1
|
Price EK, Tisdale WA. Predictive Modeling of Nanocrystal Orientation in Superlattices: Insights from Ligand Entropy. NANO LETTERS 2024; 24:9983-9989. [PMID: 39078514 DOI: 10.1021/acs.nanolett.4c02636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The self-assembly of nanocrystals (NCs) into close-packed, ordered superlattices (SLs) is of broad, engineering interest. The coherent orientation of polyhedral nanocrystals within NC SLs enhances electronic, magnetic, and vibrational coupling, leading to a variety of emergent phenomena. Here, we show that coherent orientation of polyhedral NCs in many SLs can be understood simply by considering its effect on the conformational entropy of surface ligands. We report the predicted nanocrystal orientations and entropic driving force to orient for a broad range of nanocrystal shapes and superlattice unit cells, and we show that ligand entropy is sufficient to reproduce a host of reported experimental and computational observations. We additionally use this framework to predict the expected distribution of interstitial species such as solvent or unbound ligands in an oriented NC SL. This work offers intuition for understanding the orientation of NCs in superlattices and a future framework for analyzing multinary structures.
Collapse
Affiliation(s)
- Eliza K Price
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Jiang S, Chen X, Huang X, Li C, Wang Z, Zhao B, Zhang L, Zhou G, Fang J. Randomly Layered Superstructure of In 2O 3 Truncated Nano-Octahedra and Its High-Pressure Behavior. J Am Chem Soc 2024; 146:8598-8606. [PMID: 38465613 DOI: 10.1021/jacs.4c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
This study outlines the preparation and characterization of a unique superlattice composed of indium oxide (In2O3) vertex-truncated nano-octahedra, along with an exploration of its response to high-pressure conditions. Transmission electron microscopy and scanning transmission electron microscopy were employed to determine the average circumradius (15.2 nm) of these vertex-truncated building blocks and their planar superstructure. The resilience and response of the superlattice to pressure variations, peaking at 18.01 GPa, were examined using synchrotron-based wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS) techniques. The WAXS data revealed no phase transitions, reinforcing the stability of the 2D superlattice composed of random layers in alignment with a p31m planar symmetry as discerned by SAXS. Notably, the SAXS data also unveiled a pressure-induced, irreversible translation of octahedra and ligand interaction occurring within the random layer. Through our examination of these pressure-sensitive behaviors, we identified a distinctive translation model inherent to octahedra and observed modulation of the superlattice cell parameter induced by pressure. This research signifies a noteworthy advancement in deciphering the intricate behaviors of 2D superlattices under a high pressure.
Collapse
Affiliation(s)
- Shaojie Jiang
- Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Xiaobo Chen
- Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Xin Huang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| | - Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Zhongwu Wang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| | - Bo Zhao
- College of Arts & Sciences Microscopy, Texas Tech University, Lubbock, Texas 79409, United States
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Guangwen Zhou
- Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jiye Fang
- Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
3
|
Yu C, Guo H. Molecular Dynamics Simulation Study on Self-Assembly of Polymer-Grafted Nanocrystals: From Isotropic Cores to Anisotropic Cores. J Chem Theory Comput 2024; 20:1625-1635. [PMID: 37583059 DOI: 10.1021/acs.jctc.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The self-assembly of polymer-grafted nanocrystals (PGNCs) is an important method to manufacture novel nanomaterials. Herein, we focus on the self-assembly of three types of PGNCs with differently shaped cores including sphere, octahedron, and cube by molecular dynamics simulation. By characterizing the positional and orientational order of the assembled superlattices, we construct the phase diagrams as a function of the grafting density and polymer chain length. For PGNCs with spherical cores, we observe the transition from the FCC phase to the BCC phase due to the packing entropy of the ligand polymer chains. For PGNCs with anisotropic cores, the close-packed FCC phase is replaced by the C-BCC phase (octahedral cores) or the C-triclinic phase (cubic cores) due to the directional entropy of core shape. We also study the assembly dynamics by tracking the time evolution of the positional and orientational order. We elucidate the relationship of grafting density and polymer chain length to the packing entropy and directional entropy and reveal their important effects on assembled structures. In general, our simulation results provide useful guidelines for the programmable assembly of PGNCs.
