1
|
Huo J, Dou Y, Wu C, Liu H, Dou S, Yuan D. Defect Engineering of Metal-Based Atomically Thin Materials for Catalyzing Small-Molecule Conversion Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416483. [PMID: 39707647 DOI: 10.1002/adma.202416483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Recently, metal-based atomically thin materials (M-ATMs) have experienced rapid development due to their large specific surface areas, abundant electrochemically accessible sites, attractive surface chemistry, and strong in-plane chemical bonds. These characteristics make them highly desirable for energy-related conversion reactions. However, the insufficient active sites and slow reaction kinetics leading to unsatisfactory electrocatalytic performance limited their commercial application. To address these issues, defect engineering of M-ATMs has emerged to increase the active sites, modify the electronic structure, and enhance the catalytic reactivity and stability. This review provides a comprehensive summary of defect engineering strategies for M-ATM nanostructures, including vacancy creation, heteroatom doping, amorphous phase/grain boundary generation, and heterointerface construction. Introducing recent advancements in the application of M-ATMs in electrochemical small molecule conversion reactions (e.g., hydrogen, oxygen, carbon dioxide, nitrogen, and sulfur), which can contribute to a circular economy by recycling molecules like H2, O2, CO2, N2, and S. Furthermore, a crucial link between the reconstruction of atomic-level structure and catalytic activity via analyzing the dynamic evolution of M-ATMs during the reaction process is established. The review also outlines the challenges and prospects associated with M-ATM-based catalysts to inspire further research efforts in developing high-performance M-ATMs.
Collapse
Affiliation(s)
- Juanjuan Huo
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chao Wu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Huakun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shixue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ding Yuan
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
2
|
Li Y, Yang L, Hao X, Xu X, Xu L, Wei B, Chen Z. Origin of Enhanced Oxygen Evolution in Restructured Metal-Organic Frameworks for Anion Exchange Membrane Water Electrolysis. Angew Chem Int Ed Engl 2025; 64:e202413916. [PMID: 39271461 DOI: 10.1002/anie.202413916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Metal-Organic Frameworks (MOFs), praised for structural flexibility and tunability, are prominent catalyst prototypes for exploring oxygen evolution reaction (OER). Yet, their intricate transformations under OER, especially in industrial high-current environments, pose significant challenges in accurately elucidating their structure-activity correlation. Here, we harnessed an electrooxidation process for controllable MOF reconstruction, discovering that Fe doping expedites Ni(Fe) MOF structural evolution, accompanied by the elongation of Ni-O bonds, monitored by in situ Raman and UV/Visible spectroscopy. Theoretical modeling further reveals that Fe doping and defect-induced tensile strain in the NiO6 octahedra augments the metal ds-O p hybridization, optimizing their adsorption behavior and augmenting OER activity. The reconstructed Ni(Fe) MOF, serving as the anode in anion exchange membrane water electrolysis, achieves a noteworthy current density of 3300 mA cm-2 at 2.2 V while maintaining equally stable operation 500 mA cm-2 for 300 h and 1000 mA cm-2 for 170 h. This undertaking elevates our comprehension of OER catalyst reconstruction, furnishing promising avenues for designing highly efficacious catalysts across electrochemical platforms.
Collapse
Affiliation(s)
- Ying Li
- School of Physics, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Liu Yang
- State Key Laboratory of Catalysis, Power Battery & Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
| | - Xiaolei Hao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Xiaopei Xu
- Department of Physics, Henan University of Technology, Henan, 450001, People's Republic of China
| | - Lingling Xu
- School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Bo Wei
- School of Physics, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhongwei Chen
- State Key Laboratory of Catalysis, Power Battery & Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
| |
Collapse
|
3
|
Yang J, Shen Y, Xian J, Xiang R, Li G. Rare-earth element doped NiFe-MOFs as efficient and robust bifunctional electrocatalysts for both alkaline freshwater and seawater splitting. Chem Sci 2025; 16:685-692. [PMID: 39634583 PMCID: PMC11612640 DOI: 10.1039/d4sc06574c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Based on the target of carbon neutrality, it is very important to explore highly active and durable electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, a series of NiFe-based metal-organic frameworks (MOFs) with the doping of various rare-earth elements (Ce, Y, and La) were in situ grown on nickel foam by a facile solvothermal process. The representative CeNiFe-MOF showed amazing OER performance with ultralow overpotentials of 224 and 277 mV at 500 mA cm-2 in 1.0 M KOH and 1.0 M KOH + seawater, respectively. Moreover, it also exhibited favorable activity and durability for both alkaline freshwater and seawater splitting. Theoretical calculations unveiled that Ce doping effectively optimized the adsorption energy of H* and reduced the energy barrier from *OH to *O, thus leading to significant promotion of HER and OER performance. This work provided new inspiration for the electron modulation and activity optimization of MOF-based electrocatalysts.
