1
|
Kawaguchi N, Shibata K, Mizoguchi T. Band structure database of layered intercalation compounds with various intercalant atoms and layered hosts. Sci Data 2024; 11:1244. [PMID: 39557862 PMCID: PMC11574018 DOI: 10.1038/s41597-024-04008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Here we provide a database comprising electronic band structures of 9,004 layered intercalation compounds, where atoms are intercalated into a host layered compound with different intercalant atoms, along with 468 structures related to the layered host compounds. Additionally, we provide properties derived from the electronic states such as band gap as well as stability-related properties like formation energies. Direct comparison of the band structures before and after intercalation is generally challenging due to changes in their space group and k-path. However, in this study, we developed new k-paths consistent with the host materials, allowing for the direct comparison of band structures before and after intercalation. This enables direct and quantitative discussion of the band structure changes induced by the intercalations and provides a valuable database for intercalant-driven band engineering. Layered intercalation compounds are widely used in many fields, including superconductivity and energy applications, and understanding of electronic structures is necessary. The feature of our database holds promises for the development of layered compounds with enhanced functionalities through database utilization.
Collapse
Grants
- 24H00042 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19H05787 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 24K08016 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19H00818 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19H05787 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 24K08016 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19H00818 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19H05787 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 24K08016 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Naoto Kawaguchi
- Department of Materials Science and Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan.
| | - Kiyou Shibata
- Department of Materials Science and Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan
| | - Teruyasu Mizoguchi
- Department of Materials Science and Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan.
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan.
| |
Collapse
|
2
|
Yang B, Dong W, Zhu C, Huang X, Han Y, Zheng Y, Yan J, Zhuang Z, Yu Y. Reinforcing 2D Single-Crystal Bi 2O 2CO 3 with Additional Interlayer Carbonates by CO 2-Assisted Solid-to-Solid Phase Transition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401559. [PMID: 38659393 DOI: 10.1002/smll.202401559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Indexed: 04/26/2024]
Abstract
A facile gaseous CO2 mediated solid-to-solid transformation principle is adopted to insert additional CO3 2- anions into the thin single-crystal nanosheets of Bi2O2CO3, which is built of periodic arrays of intrinsic CO3 2- anions and (Bi2O2)2+ layers. The additional CO3 2- anions create abundant defects. The Bi2O2CO3 nanosheets with rich interlayer CO3 2- exhibit superior electronic properties and charge transfer kinetics than the pristine single-crystal 2D Bi2O2CO3 and display enhanced catalytic activity in photocatalytic CO2 reduction reaction and the photocatalytic oxidative degradation of organic pollutants. This work thus illustrates interlayer engineering as a flexible means to build layered 2D materials with excellent properties.
Collapse
Affiliation(s)
- Bixia Yang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Weilong Dong
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Chongbing Zhu
- AQUA Worth (Suzhou) Environmental Protection Co.,Ltd, Suzhou, 215011, China
| | - Xinlian Huang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Yunhui Han
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Yanting Zheng
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Jiawei Yan
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Zanyong Zhuang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Yan Yu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
3
|
He D, Zheng Y, Ding D, Ma H, Zhang A, Cheng Y, Zhao W, Jin C. Titanium Self-Intercalation Induced Formation of Orthogonal (1 × 1) Edge/Surface Reconstruction in 1T-TiSe 2: Atomic Scale Dynamics and Mechanistic Study. NANO LETTERS 2024; 24:3835-3841. [PMID: 38498307 DOI: 10.1021/acs.nanolett.4c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Edges and surfaces play indispensable roles in affecting the chemical-physical properties of materials, particularly in two-dimensional transition metal dichalcogenides (TMDCs) with reduced dimensionality. Herein, we report a novel edge/surface structure in multilayer 1T-TiSe2, i.e., the orthogonal (1 × 1) reconstruction, induced by the self-intercalation of Ti atoms into interlayer octahedral sites of the host TiSe2 at elevated temperature. Formation dynamics of the reconstructed edge/surface are captured at the atomic level by in situ scanning transmission electron microscopy (STEM) and further validated by density functional theory (DFT), which enables the proposal of the nucleation mechanism and two growth routes (zigzag and armchair). Via STEM-electron energy loss spectroscopy (STEM-EELS), a chemical shift of 0.6 eV in Ti L3,2 is observed in the reconstructed edge/surface, which is attributed to the change of the coordination number and lattice distortion. The present work provides insights to tailor the atomic/electronic structures and properties of 2D TMDC materials.
Collapse
Affiliation(s)
- Daliang He
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
- Jihua Laboratory, Foshan, Guangdong 528200, China
| | - Yonghui Zheng
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Degong Ding
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Hao Ma
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 Shandong, China
| | - Aixinye Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 Shandong, China
| | - Yan Cheng
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Wen Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 Shandong, China
| | - Chuanhong Jin
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
- Jihua Laboratory, Foshan, Guangdong 528200, China
| |
Collapse
|
4
|
Americo S, Pakdel S, Thygesen KS. Enhancing Metallicity and Basal Plane Reactivity of 2D Materials via Self-Intercalation. ACS NANO 2024. [PMID: 38290223 DOI: 10.1021/acsnano.3c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Intercalation (ic) of metal atoms into the van der Waals (vdW) gap of layered materials constitutes a facile strategy to create materials whose properties can be tuned via the concentration of the intercalated atoms. Here we perform systematic density functional theory calculations to explore various properties of an emergent class of crystalline 2D materials (ic-2D materials) comprising vdW homobilayers with native metal atoms on a sublattice of intercalation sites. From an initial set of 1348 ic-2D materials, generated from 77 vdW homobilayers, we find 95 structures with good thermodynamic stability (formation energy within 200 meV/atom of the convex hull). A significant fraction of the semiconducting host materials are found to undergo an insulator to metal transition upon self-intercalation, with only PdS2, PdSe2, and GeS2 maintaining a finite electronic gap. In five cases, self-intercalation introduces magnetism. In general, self-intercalation is found to promote metallicity and enhance the chemical reactivity on the basal plane. Based on the calculated H binding energy, we find that self-intercalated SnS2 and Hf3Te2 are promising candidates for hydrogen evolution catalysis. All the stable ic-2D structures and their calculated properties can be explored in the open C2DB database.
Collapse
Affiliation(s)
- Stefano Americo
- Computational Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Sahar Pakdel
- Computational Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kristian Sommer Thygesen
- Computational Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Zhang S, Huo S, Song X, Zhang X. Surface Stability and Exfoliability of Non-van der Waals Magnetic Chromium Tellurides. J Phys Chem Lett 2023; 14:10609-10616. [PMID: 37982382 DOI: 10.1021/acs.jpclett.3c02439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Exfoliation of two-dimensional (2D) magnetic materials from non-van der Waals (non-vdW) materials has attracted increasing attention because it provides a great platform for the construction of 2D magnetic materials. For non-vdW magnetic chromium tellurides with high Curie temperatures, their few-layer samples show promising applications in the field of spintronics. However, there is still no consensus on whether the surface structures of few-layer chromium tellurides should be terminated by Cr or Te atoms. By calculating the surface and exfoliation energy, we find that which structure is more stable depends greatly on the value of the chemical potential of Te atoms, and the few-layer sample with a Cr-terminated surface is easier to exfoliate than that with both Te-terminated surfaces. Finally, we propose that different exfoliated structures can be identified by using the atomic number ratio of Cr to Te and the average magnetic moment of Cr atoms in few-layer samples.
Collapse
Affiliation(s)
- Shuqing Zhang
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Sitong Huo
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaoyan Song
- Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Xinping Zhang
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|