Collapse
Affiliation(s)
- Chong Yu
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Guo
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Huang X, Suit E, Zhu J, Ge B, Gerdes F, Klinke C, Wang Z. Diffusion-Mediated Nucleation and Growth of fcc and bcc Nanocrystal Superlattices with Designable Assembly of Freestanding 3D Supercrystals. J Am Chem Soc 2023; 145:4500-4507. [PMID: 36787491 DOI: 10.1021/jacs.2c11120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Diffusion-mediated assembly of octahedral PbS nanocrystals (NCs) in a confined antisolvent environment displays a primary burst nucleation and Ostwald ripening growth of rhombic bcc supercrystals, followed by a secondary seed-based nucleation and oriented attachment growth of triangle fcc supercrystals. As the diffusion proceeds from ethanol across a sharp interface into NC-suspended toluene, a burst nucleation of supercrystal seeds occurs, and such supercrystals are quickly developed into rhombic grains that have a bcc structure. At a critical size of 10 μm, an Ostwald ripening event appears to guide the supercrystal growth. Upon grain growth above 30 μm, the fcc supercrystals start a nucleation at two symmetrical tips of individual rhombic crystals. Such fcc supercrystals are developed with a triangle shape, and two triangles are combined with one bcc rhombus in-between to form a butterfly-like bowtie stacking structure. The fcc triangle wings grow larger at a reduction of bcc rhombus cores. As the bcc cores gradually fade, such butterfly-like bowtie crystals aggregate and undergo an oriented attachment process, leading to the formation of freestanding 3D triangle crystals that have a single fcc lattice. Analysis of experimental observations and defined diffusion parameters reveals that fast solvent diffusion and high-NC concentration promote the growth of rhombic bcc supercrystals, while slow solvent diffusion and low-NC concentration accelerate the development of triangle fcc supercrystals. Upon succeeding in designable growth of 3D fcc supercrystals, this study provides designing principles for controlled fabrication of supercrystals with desired superlattices for additional engineering and applications.
Collapse
Affiliation(s)
- Xin Huang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| | - Elizabeth Suit
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| | - Jinlong Zhu
- Department of Physics, South University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Binghui Ge
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Frauke Gerdes
- Institute of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Christian Klinke
- Institute of Physics, University of Rostock, 18059 Rostock, Germany.,Department of Chemistry, Swansea University─Singleton Park, Swansea SA2 8PP, U.K
| | - Zhongwu Wang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Lv ZP, Kapuscinski M, Járvás G, Yu S, Bergström L. Time-Resolved SAXS Study of Polarity- and Surfactant-Controlled Superlattice Transformations of Oleate-Capped Nanocubes During Solvent Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106768. [PMID: 35523733 DOI: 10.1002/smll.202106768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Structural transformations and lattice expansion of oleate-capped iron oxide nanocube superlattices are studied by time-resolved small-angle X-ray scattering (SAXS) during solvent removal. The combination of conductor-like screening model for real solvents (COSMO-RS) theory with computational fluid dynamics (CFD) modeling provides information on the solvent composition and polarity during droplet evaporation. Evaporation-driven poor-solvent enrichment in the presence of free oleic acid results in the formation of superlattices with a tilted face-centered cubic (fcc) structure when the polarity reaches its maximum. The tilted fcc lattice expands subsequently during the removal of the poor solvent and eventually transforms to a regular simple cubic (sc) lattice during the final evaporation stage when only free oleic acid remains. Comparative studies show that both the increase in polarity as the poor solvent is enriched and the presence of a sufficient amount of added oleic acid is required to promote the formation of structurally diverse superlattices with large domain sizes.