Collapse
Affiliation(s)
- Jun Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
- School of Chemical Engineering, Guangdong University of Petrochemical Technology Maoming 525000 China
| | - Yong Shen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Jiahui Xian
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Runan Xiang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
4
|
Nair KM, Shankar P, Thangavelu S. Metal-organic framework-derived Se-blended ZrO 2 with a nitrogen-doped carbon heterostructure for electrocatalytic overall water splitting. Dalton Trans 2024; 53:17918-17933. [PMID: 39432259 DOI: 10.1039/d4dt02542c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Designing low cost, highly active and efficient non-noble metal bifunctional electrocatalysts with remarkable operational reliability for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is indispensable for large-scale water electrolysis and the development of clean energy conversion technologies. Herein, we decorated a two-dimensional (2D) selenium-blended zirconium dioxide (Se-ZrO2) on the surface of a nitrogen-doped carbon heterostructure (Se-ZrO2@NC), which was derived from Zr-metal-organic frameworks (Zr-MOFs), and loaded it on a stainless-steel mesh electrode. Accordingly, phenomenal electrocatalytic performance was observed for the Se-ZrO2@NC-loaded electrode with a minimum overpotential of 48 mV for the HER and 251 mV for the OER at 10 mA cm-2 current density in acidic and alkaline mediums, respectively. Moreover, a complete cell set up was constructed, where the OER and HER were studied at the anode and cathode, respectively, with a cell potential of 1.58 V to reach a current density of 10 mA cm-2 together with an exciting long-term stability of over 48 h. The developed Se-blended 2D transition metal dioxides on the 2D nitrogen-doped carbon heterostructure extended to a variety of catalytically active materials that would provide highly active and stable electrocatalysts for alkaline water splitting studies.
Collapse
Affiliation(s)
- Krishnendu M Nair
- Department of Chemistry, Bharathiar University, Coimbatore-641 046, India.
| | - Pavithra Shankar
- Department of Chemistry, Bharathiar University, Coimbatore-641 046, India.
| | | |
Collapse
|
5
|
Pi Y, Qiu Z, Fan Y, Mao Q, Zhang G, Wang X, Chang HH, Chen HJ, Chen TY, Chen HY, Zhang S, Shakouri M, Pang H. Immobilization of Metal Nanoparticles to an Ultrathin Two-Dimensional Conjugated Metal-Organic Framework for Synergistic Electrocatalysis. NANO LETTERS 2024; 24:13760-13768. [PMID: 39432751 DOI: 10.1021/acs.nanolett.4c04014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Metal-organic frameworks (MOFs) have been considered as promising hosts for immobilizing ultrafine metal nanoparticles (MNPs) due to their high surface area and porosity. However, electrochemical applications of such emerging composites are severely limited by the poor electrical conductivity and large size of the MOFs. Herein, we report the general synthesis of incorporating various MNPs into a conjugated MOF ultrathin nanosheet (Cu-TCPP UNS) matrix, which not only prevents agglomeration and restricts the growth of MNPs but also benefits the exposure of active sites and the transport of electrons. Specifically, the obtained PtCu@Cu-TCPP UNSs exhibited nearly two times higher mass activity for the methanol oxidation reaction (MOR) than the commercial Pt/C catalyst. Mechanistic studies reveal that the strong interaction between MNPs and Cu-TCPP promotes the oxidation of the CO intermediate. Moreover, the PtCu@Cu-TCPP UNSs can be employed as bifunctional electrocatalysts to couple MOR with the hydrogen evolution reaction for highly efficient hydrogen production.
