1
|
Yang L, Savchenko AS, Zheng F, Kiselev NS, Rybakov FN, Han X, Blügel S, Dunin-Borkowski RE. Embedded Skyrmion Bags in Thin Films of Chiral Magnets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403274. [PMID: 39045913 DOI: 10.1002/adma.202403274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/25/2024] [Indexed: 07/25/2024]
Abstract
Magnetic skyrmions are topologically nontrivial spin configurations that possess particle-like properties. Earlier research has mainly focused on a specific type of skyrmion with topological charge Q = -1. However, theoretical analyses of 2D chiral magnets have predicted the existence of skyrmion bags-solitons with arbitrary positive or negative topological charge. Although such spin textures are metastable states, recent experimental observations have confirmed the stability of isolated skyrmion bags in a limited range of applied magnetic fields. Here, by utilizing Lorentz transmission electron microscopy, the extraordinary stability of skyrmion bags in thin plates of B20-type FeGe is shown. In particular, it is shown that skyrmion bags embedded within a skyrmion lattice remain stable even in zero or inverted external magnetic fields. A robust protocol for nucleating such embedded skyrmion bags is provided. The results agree perfectly with micromagnetic simulations and establish thin plates of cubic chiral magnets as a powerful platform for exploring a broad spectrum of topological magnetic solitons.
Collapse
Affiliation(s)
- Luyan Yang
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Andrii S Savchenko
- Peter Grünberg Institute, Forschungszentrum Jülich and JARA, 52425, Jülich, Germany
| | - Fengshan Zheng
- Spin-X Institute, Center for Electron Microscopy, School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 511442, China
| | - Nikolai S Kiselev
- Peter Grünberg Institute, Forschungszentrum Jülich and JARA, 52425, Jülich, Germany
| | - Filipp N Rybakov
- Department of Physics and Astronomy, Uppsala University, Box-516, Uppsala, SE-751 20, Sweden
| | - Xiaodong Han
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Stefan Blügel
- Peter Grünberg Institute, Forschungszentrum Jülich and JARA, 52425, Jülich, Germany
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
2
|
Yasin FS, Masell J, Takahashi Y, Akashi T, Baba N, Karube K, Shindo D, Arima T, Taguchi Y, Tokura Y, Tanigaki T, Yu X. Bloch Point Quadrupole Constituting Hybrid Topological Strings Revealed with Electron Holographic Vector Field Tomography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311737. [PMID: 38219021 DOI: 10.1002/adma.202311737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Indexed: 01/15/2024]
Abstract
Topological magnetic (anti)skyrmions are robust string-like objects heralded as potential components in next-generation topological spintronics devices due to their low-energy manipulability via stimuli such as magnetic fields, heat, and electric/thermal current. While these 2D topological objects are widely studied, intrinsically 3D electron-spin real-space topology remains less explored despite its prevalence in bulky magnets. 2D-imaging studies reveal peculiar vortex-like contrast in the core regions of spin textures present in antiskyrmion-hosting thin plate magnets with S4 crystal symmetry, suggesting a more complex 3D real-space structure than the 2D model suggests. Here, holographic vector field electron tomography captures the 3D structure of antiskyrmions in a single-crystal, precision-doped (Fe0.63Ni0.3Pd0.07)3P (FNPP) lamellae at room temperature and zero field. These measurements reveal hybrid string-like solitons composed of skyrmions with topological number W = -1 on the lamellae's surfaces and an antiskyrmion (W = + 1) connecting them. High-resolution images uncover a Bloch point quadrupole (four magnetic (anti)monopoles that are undetectable in 2D imaging) which enables the observed lengthwise topological transitions. Numerical calculations corroborate the stability of hybrid strings over their conventional (anti)skyrmion counterparts. Hybrid strings result in topological tuning, a tunable topological Hall effect, and the suppression of skyrmion Hall motion, disrupting existing paradigms within spintronics.