Collapse
Affiliation(s)
- Zhong-Peng Lv
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-10691, Sweden
- Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Martin Kapuscinski
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-10691, Sweden
- Department of Materials Science and Engineering, Uppsala University, Uppsala, SE-75103, Sweden
| | - Gábor Járvás
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, HU-8200, Hungary
| | - Shun Yu
- Department of Materials and Surface Design, RISE Research Institute of Sweden, Lund, SE-22370, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-10691, Sweden
| |
Collapse
|
6
|
Liu J, Huang J, Niu W, Tan C, Zhang H. Unconventional-Phase Crystalline Materials Constructed from Multiscale Building Blocks. Chem Rev 2021; 121:5830-5888. [PMID: 33797882 DOI: 10.1021/acs.chemrev.0c01047] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Crystal phase, an intrinsic characteristic of crystalline materials, is one of the key parameters to determine their physicochemical properties. Recently, great progress has been made in the synthesis of nanomaterials with unconventional phases that are different from their thermodynamically stable bulk counterparts via various synthetic methods. A nanocrystalline material can also be viewed as an assembly of atoms with long-range order. When larger entities, such as nanoclusters, nanoparticles, and microparticles, are used as building blocks, supercrystalline materials with rich phases are obtained, some of which even have no analogues in the atomic and molecular crystals. The unconventional phases of nanocrystalline and supercrystalline materials endow them with distinctive properties as compared to their conventional counterparts. This Review highlights the state-of-the-art progress of nanocrystalline and supercrystalline materials with unconventional phases constructed from multiscale building blocks, including atoms, nanoclusters, spherical and anisotropic nanoparticles, and microparticles. Emerging strategies for engineering their crystal phases are introduced, with highlights on the governing parameters that are essential for the formation of unconventional phases. Phase-dependent properties and applications of nanocrystalline and supercrystalline materials are summarized. Finally, major challenges and opportunities in future research directions are proposed.
Collapse
Affiliation(s)
- Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jingtao Huang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy Sciences, Changchun, Jilin 130022, P.R. China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Huang X, Zhu J, Ge B, Gerdes F, Klinke C, Wang Z. In Situ Constructing the Kinetic Roadmap of Octahedral Nanocrystal Assembly Toward Controlled Superlattice Fabrication. J Am Chem Soc 2021; 143:4234-4243. [PMID: 33687203 DOI: 10.1021/jacs.0c12087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Crystallization and growth of anisotropic nanocrystals (NCs) into distinct superlattices were studied in real time, yielding kinetic details and designer parameters for scale-up fabrication of functional materials. Using octahedral PbS NC blocks, we discovered that NC assembly involves a primary lamellar ordering of NC-detached Pb(OA)2 molecules on the front-spreading solvent surfaces. Upon a spontaneous increase of NC concentration during solvent processing, PbS NCs preferentially self-assembled into an orientation-disordered face-centered cubic (fcc) superlattice, which subsequently transformed into a body-centered cubic (bcc) superlattice with single NC-orientational ordering across individual domains. Unlike the deformation-based transformation route claimed previously, this solid-solid phase transformation involved a hidden intermediate formation of a lamellar-confined liquid interface at cost of the disassembly (melting) of small fcc grains. Such highly condensed and liquidized NCs recrystallized into the stable bcc phase with an energy reduction of 1.16 kBT. This energy-favorable and high NC-fraction-driven bcc phase grew as a 2D film at a propagation rate of 0.74 μm/min, smaller than the 1.23 μm/min observed in the early nucleated fcc phase under a dilute NC environment. Taking such insights and defined parameters, we designed experiments to manipulate the NC assembly pathway and achieved scalable fabrication of a large/single bcc supercrystal with coherent ordering of NC translation and atomic plane orientation. This study not only provides a design avenue for controllable fabrication of a large supercrystal with desired superlattices for application but also sheds new light on the nature of crystal nucleation/growth and phase transformation by extending the lengths from the nanoscale into the atomic scale, molecular scale, and microscale levels.
Collapse
Affiliation(s)
- Xin Huang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| | - Jinlong Zhu
- Department of Physics, South University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Binghui Ge
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601 China
| | - Frauke Gerdes
- Institute of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Christian Klinke
- Institute of Physics, University of Rostock, 18059 Rostock, Germany.,Department of Chemistry, Swansea University, Singleton Park, Swansea SA2 8PP, Uunited Kingdom
| | - Zhongwu Wang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
8
|
Lee YH, Shi W, Yang Y, Kao YC, Lee HK, Chu R, Pang YL, Lay CL, Li S, Ling XY. Modulating Orientational Order to Organize Polyhedral Nanoparticles into Plastic Crystals and Uniform Metacrystals. Angew Chem Int Ed Engl 2020; 59:21183-21189. [PMID: 32767617 DOI: 10.1002/anie.202009941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 01/11/2023]
Abstract
In nanoparticle self-assembly, the current lack of strategy to modulate orientational order creates challenges in isolating large-area plastic crystals. Here, we achieve two orientationally distinct supercrystals using one nanoparticle shape, including plastic crystals and uniform metacrystals. Our approach integrates multi-faceted Archimedean polyhedra with molecular-level surface polymeric interactions to tune nanoparticle orientational order during self-assembly. Experiments and simulations show that coiled surface polymer chains limit interparticle interactions, creating various geometrical configurations among Archimedean polyhedra to form plastic crystals. In contrast, brush-like polymer chains enable molecular interdigitation between neighboring particles, favoring consistent particle configurations and result in uniform metacrystals. Our strategy enhances supercrystal diversity for polyhedra comprising multiple nondegenerate facets.
