1
|
Bi S, Ye J, Tian P, Ning G. Insight from Boric Acid into Bioskeleton Formation: Inscribed Circle Effect on the Edge-Base Plate Growth. Inorg Chem 2024; 63:12740-12751. [PMID: 38941498 DOI: 10.1021/acs.inorgchem.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Complex morphologies in nature often arise from the assembly of elemental building blocks, leading to diverse and intricate structures. Understanding the mechanisms that govern the formation of these complex morphologies remains a significant challenge. In particular, the edge-base plate growth of biogenic crystals plays a crucial role in directing the development of intricate bioskeleton morphologies. However, the factors and regulatory processes that govern edge-base plate growth remain insufficiently understood. Inspired by biological skeletons and based on the soluble property of boric acid (BA) in both water and alcohols, we obtained a series of novel BA morphologies, including coccolith, and anemone biological skeletons. Here, we unveil the "inscribed circle effect", a concise mathematical model that reveals the underlying causative factors and regulatory mechanisms driving edge-base plate growth. Our findings illuminate how variations in solvent environments can exert control over the edge-base plate growth pathways, thereby resulting in the formation of diverse and complex morphologies. This understanding holds significant potential for guiding the chemical synthesis of bioskeleton materials.
Collapse
Affiliation(s)
- Shengnan Bi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Peng Tian
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
2
|
Scarabelli L, Sun M, Zhuo X, Yoo S, Millstone JE, Jones MR, Liz-Marzán LM. Plate-Like Colloidal Metal Nanoparticles. Chem Rev 2023; 123:3493-3542. [PMID: 36948214 PMCID: PMC10103137 DOI: 10.1021/acs.chemrev.3c00033] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The pseudo-two-dimensional (2D) morphology of plate-like metal nanoparticles makes them one of the most anisotropic, mechanistically understood, and tunable structures available. Although well-known for their superior plasmonic properties, recent progress in the 2D growth of various other materials has led to an increasingly diverse family of plate-like metal nanoparticles, giving rise to numerous appealing properties and applications. In this review, we summarize recent progress on the solution-phase growth of colloidal plate-like metal nanoparticles, including plasmonic and other metals, with an emphasis on mechanistic insights for different synthetic strategies, the crystallographic habits of different metals, and the use of nanoplates as scaffolds for the synthesis of other derivative structures. We additionally highlight representative self-assembly techniques and provide a brief overview on the attractive properties and unique versatility benefiting from the 2D morphology. Finally, we share our opinions on the existing challenges and future perspectives for plate-like metal nanomaterials.
Collapse
Affiliation(s)
- Leonardo Scarabelli
- NANOPTO Group, Institue of Materials Science of Barcelona, Bellaterra, 08193, Spain
| | - Muhua Sun
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Sungjae Yoo
- Research Institute for Nano Bio Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, Department of Chemical and Petroleum Engineering, Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, 43009 Bilbao, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Cinbio, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
3
|
Cheng Z, Jones MR. Assembly of planar chiral superlattices from achiral building blocks. Nat Commun 2022; 13:4207. [PMID: 35864092 PMCID: PMC9304327 DOI: 10.1038/s41467-022-31868-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 07/07/2022] [Indexed: 11/28/2022] Open
Abstract
The spontaneous assembly of chiral structures from building blocks that lack chirality is fundamentally important for colloidal chemistry and has implications for the formation of advanced optical materials. Here, we find that purified achiral gold tetrahedron-shaped nanoparticles assemble into two-dimensional superlattices that exhibit planar chirality under a balance of repulsive electrostatic and attractive van der Waals and depletion forces. A model accounting for these interactions shows that the growth of planar structures is kinetically preferred over similar three-dimensional products, explaining their selective formation. Exploration and mapping of different packing symmetries demonstrates that the hexagonal chiral phase forms exclusively because of geometric constraints imposed by the presence of constituent tetrahedra with sharp tips. A formation mechanism is proposed in which the chiral phase nucleates from within a related 2D achiral phase by clockwise or counterclockwise rotation of tetrahedra about their central axis. These results lay the scientific foundation for the high-throughput assembly of planar chiral metamaterials. The formation of nanostructures with chiral symmetry often requires chiral directing agents at a smaller length scale. Here, the authors report the self-assembly of 2D chiral superlattices from achiral tetrahedron-shaped building blocks.
