Park S, Kim J, Kim D, Watanabe K, Taniguchi T, Seo MK. Demonstration of Two-Dimensional Exciton Complex Palette.
ACS NANO 2024. [PMID:
38335539 DOI:
10.1021/acsnano.3c11214]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Exciton complexes in two-dimensional semiconductors, encompassing bright and dark excitons, biexcitons, and defect-bound excitons, have shown significant potential across a wide range of research areas. These applications range from exploring quantum many-body phenomena to developing nonclassical light sources and quantum transport devices. To fully leverage their dynamic and interactive properties and extend the capabilities of excitonic devices, realizing systematic engineering and mixing of the exciton complexes are crucial. Unlike conventional material methods, which often lead to undesired changes in the electronic band structure and binding energy, optical methods provide a means to manipulate the radiative decay dynamics of individual exciton complexes in a purely environmental manner. Here, we employ a specialized photonic platform, analogous to an artist's palette, to arrange and mix exciton complexes on an identical two-dimensional transition metal dichalcogenide medium. Essentially, a gradient thickness mirror (GTM) continuously tunes the local distribution of optical vacuum field interference. The GTM platform enables us to create and examine five distinct compositions of the exciton complexes of the WSe2 monolayer and their contributions to the photoluminescence spectrum. Moreover, the exciton complex palette facilitates the observation of dark and defect-bound excitons, even at high temperatures of 70 K, and its performance can be further managed by simple postprocessing manipulations.
Collapse