Collapse
Affiliation(s)
- Yih Hong Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wenxiong Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Yijie Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Ya-Chuan Kao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Rongrong Chu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Yee Ling Pang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Chee Leng Lay
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
9
|
Lee YH, Shi W, Yang Y, Kao Y, Lee HK, Chu R, Pang YL, Lay CL, Li S, Ling XY. Modulating Orientational Order to Organize Polyhedral Nanoparticles into Plastic Crystals and Uniform Metacrystals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yih Hong Lee
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Wenxiong Shi
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering Tiangong University Tianjin 300387 P. R. China
| | - Yijie Yang
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Ya‐Chuan Kao
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Rongrong Chu
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering Tiangong University Tianjin 300387 P. R. China
| | - Yee Ling Pang
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Chee Leng Lay
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
- Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
10
|
Deng K, Luo Z, Tan L, Quan Z. Self-assembly of anisotropic nanoparticles into functional superstructures. Chem Soc Rev 2020; 49:6002-6038. [PMID: 32692337 DOI: 10.1039/d0cs00541j] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Self-assembly of colloidal nanoparticles (NPs) into superstructures offers a flexible and promising pathway to manipulate the nanometer-sized particles and thus make full use of their unique properties. This bottom-up strategy builds a bridge between the NP regime and a new class of transformative materials across multiple length scales for technological applications. In this field, anisotropic NPs with size- and shape-dependent physical properties as self-assembly building blocks have long fascinated scientists. Self-assembly of anisotropic NPs not only opens up exciting opportunities to engineer a variety of intriguing and complex superlattice architectures, but also provides access to discover emergent collective properties that stem from their ordered arrangement. Thus, this has stimulated enormous research interests in both fundamental science and technological applications. This present review comprehensively summarizes the latest advances in this area, and highlights their rich packing behaviors from the viewpoint of NP shape. We provide the basics of the experimental techniques to produce NP superstructures and structural characterization tools, and detail the delicate assembled structures. Then the current understanding of the assembly dynamics is discussed with the assistance of in situ studies, followed by emergent collective properties from these NP assemblies. Finally, we end this article with the remaining challenges and outlook, hoping to encourage further research in this field.
Collapse
Affiliation(s)
- Kerong Deng
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zhishan Luo
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Li Tan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
11
|
Josten E, Angst M, Glavic A, Zakalek P, Rücker U, Seeck OH, Kovács A, Wetterskog E, Kentzinger E, Dunin-Borkowski RE, Bergström L, Brückel T. Strong size selectivity in the self-assembly of rounded nanocubes into 3D mesocrystals. NANOSCALE HORIZONS 2020; 5:1065-1072. [PMID: 32542274 DOI: 10.1039/d0nh00117a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The self-assembly of nanoparticles into highly ordered crystals is largely influenced by variations in the size and shape of the constituent particles, with crystallization generally not observed if their polydispersity is too large. Here, we report on size selectivity in the self-assembly of rounded cubic maghemite nanoparticles into three-dimensional mesocrystals. Different X-ray scattering techniques are used to study and compare a nanoparticle dispersion that is used later for self-assembly, an ensemble of mesocrystals grown on a substrate, as well as an individual mesocrystal. The individual μm-sized mesocrystal is isolated using a focused-ion-beam-based technique and investigated by the diffraction of a micro-focused X-ray beam. Structural analysis reveals that individual mesocrystals have a drastically smaller size dispersity of nanoparticles than that in the initial dispersion, implying very strong size selectivity during self-assembly. The small size dispersity of the nanoparticles within individual mesocrystals is accompanied by a very narrow lattice parameter distribution. In contrast, the lattice parameter distribution within all mesocrystals of an ensemble is about four times wider than that of individual mesocrystals, indicating significant size fractionalization between mesocrystals during self-assembly. The small size dispersity within each mesocrystal has important implications for their physical properties.