Collapse
Affiliation(s)
- Zhihua Cheng
- Department of Chemistry, Rice University, Houston, TX, US
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, TX, US. .,Department of Materials Science & Nanoengineering, Rice University, Houston, TX, US.
| |
Collapse
|
4
|
Welling TAJ, Grau-Carbonell A, Watanabe K, Nagao D, de Graaf J, van Huis MA, van Blaaderen A. Frequency-controlled electrophoretic mobility of a particle within a porous, hollow shell. J Colloid Interface Sci 2022; 627:761-773. [PMID: 35878466 DOI: 10.1016/j.jcis.2022.07.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 10/17/2022]
Abstract
The unique properties of yolk-shell or rattle-type particles make them promising candidates for applications ranging from switchable photonic crystals, to catalysts, to sensors. To realize many of these applications it is important to gain control over the dynamics of the core particle independently of the shell. HYPOTHESIS The core particle may be manipulated by an AC electric field with rich frequency-dependent behavior. EXPERIMENTS Here, we explore the frequency-dependent dynamic electrophoretic mobility of a charged core particle within a charged, porous shell in AC electric fields both experimentally using liquid-phase electron microscopy and numerically via the finite-element method. These calculations solve the Poisson-Nernst-Planck-Stokes equations, where the core particle moves according to the hydrodynamic and electric forces acting on it. FINDINGS In experiments the core exhibited three frequency-dependent regimes of field-driven motion: (i) parallel to the field, (ii) diffusive in a plane orthogonal to the field, and (iii) unbiased random motion. The transitions between the three observed regimes can be explained by the level of matching between the time required to establish ionic gradients in the shell and the period of the AC field. We further investigated the effect of shell porosity, ionic strength, and inner-shell radius. The former strongly impacted the core's behavior by attenuating the field inside the shell. Our results provide physical understanding on how the behavior of yolk-shell particles may be tuned, thereby enhancing their potential for use as building blocks for switchable photonic crystals.
Collapse
Affiliation(s)
- Tom A J Welling
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands.
| | - Albert Grau-Carbonell
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands
| | - Kanako Watanabe
- Department of Chemical Engineering, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai 980-8579, Japan
| | - Daisuke Nagao
- Department of Chemical Engineering, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai 980-8579, Japan
| | - Joost de Graaf
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands
| | - Marijn A van Huis
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands
| | - Alfons van Blaaderen
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands.
| |
Collapse
|
5
|
Cao W, Brown KA. Theory for hierarchical assembly with dielectrophoresis and the role of particle anisotropy. Electrophoresis 2020; 42:635-643. [PMID: 33058177 DOI: 10.1002/elps.202000218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/07/2020] [Accepted: 09/30/2020] [Indexed: 11/06/2022]
Abstract
Nonuniform electric fields cause polarizable particles to move through an effect known as dielectrophoresis (DEP). Additionally, the particles themselves create nonuniform fields due to their induced dipoles. When the nonuniform field of one particle causes another to move, it represents a path to hierarchical assembly termed mutual DEP (mDEP). Anisotropic particles potentially provide further opportunities for assembly through intense and intricate local field profiles. Here, we construct a theoretical framework for describing anisotropic particles as templates for assembly through mDEP by considering the motion of small nanoparticles near larger anisotropic nanoparticles. Using finite element analysis, we study eight particle shapes and compute their field enhancement and polarizability in an orientation-specific manner. Strikingly, we find a more than tenfold enhancement in the field near certain particle shapes, potentially promoting mDEP. To more directly relate the field intensity to the anticipated assembly outcome, we compute the volume experiencing each field enhancement versus particle shape and orientation. Finally, we provide a framework for predicting how mixtures of two distinct particle species will begin to assemble in a manner that allows for the identification of conditions that kinetically bias assembly toward specific hierarchical outcomes.