Collapse
Affiliation(s)
- Fehmi Sami Yasin
- RIKEN Center for Emergent Matter Science (CEMS), RIKEN, Wako, 351-0198, Japan
| | - Jan Masell
- RIKEN Center for Emergent Matter Science (CEMS), RIKEN, Wako, 351-0198, Japan
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), 76049, Karlsruhe, Germany
| | - Yoshio Takahashi
- Research and Development Group, Hitachi Ltd., Hatoyama, 350-0395, Japan
| | - Tetsuya Akashi
- Research and Development Group, Hitachi Ltd., Hatoyama, 350-0395, Japan
| | - Norio Baba
- Research Institute for Science and Technology, Kogakuin University, Hachioji, 192-0015, Japan
| | - Kosuke Karube
- RIKEN Center for Emergent Matter Science (CEMS), RIKEN, Wako, 351-0198, Japan
| | - Daisuke Shindo
- RIKEN Center for Emergent Matter Science (CEMS), RIKEN, Wako, 351-0198, Japan
| | - Takahisa Arima
- RIKEN Center for Emergent Matter Science (CEMS), RIKEN, Wako, 351-0198, Japan
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, 277-8561, Japan
| | - Yasujiro Taguchi
- RIKEN Center for Emergent Matter Science (CEMS), RIKEN, Wako, 351-0198, Japan
| | - Yoshinori Tokura
- RIKEN Center for Emergent Matter Science (CEMS), RIKEN, Wako, 351-0198, Japan
- Department of Applied Physics, University of Tokyo, Tokyo, 113-8656, Japan
- Tokyo College, University of Tokyo, Tokyo, 113-8656, Japan
| | - Toshiaki Tanigaki
- Research and Development Group, Hitachi Ltd., Hatoyama, 350-0395, Japan
| | - Xiuzhen Yu
- RIKEN Center for Emergent Matter Science (CEMS), RIKEN, Wako, 351-0198, Japan
| |
Collapse
|
3
|
Liu Y, Nagaosa N. Current-Induced Creation of Topological Vortex Rings in a Magnetic Nanocylinder. PHYSICAL REVIEW LETTERS 2024; 132:126701. [PMID: 38579209 DOI: 10.1103/physrevlett.132.126701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 04/07/2024]
Abstract
Vortex rings are ubiquitous topological structures in nature. In solid magnetic systems, their formation leads to intriguing physical phenomena and potential device applications. However, realizing these topological magnetic vortex rings and manipulating their topology on demand have still been challenging. Here, we theoretically show that topological vortex rings can be created by a current pulse in a chiral magnetic nanocylinder with a trench structure. The creation process involves the formation of a vortex ring street, i.e., a chain of magnetic vortex rings with an alternative linking manner. The created vortex rings can be bounded with monopole-antimonopole pairs and possess a rich and controllable linking topology (e.g., Hopf link and Solomon link), which is determined by the duration and amplitude of the current pulse. Our proposal paves the way for the realization and manipulation of diverse three-dimensional (3D) topological spin textures and could catalyze the development of 3D spintronic devices.
Collapse
Affiliation(s)
- Yizhou Liu
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Naoto Nagaosa
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| |
Collapse
|
4
|
Qi Y, Kan Y, Li Z. High-resolution imaging of 3D stray-field components with a Fe 3O 4 nanoparticle sensor. NANOSCALE 2024; 16:5164-5168. [PMID: 38369887 DOI: 10.1039/d3nr05437c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Despite rapid advances in magnetic domain imaging techniques, high-resolution imaging of 3D magnetic field components remains a great challenge. Magnetic force microscopy has been utilized to observe the 1D magnetic field component from the sample surface; however, the 1D stray-field component lacks sufficient conditions to clarify the nature of nanomagnetism. Herein, we propose a method for the detection of 3D stray-field components by using a Fe3O4-nanoparticle sensor. We employed this Fe3O4-nanoparticle sensor to detect nanoscale magnetic domains, domain walls, and magnetic vortices (resolution ∼5 nm), and our findings demonstrate its potential in imaging both out-of-plane and in-plane magnetic-field components. Our technique overcomes the limitations of 3D stray-field detection and high-resolution imaging and provides the possibility of observing both out-of-plane and in-plane magnetic field components with a 5 nm resolution, thereby paving the way for the development of future spin-based devices.