Collapse
Affiliation(s)
- Elisabeth Josten
- Jülich Centre for Neutron Science (JCNS) and Peter Grünberg Institute (PGI), JARA-FIT, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kapuscinski M, Agthe M, Lv ZP, Liu Y, Segad M, Bergström L. Temporal Evolution of Superlattice Contraction and Defect-Induced Strain Anisotropy in Mesocrystals during Nanocube Self-Assembly. ACS NANO 2020; 14:5337-5347. [PMID: 32338498 PMCID: PMC7343289 DOI: 10.1021/acsnano.9b07820] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding and controlling defect formation during the assembly of nanoparticles is crucial for fabrication of self-assembled nanostructured materials with predictable properties. Here, time-resolved small-angle X-ray scattering was used to probe the temporal evolution of strain and lattice contraction during evaporation-induced self-assembly of oleate-capped iron oxide nanocubes in a levitating drop. We show that the evolution of the strain and structure of the growing mesocrystals is related to the formation of defects as the solvent evaporated and the assembly process progressed. Superlattice contraction during the mesocrystal growth stage is responsible for the rapidly increasing isotropic strain and the introduction of point defects. The crystal strain, quantified by the Williamson-Hall analysis, became more anisotropic due to the formation of stress-relieving dislocations as the mesocrystal growth was approaching completion. Understanding the formation of the transformation of defects in mesocrystals and superlattices could assist in the development of optimized assembly processes of nanoparticles with multifunctional properties.
Collapse
Affiliation(s)
- Martin Kapuscinski
- Department of Materials
and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Michael Agthe
- Center for Free-Electron Laser Science, University of Hamburg, 22607 Hamburg, Germany
| | - Zhong-Peng Lv
- Department of Materials
and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Yingxin Liu
- Department of Materials
and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Mo Segad
- Department of Materials
and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Lennart Bergström
- Department of Materials
and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
13
|
Liu Y, Deng K, Yang J, Wu X, Fan X, Tang M, Quan Z. Shape-directed self-assembly of nanodumbbells into superstructure polymorphs. Chem Sci 2020; 11:4065-4073. [PMID: 34122872 PMCID: PMC8152806 DOI: 10.1039/d0sc00592d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
Self-assembly of colloidal nanoparticles into ordered superstructures provides a promising route to create novel/enhanced functional materials. Much progress has been made in self-assembly of anisotropic nanoparticles, but the complexity and tunability of superstructures remain restricted by their available geometries. Here we report the controlled packing of nanodumbbells (NDs) with two spherical lobes connected by one rod-like middle bar into varied superstructure polymorphs. When assembled into two-dimensional (2D) monolayer assemblies, such NDs with specific shape parameters could form orientationally ordered degenerate crystals with a 6-fold symmetry, in which these NDs possess no translational order but three allowed orientations with a rotational symmetry of 120 degrees. Detailed analyses identify the distinct roles of subunits in the ND assembly: the spherical lobes direct NDs to closely assemble together into a hexagonal pattern, and the rod-like connection between the lobes endows NDs with this specific orientational order. Such intralayer assembly features are well maintained in the two-layer superstructures of NDs; however, the interlayer stackings could be adjusted to produce stable bilayer superstructures and a series of metastable moiré patterns. Moreover, in addition to horizontal alignment, these NDs could gradually stand up to form tilted or even vertical packing based on the delicate control over the liquid-liquid interface and ND dimensions. This study provides novel insights into creating superstructures by controlling geometric features of nanoscale building blocks and may spur their novel applications.