Collapse
Affiliation(s)
- Yecan Pi
- School of Chemistry and Chemical Engineering, Yangzhou University 225009 Yangzhou, Jiangsu, P. R. China
| | - Ziming Qiu
- School of Chemistry and Chemical Engineering, Yangzhou University 225009 Yangzhou, Jiangsu, P. R. China
| | - Yu Fan
- School of Chemistry and Chemical Engineering, Yangzhou University 225009 Yangzhou, Jiangsu, P. R. China
| | - Qixin Mao
- School of Chemistry and Chemical Engineering, Yangzhou University 225009 Yangzhou, Jiangsu, P. R. China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University 225009 Yangzhou, Jiangsu, P. R. China
| | - Xuemei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University 225009 Yangzhou, Jiangsu, P. R. China
| | - Hao-Hsiang Chang
- Department of Materials Science and Engineering, National Tsing Hua University 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Hsiang-Jung Chen
- Department of Materials Science and Engineering, National Tsing Hua University 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Tsung-Yi Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Songtao Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University 225009 Yangzhou, Jiangsu, P. R. China
| | - Mohsen Shakouri
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, S7N 2 V3, Canada
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University 225009 Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
6
|
Li F, Wang H, Wang G, Ding M, Ma Q, Xu H, Jin Z. Novel Water-Splitting Electrolyzer Design Incorporating a Gas Diffusion Electrode and a Gel Membrane for Highly Efficient Hydrogen Production. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39078415 DOI: 10.1021/acs.langmuir.4c02126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Advancements in cost-effective, high-performance alkaline water-splitting systems are crucial for the hydrogen industry. While the significance of electrode material design has been widely acknowledged, the practical implementation of these advancements remains challenging. In this study, we focused on the holistic design of the electrolysis system and successfully developed a novel alkaline water-splitting electrolyzer. The unique configuration of our electrolyzer allows the designed NiFe-LDH/carbon cloth gas diffusion anode to interact solely with the PVA-based gel membrane and air, enabling the direct discharge of oxygen into the gas phase. This innovative feature accelerates anode bubble overflow, reduces gas interference, and decreases the system impedance by minimizing electrode spacing. As a result, by utilizing the NiFeSn-alloy/nickel mesh cathode, our electrolyzer achieves a high current density of 308 mA cm-2 at a cell voltage of 2.0 V and demonstrates exceptional stability over 1000 h.
Collapse
Affiliation(s)
- Fajun Li
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000, PR China
| | - Huaizhu Wang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guizhi Wang
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000, PR China
| | - Min Ding
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000, PR China
| | - Qihui Ma
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000, PR China
| | - Haifeng Xu
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000, PR China
| | - Zhong Jin
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Chen Y, Wang Y, Liu B, Zhang C, Sun D, Liu H, Zhou W. Room-temperature sulfur doped NiMoO 4 with enhanced conductivity and catalytic activity for efficient hydrogen evolution reaction in alkaline media. J Colloid Interface Sci 2024; 664:469-477. [PMID: 38484515 DOI: 10.1016/j.jcis.2024.03.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Transition metal oxides have been acknowledged for their exceptional water splitting capabilities in alkaline electrolytes, however, their catalytic activity is limited by low conductivity. The introduction of sulfur (S) into nickel molybdate (NiMoO4) at room temperature leads to the formation of sulfur-doped NiMoO4 (S-NiMoO4), thereby significantly enhancing the conductivity and facilitating electron transfer in NiMoO4. Furthermore, the introduction of S effectively modulates the electron density state of NiMoO4 and facilitates the formation of highly active catalytic sites characterized by a significantly reduced hydrogen absorption Gibbs free energy (ΔGH*) value of -0.09 eV. The electrocatalyst S-NiMoO4 exhibits remarkable catalytic performance in promoting the hydrogen evolution reaction (HER), displaying a significantly reduced overpotential of 84 mV at a current density of 10 mA cm-2 and maintaining excellent durability at 68 mA cm-2 for 10 h (h). Furthermore, by utilizing the anodic sulfide oxidation reaction (SOR) instead of the sluggish oxygen evolution reaction (OER), the assembled electrolyzer employing S-NiMoO4 as both the cathode and anode need merely 0.8 V to achieve 105 mA cm-2, while simultaneously producing hydrogen gas (H2) and S monomer. This work paves the way for improving electron transfer and activating active sites of metal oxides, thereby enhancing their HER activity.
Collapse
Affiliation(s)
- Yuke Chen
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yijie Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Baishan Liu
- Zhejiang Viersin Advanced Materials Co., Ltd, 6 Donggang Road, Haiyan Economic Development Zone, PR China
| | - Congcong Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Dehui Sun
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China.
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
8
|
Lin Y, Li L, Shi Z, Zhang L, Li K, Chen J, Wang H, Lee JM. Catalysis with Two-Dimensional Metal-Organic Frameworks: Synthesis, Characterization, and Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309841. [PMID: 38217292 DOI: 10.1002/smll.202309841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 01/15/2024]
Abstract
The demand for the exploration of highly active and durable electro/photocatalysts for renewable energy conversion has experienced a significant surge in recent years. Metal-organic frameworks (MOFs), by virtue of their high porosity, large surface area, and modifiable metal centers and ligands, have gained tremendous attention and demonstrated promising prospects in electro/photocatalytic energy conversion. However, the small pore sizes and limited active sites of 3D bulk MOFs hinder their wide applications. Developing 2D MOFs with tailored thickness and large aspect ratio has emerged as an effective approach to meet these challenges, offering a high density of exposed active sites, better mechanical stability, better assembly flexibility, and shorter charge and photoexcited state transfer distances compared to 3D bulk MOFs. In this review, synthesis methods for the most up-to-date 2D MOFs are first overviewed, highlighting their respective advantages and disadvantages. Subsequently, a systematic analysis is conducted on the identification and electronic structure modulation of catalytic active sites in 2D MOFs and their applications in renewable energy conversion, including electrocatalysis and photocatalysis (electro/photocatalysis). Lastly, the current challenges and future development of 2D MOFs toward highly efficient and practical electro/photocatalysis are proposed.
