Huang W, Zhang Y, Fang X, Li Q, Liu H. Single-Nucleobase-Resolved Nanoruler Determines the Surface Energy Transfer Radius on the Living Cell Membrane.
Anal Chem 2024;
96:5274-5281. [PMID:
38507515 DOI:
10.1021/acs.analchem.4c00128]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Investigations about surface energy transfer radius (r0) are limited to the aqueous solution system, and it is quite limited on experimental values of r0 between dyes and the corresponding gold particle (AuNP) sizes, especially for living cell systems. Hence, the selection of suitable AuNP-dye pairs is restricted when designing nanometal surface energy transfer (NSET) strategies in analytical sciences. Here, we developed a single-nucleobase-resolved NSET strategy to in situ measure the r0 value between a specific dye and different-sized AuNPs on the living cell membrane. Using the aptamer-dye complex (XQ-2d-nTA-FAM) and antiCD71 antibody-coupled AuNP conjugate (Au@antiCD71) as two working elements to bind two different sites on CD71 receptors on living cell membranes, we modified the nTA spacer between FAM and the terminal of aptamer to change the distance (r) from FAM to AuNP center and further adjusted the quenching efficiency (Φ) between them. Different r0 values of various AuNP-FAM pairs in living cells are determined by this in situ detection strategy. Based on this single-nucleobase-resolved NSET strategy, we established a simple and efficient universal method for measuring r0 in the living cell system, which greatly expanded the selection range of AuNP-dye pairs during the construction of the NSET model at the nanoscale.
Collapse