Collapse
Affiliation(s)
- Yulian Liu
- Department of Chemistry, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
- School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Kerong Deng
- Department of Chemistry, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Jun Yang
- School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Xiaotong Wu
- Department of Chemistry, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Xiaokun Fan
- Department of Chemistry, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Min Tang
- Department of Chemistry, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Zewei Quan
- Department of Chemistry, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| |
Collapse
|
14
|
Huang X, Wang Z. Supercrystallography-Based Decoding of Structure and Driving Force of Nanocrystal Assembly. MATERIALS 2019; 12:ma12223771. [PMID: 31744175 PMCID: PMC6887775 DOI: 10.3390/ma12223771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 11/24/2022]
Abstract
Nanocrystal (NC) assembly appears as one promising method towards the controllable design and fabrication of advanced materials with desired property and functionality. The achievement of a “materials-by-design” requires not only a primary structural decoding of NC assembled supercrystal at a wide range of length scales, but also an improved understanding of the interactions and changeable roles of various driving forces over the course of nucleation and growth of NC superlattice. The recent invention of a synchrotron-based X-ray supercrystallographic approach makes it feasible to uncover the structural details of NC-assembled supercrystal at unprecedented levels from atomic through nano to mesoscale. Such structural documentations can be used to trace how various driving forces interact in a competitive way and thus change relatively in strength to govern the formation of individual superlattices under certain circumstances. This short review makes use of four single supercrystals typically made up of spherical, truncate, cubic and octahedral NCs, respectively, and provides a comparable description and a reasonable analysis of the use of a synchrotron-based supercrystallographic approach to reveal various degrees of translational and orientational ordering of NCs within various superlattices. In the connection of observed structural aspects with controlled environments of NC assembly, we further address how various driving forces interact each other to develop relatively changeable roles upon variation of the NC shape to respond to the nucleation and growth of various superlattices. With the guidance of such gained insights, we provide additional examples to illustrate how realistic environments are designed into delicate control of NC assembly to achieve particular interactions between NCs towards harvesting superlattice with NC translational symmetry and atomically crystallographic orientation as desired.
Collapse
|
15
|
A universal state and its relaxation mechanisms of long-range interacting polygons. Nat Commun 2019; 10:1737. [PMID: 30988297 PMCID: PMC6465257 DOI: 10.1038/s41467-019-09795-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 03/31/2019] [Indexed: 11/08/2022] Open
Abstract
Using polygonal magnetic particles, we conduct experiments to explore the space-filling properties of anisotropic blocks with long-range interactions. In contrast to previous studies, we obtain the surprising finding that our systems' structures do not depend on the shape of building blocks: a single state, the hexagonal plastic crystal, appears as a universal attractor for a wide range of different polygons. This robust particle-shape independency appears as the interactions go beyond nearest neighbors. Particle shape plays an essential role in system relaxation, and determines the basic relaxation dynamics through a microscopic control parameter, internal roughness, produced by particle vertices. Thus our study reveals a new pattern-forming paradigm, in which particle shape plays little role in the static structure but determines the essential relaxation dynamics. Due to the ubiquity of long-range interactions and anisotropic building blocks, our discovery may shed new light on diverse problems involving structure formation, self-assembly, and packing.
Collapse
|
16
|
Guo X, Boukhalfa H, Mitchell JN, Ramos M, Gaunt AJ, Migliori A, Roback RC, Navrotsky A, Xu H. Sample seal-and-drop device and methodology for high temperature oxide melt solution calorimetric measurements of PuO 2. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:044101. [PMID: 31043032 DOI: 10.1063/1.5093567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/28/2019] [Indexed: 05/26/2023]
Abstract