Collapse
Affiliation(s)
- Yanping Lin
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Lu Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhe Shi
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Lishang Zhang
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Ke Li
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, 2 Dublin, Ireland
| | - Jianmei Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hao Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
9
|
He Y, Liu W, Liu J. MOF-based/derived catalysts for electrochemical overall water splitting. J Colloid Interface Sci 2024; 661:409-435. [PMID: 38306750 DOI: 10.1016/j.jcis.2024.01.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
Water-splitting electrocatalysis has gained increasing attention as a promising strategy for developing renewable energy in recent years, but its high overpotential caused by the unfavorable thermodynamics has limited its widespread implementation. Therefore, there is an urgent need to design catalytic materials with outstanding activity and stability that can overcome the high overpotential and thus improve the electrocatalytic efficiency. Metal-organic frameworks (MOFs) based and/or derived materials are widely used as water-splitting catalysts because of their easily controlled structures, abundant heterointerfaces and increased specific surface area. Herein, some recent research findings on MOFs-based/derived materials are summarized and presented. First, the mechanism and evaluation parameters of electrochemical water splitting are described. Subsequently, advanced modulation strategies for designing MOFs-based/derived catalysts and their catalytic performance toward water splitting are summarized. In particular, the correlation between chemical composition/structural functionalization and catalytic performance is highlighted. Finally, the future outlook and challenges for MOFs materials are also addressed.
Collapse
Affiliation(s)
- Yujia He
- College of Materials Science and Engineering, Institute for Graphene Applied, Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Wei Liu
- School of Chemistry & Chemical Engineering, Linyi University, Linyi 276000, Shandong, China.
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied, Technology Innovation, Qingdao University, Qingdao 266071, China; School of Chemistry & Chemical Engineering, Linyi University, Linyi 276000, Shandong, China.
| |
Collapse
|
10
|
Zhu Z, Duan J, Chen S. Metal-Organic Framework (MOF)-Based Clean Energy Conversion: Recent Advances in Unlocking its Underlying Mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309119. [PMID: 38126651 DOI: 10.1002/smll.202309119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Carbon neutrality is an important goal for humanity . As an eco-friendly technology, electrocatalytic clean energy conversion technology has emerged in the 21st century. Currently, metal-organic framework (MOF)-based electrocatalysis, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), are the mainstream energy catalytic reactions, which are driven by electrocatalysis. In this paper, the current advanced characterizations for the analyses of MOF-based electrocatalytic energy reactions have been described in details, such as density function theory (DFT), machine learning, operando/in situ characterization, which provide in-depth analyses of the reaction mechanisms related to the above reactions reported in the past years. The practical applications that have been developed for some of the responses that are of application values, such as fuel cells, metal-air batteries, and water splitting have also been demonstrated. This paper aims to maximize the potential of MOF-based electrocatalysts in the field of energy catalysis, and to shed light on the development of current intense energy situations.
Collapse
Affiliation(s)
- Zheng Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| |
Collapse
|
11
|
Wang C, Fei Z, Wang Y, Ren F, Du Y. Recent progress of Ni-based nanomaterials for the electrocatalytic oxygen evolution reaction at large current density. Dalton Trans 2024; 53:851-861. [PMID: 38054822 DOI: 10.1039/d3dt03636g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The precise design and development of high-performing oxygen evolution reaction (OER) for the production of industrial hydrogen gas through water electrolysis has been a widely studied topic. A profound understanding of the nature of electrocatalytic processes reveals that Ni-based catalysts are highly active toward OER that can stably operate at a high current density for a long period of time. Given the current gap between research and applications in industrial water electrolysis, we have completed a systematic review by constructively discussing the recent progress of Ni-based catalysts for electrocatalytic OER at a large current density, with special focus on the morphology and composition regulation of Ni-based electrocatalysts for achieving extraordinary OER performance. This review will facilitate future research toward rationally designing next-generation OER electrocatalysts that can meet industrial demands, thereby promoting new sustainable solutions for energy shortage and environment issues.
