1
|
Zhao W, Jin K, Xu P, Wu F, Fu L, Xu B. Bismuth Telluride Supported Sub-1 nm Polyoxometalate Cluster for High-Efficiency Thermoelectric Energy Conversion. NANO LETTERS 2024; 24:5361-5370. [PMID: 38630986 DOI: 10.1021/acs.nanolett.4c01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Size plays a crucial role in chemistry and material science. Subnanometer polyoxometalate (POM) clusters have gained attention in various fields, but their use in thermoelectrics is still limited. To address this issue, we propose the POM clusters as an effective second phase to enhance the thermoelectric properties of Bi0.4Sb1.6Te3. Thanks to their subnanometer size, POM clusters improve electrical transport behavior through the superposition of atomic orbitals and the interfacial scattering effect. Furthermore, their ultrasmall size strongly reduces thermal conductivity. Consequently, the introduction of a mere 0.1 mol % of POM into the Bi0.4Sb1.6Te3 matrix realizes a state-of-the-art zT value of 1.46 at 348 K, a 45% enhancement over Bi0.4Sb1.6Te3 (1.01), along with a maximum thermoelectric-conversion efficiency of the integrated module of 6.0%. The enhancement of carrier mobility and the suppression of thermal conduction achieved by introducing the subnanometer clusters hold promise for various applications, such as electronic devices and thermal management.
Collapse
Affiliation(s)
- Wei Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Kangpeng Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Pengfei Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Fanshi Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Liangwei Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Biao Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
2
|
Jin J, Lv F, Cao W, Wang Z. First-Principles Study of Doped CdX( X = Te, Se) Compounds: Enhancing Thermoelectric Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1797. [PMID: 38673157 PMCID: PMC11051371 DOI: 10.3390/ma17081797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Isovalent doping offers a method to enhance the thermoelectric properties of semiconductors, yet its influence on the phonon structure and propagation is often overlooked. Here, we take CdX (X=Te, Se) compounds as an example to study the role of isovalent doping in thermoelectrics by first-principles calculations in combination with the Boltzmann transport theory. The electronic and phononic properties of Cd8Se8, Cd8Se7Te, Cd8Te8, and Cd8Te7Se are compared. The results suggest that isovalent doping with CdX significantly improves the thermoelectric performance. Due to the similar properties of Se and Te atoms, the electronic properties remain unaffected. Moreover, doping enhances anharmonic phonon scattering, leading to a reduction in lattice thermal conductivity. Our results show that optimized p-type(n-type) ZT values can reach 3.13 (1.33) and 2.51 (1.21) for Cd8Te7Se and Cd8Se7Te at 900 K, respectively. This research illuminates the potential benefits of strategically employing isovalent doping to enhance the thermoelectric properties of CdX compounds.
Collapse
Affiliation(s)
- Junfeng Jin
- The Institute of Technological Sciences, Wuhan University, Wuhan 430060, China;
| | - Fang Lv
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China;
| | - Wei Cao
- The Institute of Technological Sciences, Wuhan University, Wuhan 430060, China;
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China;
| | - Ziyu Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430060, China;
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
3
|
Wang M, Hu Y, Pu J, Zi Y, Huang W. Emerging Xene-Based Single-Atom Catalysts: Theory, Synthesis, and Catalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303492. [PMID: 37328779 DOI: 10.1002/adma.202303492] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the emergence of novel 2D monoelemental materials (Xenes), e.g., graphdiyne, borophene, phosphorene, antimonene, bismuthene, and stanene, has exhibited unprecedented potentials for their versatile applications as well as addressing new discoveries in fundamental science. Owing to their unique physicochemical, optical, and electronic properties, emerging Xenes have been regarded as promising candidates in the community of single-atom catalysts (SACs) as single-atom active sites or support matrixes for significant improvement in intrinsic activity and selectivity. In order to comprehensively understand the relationships between the structure and property of Xene-based SACs, this review represents a comprehensive summary from theoretical predictions to experimental investigations. Firstly, theoretical calculations regarding both the anchoring of Xene-based single-atom active sites on versatile support matrixes and doping/substituting heteroatoms at Xene-based support matrixes are briefly summarized. Secondly, controlled synthesis and precise characterization are presented for Xene-based SACs. Finally, current challenges and future opportunities for the development of Xene-based SACs are highlighted.