Collapse
Affiliation(s)
- Wenhan Cao
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Keith A Brown
- Department of Mechanical Engineering, Boston University, Boston, MA, USA.,Division of Materials Science & Engineering, Boston University, Boston, MA, USA.,Physics Department, Boston University, Boston, MA, USA
| |
Collapse
|
6
|
Li N, Zhang M, Zha Y, Cao Y, Ma Y. π-π stacking-directed self-assembly of nanoplatelets into diversified three-dimensional superparticles for high surface-enhanced Raman scattering. J Colloid Interface Sci 2020; 575:54-60. [PMID: 32361046 DOI: 10.1016/j.jcis.2020.04.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 11/18/2022]
Abstract
Ordered, hierarchical structures formed from nanoparticle (NP) self-assembly are of interest as they display the synergistic properties of the individual NP. Herein we report a one-pot approach to form and self-assemble gold (Au) nanoplatelets into brick-wall like (BWL) Au superparticles (AuSPs). We employ an aniline (ANI) derivative, N-(3-amidino)-aniline (NAAN) to reduce the Au precursor into Au nanoplatelets in the presence of Br-1. The corresponding oxidation product, poly (N-(3-amidino)-aniline) (PNAAN) functions as the capping agent and enables the face-to-face self-assembly of Au nanoplatelets into BWL AuSPs via the π-π stacking interaction. Systematically tuning the reaction conditions leads to spherical, mushroom- or cauliflower-like AuSPs. The significant electromagnetic enhancement of AuSPs via the formation of the nanogaps produces high-density hotspots for excellent surface-enhanced Raman scattering (SERS) enhancement, enabling the ultrasensitive SERS assay with detection limit of pM. Moreover, the as-prepared AuSPs exhibited the intense SERS signals under laser excitation with different wavelength and the excellent reproducibility after long-duration exposure in different media. The developed SERS sensor has a great potential for a wide application of bioanalysis, clinic assays and environmental monitoring.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Meiying Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yongchao Zha
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yingzi Cao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Ying Ma
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
7
|
Luo B, Kim A, Smith JW, Ou Z, Wu Z, Kim J, Chen Q. Hierarchical self-assembly of 3D lattices from polydisperse anisometric colloids. Nat Commun 2019; 10:1815. [PMID: 31000717 PMCID: PMC6472373 DOI: 10.1038/s41467-019-09787-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/21/2019] [Indexed: 01/22/2023] Open
Abstract
Colloids are mainly divided into two types defined by size. Micron-scale colloids are widely used as model systems to study phase transitions, while nanoparticles have physicochemical properties unique to their size. Here we study a promising yet underexplored third type: anisometric colloids, which integrate micrometer and nanometer dimensions into the same particle. We show that our prototypical system of anisometric silver plates with a high polydispersity assemble, unexpectedly, into an ordered, three-dimensional lattice. Real-time imaging and interaction modeling elucidate the crucial role of anisometry, which directs hierarchical assembly into secondary building blocks-columns-which are sufficiently monodisperse for further ordering. Ionic strength and plate tip morphology control the shape of the columns, and therefore the final lattice structures (hexagonal versus honeycomb). Our joint experiment-modeling study demonstrates potentials of encoding unconventional assembly in anisometric colloids, which can likely introduce properties and phase behaviors inaccessible to micron- or nanometer-scale colloids.
Collapse
Affiliation(s)
- Binbin Luo
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Ahyoung Kim
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - John W Smith
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Zihao Ou
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Zixuan Wu
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Juyeong Kim
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL, 61801, USA
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, 61801, USA.
- Materials Research Laboratory, University of Illinois, Urbana, IL, 61801, USA.
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
8
|
|
9
|
Zhang XQ, Ling J, Liu CJ, Tan YH, Chen LQ, Cao QE. An irreversible temperature indicator fabricated by citrate induced face-to-face assembly of silver triangular nanoplates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:657-662. [PMID: 30184792 DOI: 10.1016/j.msec.2018.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 06/09/2018] [Accepted: 07/09/2018] [Indexed: 01/13/2023]
Abstract
Assembly of anisotropic nanoparticles which need well controlling of assembly direction and spatial arrangement is more interesting than one-dimensional nanoparticles assemblies. As confirmed by observing of transmission electron microscopy images and analysis of plasmon resonance spectrum transformations, we found that silver triangular nanoplates (TNPs) without further modification could be face-to-face assembled by citrate. The face-to-face assembly of silver TNPs could be disassembled quickly by heating at a wide temperature range from 30 to 80 °C. In this process, an obvious localized surface plasmon resonance (LSPR) peak shift and a color change of solution from pink to purple could be observed. Moreover, the disassembled silver TNPs suspension is very stable that no significant peak shift of silver TNPs spectrum was observed in 8 h after removing of silver TNPs from a hearing area. Therefore, we fabricated an irreversible temperature indicator by measuring the relationship between the shift of LSPR peak and heating temperature, and by watching the color change of the solution in a certain environment. The irreversible temperature indicator has potential to develop a temperature label for revealing temperature history of a thermosensitive product which cannot expose to excessive temperature.