Collapse
Affiliation(s)
- Cheng Wang
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, P. R. China.
| | - Zhenghao Fei
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, P. R. China.
| | - Yanqing Wang
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, P. R. China.
| | - Fangfang Ren
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, P. R. China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
12
|
Abazari R, Sanati S, Li N, Qian J. Fluorinated Metal-Organic Frameworks with Dual-Functionalized Linkers to Enhance Photocatalytic H 2 Evolution and High Water Adsorption. Inorg Chem 2023; 62:18680-18688. [PMID: 37907390 DOI: 10.1021/acs.inorgchem.3c03052] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Photocatalytic H2 evolution has recently attracted much attention due to the reduction of nonrenewable energy sources and the increasing demand for renewable sustainable energies. Meanwhile, metal-organic frameworks (MOFs) are emerging potential photocatalysts due to their structural adaptability, porous configuration, several active sites, and a wide range of performance. Nevertheless, there are still limitations in the photocatalytic H2 evolution reaction of MOFs with higher charge recombination rates. Herein, a copper-organic framework with dual-functionalized linkers {[Cu2(L)(H2O)2]·(5DMF)(4H2O)}n (fluorinated MOF(Cu)-NH2; H4L = 3,5-bis(2,4-dicarboxylic acid)-4-(trifluoromethyl)aniline) and with a rare 2-nodal 4,12-connected shp topology has been synthesized by a ligand-functionalization strategy and evaluated for the photocatalytic production of H2 to overcome this issue. According to the photocatalytic H2 evolution results, fluorinated MOF(Cu)-NH2 showed a hydrogen evolution rate of 63.64 mmol·g-1·h-1 exposed to light irradiation, indicating values 12 times that of the pure ligand when cocatalyst Pt and photosensitizer Rhodamine B were present. In addition, this MOF showed a maximum water absorption of 205 cm3·g-1. When dual-functionalized linkers are introduced to the structure of this MOF, its visible-light absorption increases considerably, which can be associated with nearly narrower energy band gaps (2.18 eV). More importantly, this MOF contributes to water absorption and electron collection and transport, acting as a bridge that helps to separate and transfer photogenerated charges while shortening the electron migration path because of the functional group in its configuration. The current paper seeks to shed light on the design of advanced visible-light photocatalysts with no MOF calcination for H2 photocatalytic production.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh 83111-55181, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh 83111-55181, Iran
| | - Nan Li
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang325035, PR China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang325035, PR China
| |
Collapse
|
13
|
Dong Y, Deng Z, Zhang H, Liu G, Wang X. A Highly Active and Durable Hierarchical Electrocatalyst for Large-Current-Density Water Splitting. NANO LETTERS 2023; 23:9087-9095. [PMID: 37747850 DOI: 10.1021/acs.nanolett.3c02940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Designing bifunctional catalysts with high current densities under industrial circumstances is crucial to propelling hydrogen energy with a boost from fundamental to practical application. In this work, heterojunction nanowire arrays consisting of manganese oxide and cobalt phosphide (denoted as MnO-CoP/NF) are designed to meet the industrial demand by regulating the synergic mass transport and electronic structure coupling with numerous nano-heterogeneous interfaces. The optimal MnO-CoP/NF electrode exhibits remarkable bifunctional electrocatalytic performance with overpotentials of 259.5 mV for hydrogen evolution at a large current density of 1000 mA cm-2 and 392.2 mV for oxygen evolution at 1500 mA cm-2. Moreover, the MnO-CoP/NF electrode demonstrates superior durability and an ultralow voltage of 1.76 V at 500 mA cm-2, outperforming that of a commercial RuO2||Pt/C electrode. This work sheds light on the design of metallic heterostructures with optimized interfacial electronic structures and a high abundance of active sites for practical industrial water splitting applications.
Collapse
Affiliation(s)
- Yan Dong
- College of Chemistry and Chemical Engineering, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Zhiping Deng
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Guangyi Liu
- College of Chemistry and Chemical Engineering, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
14
|
Zhou X, Hu J, Ajmal S, Xiang D, Sun Z, Chen W, Zhu M, Chen P, Li P. In situ grown high-valence Mo-doped NiCo Prussian blue analogue for enhanced urea electrooxidation. Chem Commun (Camb) 2023; 59:12152-12155. [PMID: 37740343 DOI: 10.1039/d3cc03790h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Mo-doped NiCo Prussian blue analogue (PBA) electrocatalysts self-supported on Ni foam are elaborately designed, which exhibit a low potential of 1.358 V (vs. RHE) to reach 100 mA cm-2 for catalyzing the urea oxidation reaction (UOR). The incorporation of high-valence Mo (+6) modifies the electronic structure and improves the electron transfer ability. Using X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) techniques, we confirm the effect of Mo doping on the NiCo PBA electronic structure.