Collapse
Affiliation(s)
- Yan Qi
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.
| | - Yihong Kan
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.
| | - Zhenghua Li
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.
| |
Collapse
|
5
|
Jiang J, Tang J, Bai T, Wu Y, Qin J, Xia W, Chen R, Yan A, Wang S, Tian M, Du H. Thermal Stability of Skyrmion Tubes in Nanostructured Cuboids. NANO LETTERS 2024; 24:1587-1593. [PMID: 38259044 DOI: 10.1021/acs.nanolett.3c04181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Magnetic skyrmions in bulk materials are typically regarded as two-dimensional structures. However, they also exhibit three-dimensional configurations, known as skyrmion tubes, that elongate and extend in-depth. Understanding the configurations and stabilization mechanism of skyrmion tubes is crucial for the development of advanced spintronic devices. However, the generation and annihilation of skyrmion tubes in confined geometries are still rarely reported. Here, we present direct imaging of skyrmion tubes in nanostructured cuboids of a chiral magnet FeGe using Lorentz transmission electron microscopy (TEM), while applying an in-plane magnetic field. It is observed that skyrmion tubes stabilize in a narrow field-temperature region near the Curie temperature (Tc). Through a field cooling process, metastable skyrmion tubes can exist in a larger region of the field-temperature diagram. Combining these experimental findings with micromagnetic simulations, we attribute these phenomena to energy differences and thermal fluctuations. Our results could promote topological spintronic devices based on skyrmion tubes.
Collapse
Affiliation(s)
- Jialiang Jiang
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, China
| | - Jin Tang
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, China
| | - Tian Bai
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
| | - Yaodong Wu
- School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, China
| | - Jiazhuan Qin
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
| | - Weixing Xia
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
| | - Renjie Chen
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
| | - Aru Yan
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
| | - Shouguo Wang
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Mingliang Tian
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, China
| | - Haifeng Du
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
6
|
Yu X, Kanazawa N, Zhang X, Takahashi Y, Iakoubovskii KV, Nakajima K, Tanigaki T, Mochizuki M, Tokura Y. Spontaneous Vortex-Antivortex Pairs and Their Topological Transitions in a Chiral-Lattice Magnet. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306441. [PMID: 37712832 DOI: 10.1002/adma.202306441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/12/2023] [Indexed: 09/16/2023]
Abstract
The spontaneous formation and topological transitions of vortex-antivortex pairs have implications for a broad range of emergent phenomena, for example, from superconductivity to quantum computing. Unlike magnets exhibiting collinear spin textures, helimagnets with noncollinear spin textures provide unique opportunities to manipulate topological forms such as (anti)merons and (anti)skyrmions. However, it is challenging to achieve multiple topological states and their interconversion in a single helimagnet due to the topological protection for each state. Here, the on-demand creation of multiple topological states in a helimagnet Fe0.5 Co0.5 Ge, including a spontaneous vortex pair of meron with topological charge N = -1/2 and antimeron with N = 1/2, and a vortex-antivortex bundle, that is, a bimeron (meron pair) with N = -1 is reported. The mutual transformation between skyrmions and bimerons with respect to the competitive effects of magnetic field and magnetic shape anisotropy is demonstrated. It is shown that electric currents drive the individual bimerons to form their connecting assembly and then into a skyrmion lattice. These findings signify the feasibility of designing topological states and offer new insights into the manipulation of noncollinear spin textures for potential applications in various fields.
Collapse
Affiliation(s)
- Xiuzhen Yu
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - Naoya Kanazawa
- Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Xichao Zhang
- Department of Applied Physics, Waseda University, Tokyo, 169-8555, Japan
| | - Yoshio Takahashi
- Research and Development Group, Hitachi, Ltd., Hatoyama, 350-0395, Japan
| | | | - Kiyomi Nakajima
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - Toshiaki Tanigaki
- Research and Development Group, Hitachi, Ltd., Hatoyama, 350-0395, Japan
| | - Masahito Mochizuki
- Department of Applied Physics, Waseda University, Tokyo, 169-8555, Japan
| | - Yoshinori Tokura
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
- Department of Applied Physics and Tokyo College, The University of Tokyo, Tokyo, 113-8656, Japan
| |
Collapse
|