Collapse
Affiliation(s)
- Xiu-Qing Zhang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China; Kunming City Center for Disease Control and Prevention, Kunming, 650034, China
| | - Jian Ling
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Chao-Juan Liu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuan-Hang Tan
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Li-Qiang Chen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, China
| | - Qiu-E Cao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
10
|
Liu B, Wu Y, Zhao S. Anisotropic Colloids: From Non-Templated to Patchy Templated Synthesis. Chemistry 2018; 24:10562-10570. [PMID: 29469224 DOI: 10.1002/chem.201705960] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Indexed: 11/09/2022]
Abstract
Self-assembly of colloidal particles is an important and challenging way to generate novel colloidal superstructures for new materials. Recent progress on syntheses of anisotropic colloids highlights opportunities for such self-assembly, particularly in defining new non-cubic superstructures. Both non-templated and templated synthesis play an important role in preparing anisotropic colloidal particles. In this article, we briefly summarize recent progress in anisotropic colloids by non-templated and conventional templated synthesis, and introduce a conceptual strategy of "patchy templated synthesis" that differs from the conventional approach. We illustrate this strategy with recent examples emanating from colloidal rings, and discuss the future opportunities with this strategy for the synthesis of other anisotropic colloids.
Collapse
Affiliation(s)
- Bing Liu
- State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuanyuan Wu
- State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuping Zhao
- State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
11
|
Watanabe K, Kuroda K, Nagao D. External-Stimuli-Assisted Control over Assemblies of Plasmonic Metals. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E794. [PMID: 29762465 PMCID: PMC5978171 DOI: 10.3390/ma11050794] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 01/26/2023]
Abstract
Assembly of plasmonic nanoparticles (NPs) in suspensions is a promising approach for the control of optical and sensing properties that depend on the assembled states of plasmonic NPs. This review focuses on the controlling methods to assemble the NP via external stimuli such as pH, temperature, light, magnetic field, and electric field. External stimuli are introduced as powerful tools to assemble the NPs because of various operational factors, such as the intensity, application time, and frequency, which can be employed. In addition to a summary of recent studies on the controlling methods, a future study on the reversible control over assembled states of the plasmonic NPs via external stimuli is proposed.
Collapse
Affiliation(s)
- Kanako Watanabe
- Department of Chemical Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Kotaro Kuroda
- Department of Chemical Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Daisuke Nagao
- Department of Chemical Engineering, Tohoku University, Sendai 980-8579, Japan.
| |
Collapse
|
12
|
Vutukuri HR, Bet B, van Roij R, Dijkstra M, Huck WTS. Rational design and dynamics of self-propelled colloidal bead chains: from rotators to flagella. Sci Rep 2017; 7:16758. [PMID: 29196659 PMCID: PMC5711812 DOI: 10.1038/s41598-017-16731-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
The quest for designing new self-propelled colloids is fuelled by the demand for simple experimental models to study the collective behaviour of their more complex natural counterparts. Most synthetic self-propelled particles move by converting the input energy into translational motion. In this work we address the question if simple self-propelled spheres can assemble into more complex structures that exhibit rotational motion, possibly coupled with translational motion as in flagella. We exploit a combination of induced dipolar interactions and a bonding step to create permanent linear bead chains, composed of self-propelled Janus spheres, with a well-controlled internal structure. Next, we study how flexibility between individual swimmers in a chain can affect its swimming behaviour. Permanent rigid chains showed only active rotational or spinning motion, whereas longer semi-flexible chains showed both translational and rotational motion resembling flagella like-motion, in the presence of the fuel. Moreover, we are able to reproduce our experimental results using numerical calculations with a minimal model, which includes full hydrodynamic interactions with the fluid. Our method is general and opens a new way to design novel self-propelled colloids with complex swimming behaviours, using different complex starting building blocks in combination with the flexibility between them.
Collapse
Affiliation(s)
- Hanumantha Rao Vutukuri
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
- Soft Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.
| | - Bram Bet
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - René van Roij
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Marjolein Dijkstra
- Soft condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princentonplein 1, 3584 CC, Utrecht, The Netherlands.