Collapse
Affiliation(s)
- Xiaoxing Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Jun Hu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Sara Ajmal
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Dong Xiang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Zhenjie Sun
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Ping Chen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Peng Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
15
|
Fan C, Dong W, Saira Y, Tang Y, Fu G, Lee JM. Rare-Earth-Modified Metal-Organic Frameworks and Derivatives for Photo/Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302738. [PMID: 37291982 DOI: 10.1002/smll.202302738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) and their derivatives have attracted much attention in the field of photo/electrocatalysis owing to their ultrahigh porosity, tunable properties, and superior coordination ability. Regulating the valence electronic structure and coordination environment of MOFs is an effective way to enhance their intrinsic catalytic performance. Rare earth (RE) elements with 4f orbital occupancy provide an opportunity to evoke electron rearrangement, accelerate charged carrier transport, and synergize the surface adsorption of catalysts. Therefore, the integration of RE with MOFs makes it possible to optimize their electronic structure and coordination environment, resulting in enhanced catalytic performance. In this review, progress in current research on the use of RE-modified MOFs and their derivatives for photo/electrocatalysis is summarized and discussed. First, the theoretical advantages of RE in MOF modification are introduced, with a focus on the roles of 4f orbital occupancy and RE ion organic coordination ligands. Then, the application of RE-modified MOFs and their derivatives in photo/electrocatalysis is systematically discussed. Finally, research challenges, future opportunities, and prospects for RE-MOFs are also discussed.
Collapse
Affiliation(s)
- Chuang Fan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wenrou Dong
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yousaf Saira
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technology University, Singapore, 637459, Singapore
| |
Collapse
|
16
|
Chen Y, Sui T, Lyu C, Wu K, Wu J, Huang M, Hao J, Lau WM, Wan C, Pang D, Zheng J. Constructing abundant interfaces by decorating MoP quantum dots on CoP nanowires to induce electronic structure modulation for enhanced hydrogen evolution reaction. MATERIALS HORIZONS 2023; 10:3761-3772. [PMID: 37404093 DOI: 10.1039/d3mh00644a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Interface engineering is a method of enhancing catalytic activity while maintaining a material's surface properties. Thus, we explored the interface effect mechanism via a hierarchical structure of MoP/CoP/Cu3P/CF. Remarkably, the heterostructure MoP/CoP/Cu3P/CF demonstrates an outstanding overpotential of 64.6 mV at 10 mA cm-2 with a Tafel slope of 68.2 mV dec-1 in 1 M KOH. DFT calculations indicate that the MoP/CoP interface in the catalyst exhibited the most favorable H* adsorption characteristics (-0.08 eV) compared to the pure phases of CoP (0.55 eV) and MoP (0.22 eV). This result can be attributed to the apparent modulation of electronic structures within the interface domains. Additionally, the CoCH/Cu(OH)2/CF‖MoP/CoP/Cu3P/CF electrolyzer demonstrates excellent overall water splitting performance, achieving 10 mA cm-2 in 1 M KOH solution with a modest voltage of only 1.53 V. This electronic structure adjustment via interface effects provides a new and efficient approach to prepare high-performance hydrogen production catalysts.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Tingting Sui
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Chaojie Lyu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Kaili Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Jiwen Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Meifang Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Ju Hao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, P. R. China
| | - Chubin Wan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | - Dawei Pang
- Beijing Key Laboratory of Solid Microstructure and Properties, Department of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, P. R. China
| |
Collapse
|
17
|
Chai N, Kong Y, Liu T, Ying S, Jiang Q, Yi FY. (FeMnCe)-co-doped MOF-74 with significantly improved performance for overall water splitting. Dalton Trans 2023; 52:11601-11610. [PMID: 37551436 DOI: 10.1039/d3dt01892j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Developing inexpensive electrocatalysts with high activity and stability is of great value for overall water splitting. In this work, we designed a series of 3d-4f (FeMnCe)-trimetallic MOF-74 with different ratios of 3d- and 4f-metal centers. Among them, FeMn6Ce0.5-MOF-74/NF exhibited the best electrocatalytic performance for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in an alkaline solution. It only requires a low overpotential of 281 mV@100 mA cm-2 for OER and 186 mV@-10 mA cm-2 for HER in 1 M KOH. With FeMn6Ce0.5-MOF-74/NF as the anode and cathode in the overall water splitting system, only 1.65 V is needed to deliver a current density of 10 mA cm-2. In particular, for the as-fabricated FeMn6Ce0.5-MOF-74/NF||Pt/C cell unit, only 1.40 V is needed to achieve 10 mA cm-2. Therefore, the successful design of 3d-4f mixed-metallic MOF-74 provides a new viewpoint to develop highly efficient non-precious metal electrocatalysts.