Collapse
Affiliation(s)
- Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yi Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Junmei Pu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| |
Collapse
|
4
|
Wang J, Zhao B, Chen X, Liu H, Zhang J. Immersion-Driven Structural Evolution of NiFeS Nanosheets for Efficient Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:23. [PMID: 38202478 PMCID: PMC10780408 DOI: 10.3390/nano14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
The development of low-cost, highly active, and stable electrocatalytic water-splitting catalysts is crucial to solving the current energy crisis and environmental pollution. Herein, a simple two-step conversion strategy is proposed to successfully prepare NiFeS nanosheet structure catalyst through the "immersion-sulfurization" strategy. The self-supported electrode can be prepared in large quantities due to its simple preparation process. As an active substance, NiFeS can grow directly on the NiFe foam substrate, avoiding the use of adhesives or conductive agents, and directly used as electrodes. The as-obtained NiFeS/NFF-300 displays efficient catalytic activity in electrocatalytic water splitting. The overpotential required for OER of the NiFeS/NFF-300 electrode at a current density of 10 mA cm-2 is 230 mV. The electrode underwent a stability test at 10 mA cm-2 for 24 h, and the overpotential remained essentially unchanged, demonstrating excellent stability. Moreover, NiFeS/NFF-300 exhibits considerable HER performances compared with NiFeC2O4/NFF and NiFe foam. The unique nanosheet structure and the presence of Niδ+ and Ni2+ formed by NiFe foam substrate on the NiFeS surface are responsible for its excellent electrocatalytic activity.
Collapse
Affiliation(s)
- Jianfeng Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan 250061, China;
| | - Bingbing Zhao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (B.Z.); (X.C.); (H.L.)
| | - Xiao Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (B.Z.); (X.C.); (H.L.)
| | - Haixia Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (B.Z.); (X.C.); (H.L.)
| | - Jie Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (B.Z.); (X.C.); (H.L.)
| |
Collapse
|
5
|
Qu P, Li CJ, Hu J, Gao G, Lin P, Zhao WW. Hybridization Chain Reaction-Enhanced Biocatalytic Precipitation on Flower-like Bi 2S 3: Toward Organic Photoelectrochemical Transistor Aptasensing with High Transconductance. Anal Chem 2023. [PMID: 37339250 DOI: 10.1021/acs.analchem.3c01185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Organic photoelectrochemical transistor (OPECT) bioanalysis has recently emerged as a promising avenue for biomolecular sensing, providing insight into the next-generation of photoelectrochemical biosensing and organic bioelectronics. Herein, this work validates the direct enzymatic biocatalytic precipitation (BCP) modulation on a flower-like Bi2S3 photosensitive gate for high-efficacy OPECT operation with high transconductance (gm), which is exemplified by a prostate-specific antigen (PSA)-dependent hybridization chain reaction (HCR) and subsequent alkaline phosphatase (ALP)-enabled BCP reaction toward PSA aptasensing. It has been shown that light illumination could ideally achieve the maximized gm at zero gate bias, and BCP could efficiently modulate the device's interfacial capacitance and charge-transfer resistance, resulting in a significantly changed channel current (IDS). The as-developed OPECT aptasensor realizes good analysis performance for PSA with a detection limit of 10 fg mL-1. This work features direct BCP modulation of organic transistors and is expected to stimulate further interest in exploring advanced BCP-interfaced bioelectronics with unknown possibilities.
Collapse
Affiliation(s)
- Peng Qu
- School of Biochemical Engineering, Chaoyang Normal College, Chaoyang 122000, China
| | - Cheng-Jie Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ge Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
7
|
Wu R, Yu Y, Jia S, Zhou C, Cojocaru-Mirédin O, Wuttig M. Strong charge carrier scattering at grain boundaries of PbTe caused by the collapse of metavalent bonding. Nat Commun 2023; 14:719. [PMID: 36759611 PMCID: PMC9911745 DOI: 10.1038/s41467-023-36415-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Grain boundaries (GBs) play a significant role in controlling the transport of mass, heat and charge. To unravel the mechanisms underpinning the charge carrier scattering at GBs, correlative microscopy combined with local transport measurements is realized. For the PbTe material, the strength of carrier scattering at GBs depends on its misorientation angle. A concomitant change in the barrier height is observed, significantly increasing from low- to high-angle GBs. Atom probe tomography measurements reveal a disruption of metavalent bonding (MVB) at the dislocation cores of low-angle GBs, as evidenced by the abrupt change in bond-rupture behavior. In contrast, MVB is completely destroyed at high-angle GBs, presumably due to the increased Peierls distortion. The collapse of MVB is accompanied by a breakdown of the dielectric screening, which explains the enlarged GB barrier height. These findings correlate charge carrier scattering with bonding locally, promising new avenues for the design of advanced functional materials.
Collapse
Affiliation(s)
- Riga Wu
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Yuan Yu
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany.
| | - Shuo Jia
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Chongjian Zhou
- State Key Laboratory of Solidification Processing, and Key Laboratory of Radiation Detection Materials and Devices, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Oana Cojocaru-Mirédin
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany.
| | - Matthias Wuttig
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany.
- Peter Grünberg Institute (PGI 10), Forschungszentrum Jülich, 52428, Jülich, Germany.
| |
Collapse
|