1
|
Yao Q, Park JW, Won C, Cheong S, Yeom HW. Nanometer-Scale 1D Negative Differential Resistance Channels in Van Der Waals Layers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408090. [PMID: 39538418 PMCID: PMC11727404 DOI: 10.1002/advs.202408090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Indexed: 11/16/2024]
Abstract
Negative differential resistance (NDR) is the key feature of resonant tunneling diodes exploited for high-frequency and low-power devices and recent studies have focused on NDR in van der Waals heterostructures and nanoscale materials. Here, strong NDR confined along a 1-nm-wide 1D channel within a van der Waals layer 1T-TaS2 is reported. Using scanning tunneling microscopy, a double 1D NDR channel formed along the sides of a charge-density-wave domain wall of 1T-TaS2 is found. The density functional theory calculation elucidates that the strong local band-bending at the domain wall and the interlayer orbital overlap cooperate to bring about 1D NDR channels. Furthermore, the NDR is well controlled by changing the tunneling junction distance. This result would be important for nanoscale device applications based on strong nonlinear resistance within van der Waals material architectures.
Collapse
Affiliation(s)
- Qirong Yao
- Center for Artificial Low Dimensional Electronic SystemsInstitute for Basic Science (IBS)Pohang37673South Korea
| | - Jae Whan Park
- Center for Artificial Low Dimensional Electronic SystemsInstitute for Basic Science (IBS)Pohang37673South Korea
| | - Choongjae Won
- Laboratory for Pohang Emergent MaterialsDepartment of PhysicsPohang University of Science and TechnologyPohang37673South Korea
- Max Plank Pohang University of Science and Technology (POSTECH) Center for Complex Phase MaterialsPohang University of Science and TechnologyPohang37673South Korea
| | - Sang‐Wook Cheong
- Laboratory for Pohang Emergent MaterialsDepartment of PhysicsPohang University of Science and TechnologyPohang37673South Korea
- Max Plank Pohang University of Science and Technology (POSTECH) Center for Complex Phase MaterialsPohang University of Science and TechnologyPohang37673South Korea
- Rutgers Center for Emergent Materials and Department of Physics and AstronomyRutgers UniversityPiscatawayNJ08854‐8019USA
| | - Han Woong Yeom
- Center for Artificial Low Dimensional Electronic SystemsInstitute for Basic Science (IBS)Pohang37673South Korea
- Department of PhysicsPohang University of Science and TechnologyPohang37673South Korea
| |
Collapse
|
2
|
Hwang J, Ruan W, Chen Y, Tang S, Crommie MF, Shen ZX, Mo SK. Charge density waves in two-dimensional transition metal dichalcogenides. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:044502. [PMID: 38518359 DOI: 10.1088/1361-6633/ad36d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Charge density wave (CDW is one of the most ubiquitous electronic orders in quantum materials. While the essential ingredients of CDW order have been extensively studied, a comprehensive microscopic understanding is yet to be reached. Recent research efforts on the CDW phenomena in two-dimensional (2D) materials provide a new pathway toward a deeper understanding of its complexity. This review provides an overview of the CDW orders in 2D with atomically thin transition metal dichalcogenides (TMDCs) as the materials platform. We mainly focus on the electronic structure investigations on the epitaxially grown TMDC samples with angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy as complementary experimental tools. We discuss the possible origins of the 2D CDW, novel quantum states coexisting with them, and exotic types of charge orders that can only be realized in the 2D limit.
Collapse
Affiliation(s)
- Jinwoong Hwang
- Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wei Ruan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Yi Chen
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, People's Republic of China
| | - Shujie Tang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Michael F Crommie
- Department of Physics, University of California, Berkeley, CA, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA 94720, United States of America
| | - Zhi-Xun Shen
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA, United States of America
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States of America
| | - Sung-Kwan Mo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 United States of America
| |
Collapse
|
3
|
Liu L, Liu K, Zhai T. Emerging van der Waals Dielectrics of Inorganic Molecular Crystals for 2D Electronics. ACS NANO 2024; 18:6733-6739. [PMID: 38335468 DOI: 10.1021/acsnano.3c10137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
In the landscape of continuous downscaling metal-oxide-semiconductor field-effect transistors, two-dimensional (2D) semiconductors with atomic thinness emerge as promising channel materials for ultimate scaled devices. However, integrating compatible dielectrics with 2D semiconductors, particularly in a scalable way, remains a critical challenge that hinders the development of 2D devices. Recently, 2D inorganic molecular crystals (IMCs), which are free of dangling bonds and possess excellent dielectric properties and simplicity for scalable fabrication, have emerged as alternatives for gate dielectric integration in 2D devices. In this Perspective, we start with the introduction of structure and synthesis methods of IMCs and then discuss the explorations of using IMCs as the dielectrics, as well as some remaining relevant issues to be unraveled. Moreover, we look at the future opportunities of IMC dielectrics in 2D devices both for practical applications and fundamental research.
Collapse
Affiliation(s)
- Lixin Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Optics Valley Laboratory, Hubei 430074, P. R. China
| |
Collapse
|