therapeutic efficacy and limiting side effects. This short review discusses advances in the design of such micelles over the past decade, with an emphasis on stimuli-responsive properties for optimized protein/peptide delivery.
Collapse
Affiliation(s)
- Thomas Trimaille
- Ingénierie des Matériaux Polymères, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, CEDEX, 69622 Villeurbanne, France
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5305, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France;
| |
Collapse
|
13
|
Ren X, Su D, Shi D, Xiang X. The improving strategies and applications of nanotechnology-based drugs in hepatocellular carcinoma treatment. Front Bioeng Biotechnol 2023; 11:1272850. [PMID: 37811369 PMCID: PMC10557528 DOI: 10.3389/fbioe.2023.1272850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of tumor-related death worldwide. Conventional treatments for HCC include drugs, radiation, and surgery. Despite the unremitting efforts of researchers, the curative effect of HCC has been greatly improved, but because HCC is often found in the middle and late stages, the curative effect is still not satisfactory, and the 5-year survival rate is still low. Nanomedicine is a potential subject, which has been applied to the treatment of HCC and has achieved promising results. Here, we summarized the factors affecting the efficacy of drugs in HCC treatment and the strategies for improving the efficacy of nanotechnology-based drugs in HCC, reviewed the recent applications' progress on nanotechnology-based drugs in HCC treatment, and discussed the future perspectives and challenges of nanotechnology-based drugs in HCC treatment.
Collapse
Affiliation(s)
- Xiangyang Ren
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danyang Su
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Doudou Shi
- The Ninth Hospital of Xi’an, Xi’an, Shaanxi, China
| | - Xiaohong Xiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Guo Y, Gao F, Ahmed A, Rafiq M, Yu B, Cong H, Shen Y. Immunotherapy: cancer immunotherapy and its combination with nanomaterials and other therapies. J Mater Chem B 2023; 11:8586-8604. [PMID: 37614168 DOI: 10.1039/d3tb01358h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Immunotherapy is a new type of tumor treatment after surgery, radiotherapy and chemotherapy, and can be used to manage and destroy tumor cells through activating or strengthening the immune response. Immunotherapy has the benefits of a low recurrence rate and high specificity compared to traditional treatment methods. Immunotherapy has developed rapidly in recent years and has become a research hotspot. Currently, chimeric antigen receptor T-cell immunotherapy and immune checkpoint inhibitors are the most effective tumor immunotherapies in clinical practice. While tumor immunotherapy brings hope to patients, it also faces some challenges and still requires continuous research and progress. Combination therapy is the future direction of anti-tumor treatment. In this review, the main focus is on an overview of the research progress of immune checkpoint inhibitors, cellular therapies, tumor vaccines, small molecule inhibitors and oncolytic virotherapy in tumor treatment, as well as the combination of immunotherapy with other treatments.
Collapse
Affiliation(s)
- Yuanyuan Guo
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Adeel Ahmed
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
15
|
Zhang Y, Liu S, Li D, He C, Wang D, Wei M, Zheng S, Li J. Adoptive transfer of Fe 3O 4-SWCNT engineered M1-like macrophages for magnetic resonance imaging and enhanced cancer immunotherapy. Colloids Surf B Biointerfaces 2023; 229:113452. [PMID: 37474429 DOI: 10.1016/j.colsurfb.2023.113452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Macrophage-based tumor immunotherapy can effectively kill tumor cells in a direct manner when tumor specific antigens are idle or unknown. However, the presence of M2-like tumor associated macrophages (TAMs) would limit the treatment efficiency. Therefore, reversing the M2-like TAMs phenotype to regulate the immunosuppressive tumor microenvironment (TME) is crucial. Herein, we proposed nano-sized ferroferric oxide/single wall carbon nanotubes composites (Fe3O4-SWCNT) to engineer the macrophages species for powerful cancer therapy. The synthesized Fe3O4-SWCNT revealed good magnetic resonance imaging (MRI) performance, which enabled in vivo tracking of macrophage mediated immunotherapy. In addition, Fe3O4-SWCNT engineered M1-like macrophages (Fe3O4-SWCNT@M1) could maintain M1 phenotype, migrate to tumor cells and release nitric oxide (NO), reactive oxygen species (ROS) and tumor necrosis factor-α (TNF-α). A series of experimental results showed that Fe3O4-SWCNT@M1 could effectively promote the polarization of endogenous M2-like macrophages to M1-like macrophages, activate tumor immune response and inhibit tumor progression. This work is expected to provide a new vision for macrophage-based tumor immunotherapy.
Collapse
Affiliation(s)
- Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Siwen Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Danyan Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Chunyan He
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dongxu Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Min Wei
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China.
| |
Collapse
|
16
|
Shen J, Chen G, Zhao L, Huang G, Liu H, Liu B, Miao Y, Li Y. Recent Advances in Nanoplatform Construction Strategy for Alleviating Tumor Hypoxia. Adv Healthc Mater 2023; 12:e2300089. [PMID: 37055912 DOI: 10.1002/adhm.202300089] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Indexed: 04/15/2023]
Abstract
Hypoxia is a typical feature of most solid tumors and has important effects on tumor cells' proliferation, invasion, and metastasis. This is the key factor that leads to poor efficacy of different kinds of therapy including chemotherapy, radiotherapy, photodynamic therapy, etc. In recent years, the construction of hypoxia-relieving functional nanoplatforms through nanotechnology has become a new strategy to reverse the current situation of tumor microenvironment hypoxia and improve the effectiveness of tumor treatment. Here, the main strategies and recent progress in constructing nanoplatforms are focused on to directly carry oxygen, generate oxygen in situ, inhibit mitochondrial respiration, and enhance blood perfusion to alleviate tumor hypoxia. The advantages and disadvantages of these nanoplatforms are compared. Meanwhile, nanoplatforms based on organic and inorganic substances are also summarized and classified. Through the comprehensive overview, it is hoped that the summary of these nanoplatforms for alleviating hypoxia could provide new enlightenment and prospects for the construction of nanomaterials in this field.