Thermodynamic properties of refractory materials, such as standard enthalpy of formation, heat content, and enthalpy of reaction, can be measured by high temperature calorimetry. In such experiments, a small sample pellet is dropped from room temperature into a calorimeter operating at high temperature (often 700 °C) with or without a molten salt solvent present in an inert crucible in the calorimeter chamber. However, for hazardous (radioactive, toxic, etc.) and/or air-sensitive (hygroscopic, sensitive to oxygen, pyrophoric, etc.) samples, it is necessary to utilize a sealed device to encapsulate and isolate the samples, crucibles, and solvent under a controlled atmosphere in order to prevent the materials from reactions and/or protect the personnel from hazardous exposure during the calorimetric experiments. We have developed a sample seal-and-drop device (calorimetric dropper) that can be readily installed onto the dropping tube of a calorimeter such as the Setaram AlexSYS Calvet-type high temperature calorimeter to fulfill two functions: (i) load hazardous or air-sensitive samples in an air-tight, sealed container and (ii) drop the samples into the calorimeter chamber using an "off-then-on" mechanism. As a case study, we used the calorimetric dropper for measurements of the enthalpy of drop solution of PuO2 in molten sodium molybdate (3Na2O·4MoO3) solvent at 700 °C. The obtained enthalpy of -52.21 ± 3.68 kJ/mol is consistent with the energetic systematics of other actinide oxides (UO2, ThO2, and NpO2). This capability has thus laid the foundation for thermodynamic studies of other Pu-bearing phases in the future.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Hakim Boukhalfa
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Jeremy N Mitchell
- Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Michael Ramos
- Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Andrew J Gaunt
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Albert Migliori
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Robert C Roback
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Alexandra Navrotsky
- Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, California 95616, USA
| | - Hongwu Xu
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
17
|
Huang X, Zhu J, Ge B, Deng K, Wu X, Xiao T, Jiang T, Quan Z, Cao YC, Wang Z. Understanding Fe 3O 4 Nanocube Assembly with Reconstruction of a Consistent Superlattice Phase Diagram. J Am Chem Soc 2019; 141:3198-3206. [PMID: 30685973 DOI: 10.1021/jacs.8b13082] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nanocube (NC) assemblies display complex superlattice behaviors, which require a systematic understanding of their nucleation and growth as well transformation toward construction of a consistent superlattice phase diagram. This work made use of Fe3O4 NCs with controlled environments, and assembled NCs into three-dimensional (3D) superlattices of simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc), acute and obtuse rhombohedral (rh) polymorphs, and 2D superlattices of square and hexagon. Controlled experiments and computations of in situ and static small-angle X-ray scattering (SAXS) as well as electron microscopic imaging revealed that the fcc and bcc polymorphs preferred a primary nucleation at the early stage of NC assembly, which started from the high packing planes of fcc(111) and bcc(110), respectively, in both 3D and 2D cases. Upon continuous growth of superlattice grain (or domain), a confinement stress appeared and distorted fcc and bcc into acute and obtuse rh polymorphs, respectively. The variable magnitudes of competitive interactions between configurational and directional entropy determine the primary superlattice polymorph of either fcc or bcc, while emergent enhancement of confinement effect on enlarged grains attributes to late developed superlattice transformations. Differently, the formation of a sc polymorph requires a strong driving force that either emerges simultaneously or is applied externally so that one easy case of the sc formation can be achieved in 2D thin films. Unlike the traditional Bath deformation pathway that involves an intermediate body-centered tetragonal lattice, the observed superlattice transformations in NC assembly underwent a simple rhombohedral distortion, which was driven by a growth-induced in-plane compressive stress. Establishment of a consistent phase diagram of NC-based superlattices and reconstruction of their assembly pathways provide critical insight and a solid base for controlled design and scalable fabrication of nanocube-based functional materials with desired superlattices and collective properties for real-world applications.