Collapse
Affiliation(s)
- Ning Chai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
| | - Yuxuan Kong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
| | - Tian Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
| | - Shuanglu Ying
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
| | - Qiao Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
- Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| |
Collapse
|
18
|
Yang C, Wu Z, Zhao Z, Gao Y, Ma T, He C, Wu C, Liu X, Luo X, Li S, Cheng C, Zhao C. Electronic Structure-Dependent Water-Dissociation Pathways of Ruthenium-Based Catalysts in Alkaline H 2 -Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206949. [PMID: 36599619 DOI: 10.1002/smll.202206949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Ruthenium (Ru)-based catalysts have displayed compelling hydrogen evolution activities, which hold the promising potential to substitute platinum in alkaline H2 -evolution. In the challenging alkaline electrolytes, the water-dissociation process involves multistep reactions, while the profound origin and intrinsic factors of diverse Ru species on water-dissociation pathways and reaction principles remain ambiguous. Here the fundamental origin of water-dissociation pathways of Ru-based catalysts in alkaline media to be from their unique electronic structures in complex coordination environments are disclosed. These theoretical results validate that the modulated electronic structures with delocalization-localization coexistence at their boundaries between the Ru nanocluster and single-atom site have a profound influence on water-dissociation pathways, which push H2 O* migration and binding orientation during the splitting process, thus enhancing the dissociation kinetics. By creating Ru catalysts with well-defined nanocluster, single-atom site, and also complex site, the electrocatalytic data shows that both the nanocluster and single-atom play essential roles in water-dissociation, while the complex site possesses synergistically enhanced roles in alkaline electrolytes. This study discloses a new electronic structure-dependent water-dissociation pathway and reaction principle in Ru-based catalysts, thus offering new inspiration to design efficient and durable catalysts for the practical production of H2 in alkaline electrolytes.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Chao He
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Changzhu Wu
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu, 610065, P. R. China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu, 610065, P. R. China
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
19
|
Xiao J, Zhang S, Sun Y, Liu X, He G, Liu H, Khan J, Zhu Y, Su Y, Wang S, Han L. Urchin-Like Structured MoO 2 /Mo 3 P/Mo 2 C Triple-Interface Heterojunction Encapsulated within Nitrogen-Doped Carbon for Enhanced Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206472. [PMID: 36642818 DOI: 10.1002/smll.202206472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The development of highly efficient and cost-effective hydrogen evolution reaction (HER) catalysts is highly desirable to efficiently promote the HER process, especially under alkaline condition. Herein, a polyoxometalates-organic-complex-induced carbonization method is developed to construct MoO2 /Mo3 P/Mo2 C triple-interface heterojunction encapsulated into nitrogen-doped carbon with urchin-like structure using ammonium phosphomolybdate and dopamine. Furthermore, the mass ratio of dopamine and ammonium phosphomolybdate is found critical for the successful formation of such triple-interface heterojunction. Theoretical calculation results demonstrate that such triple-interface heterojunctions possess thermodynamically favorable water dissociation Gibbs free energy (ΔGH2O ) of -1.28 eV and hydrogen adsorption Gibbs free energy (ΔGH* ) of -0.41 eV due to the synergistic effect of Mo2 C and Mo3 P as water dissociation site and H* adsorption/desorption sites during the HER process in comparison to the corresponding single components. Notably, the optimal heterostructures exhibit the highest HER activity with the low overpotential of 69 mV at the current density of 10 mA cm-2 and a small Tafel slope of 60.4 mV dec-1 as well as good long-term stability for 125 h. Such remarkable results have been theoretically and experimentally proven to be due to the synergistic effect between the unique heterostructures and the encapsulated nitrogen-doped carbon.
Collapse
Affiliation(s)
- Jiamin Xiao
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Shishi Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanyan Sun
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Xuetao Liu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Guangling He
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Heng Liu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Javid Khan
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yanlin Zhu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yaqiong Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, Netherlands
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensingand Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Lei Han
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
20
|
Yang J, Shen Y, Sun Y, Xian J, Long Y, Li G. Ir Nanoparticles Anchored on Metal-Organic Frameworks for Efficient Overall Water Splitting under pH-Universal Conditions. Angew Chem Int Ed Engl 2023; 62:e202302220. [PMID: 36859751 DOI: 10.1002/anie.202302220] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/03/2023]
Abstract
The construction of high-activity and low-cost electrocatalysts is critical for efficient hydrogen production by water electrolysis. Herein, we developed an advanced electrocatalyst by anchoring well-dispersed Ir nanoparticles on nickel metal-organic framework (MOF) Ni-NDC (NDC: 2,6-naphthalenedicarboxylic) nanosheets. Benefiting from the strong synergy between Ir and MOF through interfacial Ni-O-Ir bonds, the synthesized Ir@Ni-NDC showed exceptional electrocatalytic performance for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and overall water splitting in a wide pH range, superior to commercial benchmarks and most reported electrocatalysts. Theoretical calculations revealed that the charge redistribution of Ni-O-Ir bridge induced the optimization of H2 O, OH* and H* adsorption, thus leading to the accelerated electrochemical kinetics for HER and OER. This work provides a new clue to exploit bifunctional electrocatalysts for pH-universal overall water splitting.
