1
|
He Z, Zhang Z, Ding J, Gao W, Li M, Chen C. Managing Pb-Related Imperfections via Rationally Designed Aniline Derivative with Bilateral Cyano and Acetyl Groups as Lewis Base for High-Efficiency Perovskite Solar Cells Exceeding 24. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404334. [PMID: 38864215 DOI: 10.1002/smll.202404334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Indexed: 06/13/2024]
Abstract
Pb-related imperfections (surface or halide vacancy induced uncoordinated Pb2+, Pb-I antisite, and Pb2+ vacancy defects) of the ionic crystal perovskite film seriously restrict the photovoltaic performance of perovskite solar cells (PSCs). Here, an aniline derivative N-(4-cyanophenyl)acetamide (CAL) is rationally designed, incorporating bilateral functional sites of cyano and acetyl groups, acting as Lewis base molecule for managing the Pb-related imperfections in perovskite surface through post-treatment. Theoretical calculation and experimental verification together proved the reduced defect density, improved crystallinity, and inhibited ion migration in the CAL-modified perovskite. Precisely, cyano as a side group and acetyl as another side group can both coordinate with Pb2+ for its low electrostatic potential energy. Further, the aniline core and the π-π conjugate structure in the benzene ring of the ligand tend to form a dimer to improve the mobility for carrier transportation and collection. The strategy demonstrates a champion PCE of 24.35% for the air-processed PSCs with over 1200 hours of maximum power point tracking (MPPT) stability. This study presents a comprehensive approach to overcoming the current Pb-related imperfections induced limitations in PSCs, paving the way for their integration into mainstream solar technologies.
Collapse
Affiliation(s)
- Zijie He
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zuolin Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jike Ding
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Wenhuan Gao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Mengjia Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Cong Chen
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
2
|
Wan X, Xu C, Wang H, Jiang Z, Li F, Xu G, Dai Z, He X, Song Q. Efficient Tin-Lead Perovskite Solar Cells with a Ultrawide Usage Windows of Precursor Solution Opened by SnF 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401136. [PMID: 38501858 DOI: 10.1002/smll.202401136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/05/2024] [Indexed: 03/20/2024]
Abstract
High quality tin-lead perovskite solar cells (Sn─Pb PSCs) can be fabricated via simple solution processing methods. However, the instability of precursor solutions and their narrow usage windows still pose challenges in manufacturing efficient and reproducible Sn─Pb PSCs, hindering the commercialization of PSCs. Fluorine tin (SnF2) is widely used as an antioxidant to improve the crystallinity of perovskite. In this study, another role of SnF2 as a stabilizer is found to restrain the deprotonation of methylammonium iodide (MAI) in the precursor solution, which improves their stability and expands their usage windows. Due to the inhibition of SnF2 on oxidation and deprotonation, stable large-sized colloidal clusters form gradually in perovskite precursor solution during aging, leading to uniform nucleation/crystallization during film growth, significantly reducing the roughness and defect density in the films. Because of the competitive deprotonation and oxidation process of Sn2+, the benefit of larger cluster maximizes after about ten days storage of precursor solution. The champion efficiency of Sn─Pb PSCs prepared with 10 days aged precursor solution is 22.00%. High performance of devices fabricated with precursor solution stored for even ≈40 days discloses the wide usage windows of precursor solution with SnF2 additive.
Collapse
Affiliation(s)
- Xiaoyun Wan
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Cunyun Xu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Hao Wang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Zezhuan Jiang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Fuling Li
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Gaobo Xu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Zhongjun Dai
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Xiaofeng He
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Qunliang Song
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
3
|
Chen C, Zhang Z, Wang C, Geng T, Feng Y, Ding J, Ma Q, Gao W, Li M, Chen J, Tang JX. Synchronous Regulation Strategy of Pyrrolidinium Thiocyanate Enables Efficient Perovskite Solar Cells and Self-Powered Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311377. [PMID: 38299746 DOI: 10.1002/smll.202311377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Indexed: 02/02/2024]
Abstract
Developing inventive approaches to control crystallization and suppress trap defects in perovskite films is crucial for achieving efficient perovskite photovoltaics. Here, a synchronous regulation strategy is developed that involves the infusion of a zwitterionic ionic liquid additive, pyrrolidinium thiocyanate (PySCN), into the perovskite precursor to optimize the subsequent crystallization and defects. PySCN modification not only orchestrates the crystallization process but also deftly addresses trap defects in perovskite films. Within this, SCN- compensates for positively charged defects, while Py+ plays the role of passivating negatively charged defects. Based on the vacuum flash evaporation without anti-solvent, the air-processed perovskite solar cells (PSCs) with PySCN modification can achieve an extraordinary champion efficiency of 22.46% (0.1 cm2) and 21.15% (1.0 cm2) with exceptional stability surpassing 1200 h. Further, the self-powered photodetector goes above and beyond, showcasing an ultra-low dark current of 2.13 × 10-10 A·cm-2, a specific detection rate of 6.12 × 1013 Jones, and an expansive linear dynamic range reaching an astonishing 122.49 dB. PySCN modification not only signifies high efficiency but also ushers in a new era for crystallization regulation, promising a transformative impact on the optoelectronic performance of perovskite-based devices.
Collapse
Affiliation(s)
- Cong Chen
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau, 999078, China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zuolin Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Chen Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Taoran Geng
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yinsu Feng
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jike Ding
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Quanxing Ma
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Wenhuan Gao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Mengjia Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiangzhao Chen
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jian-Xin Tang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau, 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|