Collapse
Affiliation(s)
- Jing Shen
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Guobo Chen
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Linghao Zhao
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Guoyang Huang
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Hui Liu
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
17
|
Ding Y, Qian X, Lin F, Gao B, Wang W, Yang H, Du Y, Wang W. A biomimetic nanoplatform for precise reprogramming of tumor-associated macrophages and NIR-II mediated antitumor immune activation. Acta Biomater 2023; 162:85-97. [PMID: 36948328 DOI: 10.1016/j.actbio.2023.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The therapeutic effects of photothermal therapy (PTT) are dependent on the photothermal conversion efficiency of photothermal agents (PTAs) in tumors and the subsequent activation of the antitumor immune system. However, the insufficient tumor accumulation of current PTAs and the inevitable recruitment of tumor-associated macrophages (TAMs) could further compromise the antitumor activities of PTT. To address these issues, a biomimetic photothermal nanoplatform Au@Fe-PM is developed for the targeted remodeling of TAMs, which promotes the antitumor immunity of PTT. Au nanorods with second near-infrared (NIR-II) absorptions are fabricated to serve as PTAs to induce immunogenic cell death in tumor cells. The ferric hydroxide shell coated on Au nanorods can release iron ions to repolarize M2-like TAMs into the tumoricidal M1 phenotype via P38 and STAT1-mediated signaling pathways. Moreover, the surface decoration of platelet membranes endows biomimetic nanoplatform with enhanced tumor targeting ability for precise tumor ablation and TAM regulation. Consequently, Au@Fe-PM under NIR-II laser irradiation exhibits significantly higher inhibitory effects in a poor immunogenic 4T1 tumor-bearing mouse model with a 50% complete remission rate compared to conventional PTT (0%). By simultaneously reversing the immunosuppressive tumor microenvironment, this biomimetic nanoplatform offers a promising strategy for enhancing the antitumor efficacy of PTT. STATEMENT OF SIGNIFICANCE: The therapeutic effects of current photothermal therapy (PTT) are hindered by the insufficient tumor accumulation of conventional photothermal agents and the recruitment of immunosuppressive tumor-associated macrophages (TAMs) after PTT. Herein, we report a biomimetic iron-based second near-infrared (NIR-II) photothermal nanoplatform (Au@Fe-PM) for targeted TAMs reprogramming and NIR-II mediated anti-tumor immunity. Au@Fe-PM can actively target the tumor site with the help of surface-decorated platelet membranes. Meanwhile, iron ions would be released from Au@Fe-PM in acidic lysosomes to reprogram TAMs into tumoricidal M1-like macrophages, which promotes the antitumor responses elicited by NIR-II PTT, thereby contributing to remarkable tumor inhibitory effects, with 50% higher complete remission rate than that of conventional PTT.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Qian
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang 310058, China
| | - Fenghao Lin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bingqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang 310058, China
| | - Weili Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang 310058, China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Yang Du
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang 310058, China.
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang 310009, China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
18
|
Li S, Sun W, Ouyang M, Yu B, Chen Y, Wang Y, Zhou D. Hemoglobin‐Related Biomaterials and their Applications. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Shaobing Li
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| | - Wei Sun
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| | - Min Ouyang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| | - Bo Yu
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
| | - Yan Chen
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
| | - Yupeng Wang
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
| | - Dongfang Zhou
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| |
Collapse
|
19
|
Zhang J, Gao J, Cui J, Wang Y, Jin Y, Zhang D, Lin D, Lin J. Tumor-associated macrophages in tumor progression and the role of traditional Chinese medicine in regulating TAMs to enhance antitumor effects. Front Immunol 2022; 13:1026898. [PMID: 36311793 PMCID: PMC9611775 DOI: 10.3389/fimmu.2022.1026898] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose To emphasize the importance of tumor-associated macrophages (TAMs) in tumor immunity and to describe the ways in which extracts from Traditional Chinese Medicine (TCM) achieve tumor therapy by modulating macrophages. Significance By summarizing these available data, this review focused on TAMs and TCM and can build the foundation for future research on antitumor therapeutics. Methods In this review, we summarized the key functions of TAMs in cancer development and overviewed literature on TCM targeting TAMs together with other immune cells aiming to enhance antitumor immunity. Conclusions With an indispensable role in antitumor immunity, TAMs contribute to tumor progression, migration, invasion, angiogenesis, lymphangiogenesis, and immunosuppressive microenvironment. In recent years, TCM has gradually gained attention as a potential antitumor adjunctive therapy in preclinical and clinical trials. TCM is also a regulator of cytokine secretion and cell surface molecule expression in balancing the tumor microenvironment (TME), especially macrophage activation and polarization. Therefore, it is believed that TCM could serve as modifiers with immunomodulatory capability.
Collapse
Affiliation(s)
- Jiatong Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiafeng Gao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingwen Cui
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- The Preventive Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Di Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Degui Lin, ; Jiahao Lin,
| | - Jiahao Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Center of Research and Innovation of Chinese Traditional Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Degui Lin, ; Jiahao Lin,
| |
Collapse
|