Collapse
Affiliation(s)
- Jun Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yong Shen
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yamei Sun
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiahui Xian
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yanju Long
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
21
|
Rational design and synthesis of advanced metal-organic frameworks for electrocatalytic water splitting. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
22
|
Zhang Q, Xu B, Sun K, Lang J, Li J. Apparent activity and specific activity of lanthanides (La, Ce, Nd) decorated Co-MOF derivatives for electrocatalytic water splitting. NANOTECHNOLOGY 2023; 34:185701. [PMID: 36716479 DOI: 10.1088/1361-6528/acb716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Lanthanide (Ln) rare Earth (RE) elements are often used to incorporate and regulate the local coordination environment and electronic configuration of transition metal based electrocatalysts for acquiring improved electrocatalytic performance. But for a given pristine electrode, is a Ln element concentrated more on promoting the apparent activity of original electrode or on enhancing its specific activity? To address this issue, Ln (La, Ce and Nd) decorated ZIF-67 derivative electrodes (Ln/Co/NC) were fabricated following with the detailed experimental testing of apparent activity and specific activity of assembled electrodes. X-ray photoelectron spectroscopy data confirmed that Ce, Nd and La have played their own role in regulating the coordination electronic structure of the surface atoms of the derived Co/NC by forming different types of chemical bonds. Electrochemical (EC) results confirmed that Ce is concentrated more on the apparent activity of derived Co/NC electrode with the smallest overpotential at 50 mA cm-2(η50), while Nd contributes more to its reaction kinetic property with the smallest value of Tafel slope in alkaline hydrogen evolution reaction process. But for oxygen evolution reaction, all of La, Ce and Nd deteriorate the apparent activity of the pristine Co/NC electrode. Comparatively, La shows a greater ability to modulate the specific activity of Co/NC with a larger electrochemical active surface area normalized current density, while Nd exhibits the best ability to re-establish the properties of reaction centers. This work illustrates the difference influence of La, Ce and Nd on the apparent activity and specific activity of the ZIF-67 derivative Co/NC electrode. It will do some favors in engineering RE elements modified composite electrodes for EC applications.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Physics, Jilin Normal University, Siping 136000, People's Republic of China
| | - Bingyan Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Physics, Jilin Normal University, Siping 136000, People's Republic of China
| | - Kexin Sun
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Physics, Jilin Normal University, Siping 136000, People's Republic of China
| | - Jihui Lang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Physics, Jilin Normal University, Siping 136000, People's Republic of China
| | - Ji Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Physics, Jilin Normal University, Siping 136000, People's Republic of China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Electronic Science and Information Technology, Jilin Normal University, Siping 136000, People's Republic of China
| |
Collapse
|
23
|
Li T, Gu F, Chen XH, Zhang Q, Fu HC, Luo HQ, Li NB. Engineered Superhydrophilic/Superaerophobic Catalyst: Two-Dimensional Co(OH) 2-CeO 2 Nanosheets Supported on Three-Dimensional Co Dendrites for Overall Water Splitting. Inorg Chem 2023; 62:2784-2792. [PMID: 36705969 DOI: 10.1021/acs.inorgchem.2c03910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Efficient electrocatalysts require not only a tunable electronic structure but also great active site accessibility and favorable mass transfer. Here, a two-dimensional/three-dimensional (2D/3D) hierarchical electrocatalyst consisting of Co(OH)2-CeO2 nanosheet-decorated Co dendrites is proposed, named as Co(OH)2-CeO2/Co. Based on the strong electronic interaction of the Co(OH)2-CeO2 heterojunction, the electronic structure of the Co site is optimized, which facilitates the adsorption of intermediates and the dissociation of H2O. Moreover, the open 2D/3D structure formed by introducing the Co substrate further reduces the accumulation of heterogeneous nanosheets and promotes the radial diffusion of the electrolyte, significantly improving the utilization of active sites and shortening the electron transfer pathway. In addition, the superhydrophilic/superaerophobic interface achieved by constructing the hierarchical micro-nanostructure is beneficial to electrolyte infiltration and bubble desorption, thus ensuring favorable mass transfer. Therefore, Co(OH)2-CeO2/Co exhibits an excellent overall water-splitting activity in alkaline solution.
Collapse
Affiliation(s)
- Ting Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Fei Gu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiao Hui Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Qing Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Hong Chuan Fu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|