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Imaging the polymerization of multivalent nanoparticles in solution. Nat Commun 2017; 8:761. [PMID: 28970557 PMCID: PMC5624893 DOI: 10.1038/s41467-017-00857-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022] Open
Abstract
Numerous mechanisms have been studied for chemical reactions to provide quantitative predictions on how atoms spatially arrange into molecules. In nanoscale colloidal systems, however, less is known about the physical rules governing their spatial organization, i.e., self-assembly, into functional materials. Here, we monitor real-time self-assembly dynamics at the single nanoparticle level, which reveal marked similarities to foundational principles of polymerization. Specifically, using the prototypical system of gold triangular nanoprisms, we show that colloidal self-assembly is analogous to polymerization in three aspects: ensemble growth statistics following models for step-growth polymerization, with nanoparticles as linkable “monomers”; bond angles determined by directional internanoparticle interactions; and product topology determined by the valency of monomeric units. Liquid-phase transmission electron microscopy imaging and theoretical modeling elucidate the nanometer-scale mechanisms for these polymer-like phenomena in nanoparticle systems. The results establish a quantitative conceptual framework for self-assembly dynamics that can aid in designing future nanoparticle-based materials. Few models exist that describe the spontaneous organization of colloids into materials. Here, the authors combine liquid-phase TEM and single particle tracking to observe the dynamics of gold nanoprisms, finding that nanoscale self-assembly can be understood within the framework of atomic polymerization.
Collapse
|
14
|
Jia Z, Sacanna S, Lee SS. Dielectrophoretic assembly of dimpled colloids into open packing structures. SOFT MATTER 2017; 13:5724-5730. [PMID: 28758660 DOI: 10.1039/c7sm00874k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Reversible solid-state phase transitions between open- and close-packed structures in two-dimensional colloidal crystals comprising 1.8 μm dimpled spherical colloids were observed using negative dielectrophoresis. These asymmetrically-shaped colloids adopted lattices with cmm plane group symmetry and a packing fraction, ϕ, of 0.68 at low electric field strengths. At high electric field strengths, the close-packed p6m symmetry was observed, with ϕ = 0.90. The transition between open and close-packed structures was found to be reversible, depending on the applied electric field strength and frequency. Finite Fourier transform analysis and COMSOL simulations revealed the existence of repulsive interactions between colloids perpendicular to the electric field lines due to a concentration of the electric field at the edges of the dimpled regions of the colloids. The repulsive interactions resulted in a stretching of the hexagonal lattice perpendicular to the electric field lines, the magnitude of which depended on the electric field strength. By screening the colloids from the electric field in local potential wells, the entropically favored close-packed hexagonal lattice with ϕ = 0.91 was recovered.
Collapse
Affiliation(s)
- Zhuoqiang Jia
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA.
| | | | | |
Collapse
|
15
|
Luo B, Smith JW, Wu Z, Kim J, Ou Z, Chen Q. Polymerization-Like Co-Assembly of Silver Nanoplates and Patchy Spheres. ACS NANO 2017; 11:7626-7633. [PMID: 28715193 DOI: 10.1021/acsnano.7b02059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Highly anisometric nanoparticles have distinctive mechanical, electrical, and thermal properties and are therefore appealing candidates for use as self-assembly building blocks. Here, we demonstrate that ultra-anisometric nanoplates, which have a nanoscale thickness but a micrometer-scale edge length, offer many material design capabilities. In particular, we show that these nanoplates "copolymerize" in a predictable way with patchy spheres (Janus and triblock particles) into one- and two-dimensional structures with tunable architectural properties. We find that, on the pathway to these structures, nanoplates assemble into chains following the kinetics of molecular step-growth polymerization. In the same mechanistic framework, patchy spheres control the size distribution and morphology of assembled structures, by behaving as monofunctional chain stoppers or multifunctional branch points during nanoplate polymerization. In addition, both the lattice constant and the stiffness of the nanoplate assemblies can be manipulated after assembly. We see highly anisometric nanoplates as one representative of a broader class of dual length-scale nanoparticles, with the potential to enrich the library of structures and properties available to the nanoparticle self-assembly toolbox.
Collapse
Affiliation(s)
- Binbin Luo
- Department of Materials Science and Engineering, ‡Frederick Seitz Materials Research Laboratory, and §Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - John W Smith
- Department of Materials Science and Engineering, ‡Frederick Seitz Materials Research Laboratory, and §Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Zixuan Wu
- Department of Materials Science and Engineering, ‡Frederick Seitz Materials Research Laboratory, and §Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Juyeong Kim
- Department of Materials Science and Engineering, ‡Frederick Seitz Materials Research Laboratory, and §Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Zihao Ou
- Department of Materials Science and Engineering, ‡Frederick Seitz Materials Research Laboratory, and §Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Qian Chen
- Department of Materials Science and Engineering, ‡Frederick Seitz Materials Research Laboratory, and §Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
A molecularly imprinted polypyrrole for ultrasensitive voltammetric determination of glyphosate. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2200-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|