Collapse
Affiliation(s)
- Xin Huang
- Cornell High Energy Synchrotron Source , Cornell University , Ithaca , New York 14853 , United States
| | - Jinlong Zhu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR) , Beijing 100090 , P. R. China
| | - Binghui Ge
- Institute of Physical Science and Information Technology , Anhui University , Hefei , 230601 Anhui , P. R. China
| | - Kerong Deng
- Department of Chemistry , Southern University of Science and Technology (SUSTech) , Shenzhen , Guangdong 518055 , P. R. China
| | - Xiaotong Wu
- Department of Chemistry , Southern University of Science and Technology (SUSTech) , Shenzhen , Guangdong 518055 , P. R. China
| | - Tianyuan Xiao
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Tian Jiang
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Zewei Quan
- Department of Chemistry , Southern University of Science and Technology (SUSTech) , Shenzhen , Guangdong 518055 , P. R. China
| | - Y Charles Cao
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Zhongwu Wang
- Cornell High Energy Synchrotron Source , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
18
|
Superstructures generated from truncated tetrahedral quantum dots. Nature 2018; 561:378-382. [PMID: 30232427 DOI: 10.1038/s41586-018-0512-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 08/07/2018] [Indexed: 11/08/2022]
Abstract
The assembly of uniform nanocrystal building blocks into well ordered superstructures is a fundamental strategy for the generation of meso- and macroscale metamaterials with emergent nanoscopic functionalities1-10. The packing of spherical nanocrystals, which frequently adopt dense, face-centred-cubic or hexagonal-close-packed arrangements at thermodynamic equilibrium, has been much more widely studied than that of non-spherical, polyhedral nanocrystals, despite the fact that the latter have intriguing anisotropic properties resulting from the shapes of the building blocks11-13. Here we report the packing of truncated tetrahedral quantum dot nanocrystals into three distinct superstructures-one-dimensional chiral tetrahelices, two-dimensional quasicrystal-approximant superlattices and three-dimensional cluster-based body-centred-cubic single supercrystals-by controlling the assembly conditions. Using techniques in real and reciprocal spaces, we successfully characterized the superstructures from their nanocrystal translational orderings down to the atomic-orientation alignments of individual quantum dots. Our packing models showed that formation of the nanocrystal superstructures is dominated by the selective facet-to-facet contact induced by the anisotropic patchiness of the tetrahedra. This study provides information about the packing of non-spherical nanocrystals into complex superstructures, and may enhance the potential of self-assembled nanocrystal metamaterials in practical applications.
Collapse
|
19
|
Zhu H, Fan Z, Yuan Y, Wilson MA, Hills-Kimball K, Wei Z, He J, Li R, Grünwald M, Chen O. Self-Assembly of Quantum Dot-Gold Heterodimer Nanocrystals with Orientational Order. NANO LETTERS 2018; 18:5049-5056. [PMID: 29989818 DOI: 10.1021/acs.nanolett.8b01860] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The self-assembly of nanocrystals into ordered superlattices is a powerful strategy for the production of functional nanomaterials. The assembly of well-ordered target structures, however, requires control over the building blocks' size and shape as well as their interactions. While nanocrystals with homogeneous composition are now routinely synthesized with high precision and assembled into various ordered structures, high-quality multicomponent nanocrystals and their ordered assemblies are rarely reported. In this paper, we demonstrate the synthesis of quantum dot-gold (QD-Au) heterodimers. These heterodimers possess a uniform shape and narrow size distribution and are capped with oleylamine and dodecyltrimethylammonium bromide (DTAB). Assembly of the heterodimers results in a superlattice with long-range orientational alignment of dimers. Using synchrotron-based X-ray measurements, we characterize the complex superstructure formed from the dimers. Molecular dynamics simulations of a coarse-grained model suggest that anisotropic interactions between the quantum dot and gold components of the dimer drive superlattice formation. The high degree of orientational order demonstrated in this work is a potential route to nanomaterials with useful optoelectronic properties.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Zhaochuan Fan
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Yucheng Yuan
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Mitchell A Wilson
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Katie Hills-Kimball
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Zichao Wei
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Jie He
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Ruipeng Li
- National Synchrotron Light Source II , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Michael Grünwald
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Ou Chen
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|
20
|
Creating two self-assembly micro-environments to achieve supercrystals with dual structures using polyhedral nanoparticles. Nat Commun 2018; 9:2769. [PMID: 30018282 PMCID: PMC6050264 DOI: 10.1038/s41467-018-05102-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
Organizing nanoparticles into supercrystals comprising multiple structures remains challenging. Here, we achieve one assembly with dual structures for Ag polyhedral building blocks, comprising truncated cubes, cuboctahedra, truncated octahedra, and octahedra. We create two micro-environments in a solvent evaporation-driven assembly system: one at the drying front and one at the air/water interface. Dynamic solvent flow concentrates the polyhedra at the drying front, generating hard particle behaviors and leading to morphology-dependent densest-packed bulk supercrystals. In addition, monolayers of nanoparticles adsorb at the air/liquid interface to minimize the air/liquid interfacial energy. Subsequent solvent evaporation gives rise to various structurally diverse dual-structure supercrystals. The topmost monolayers feature distinct open crystal structures with significantly lower packing densities than their densest-packed supercrystals. We further highlight a 3.3-fold synergistic enhancement of surface-enhanced Raman scattering efficiency arising from these dual-structure supercrystals as compared to a uniform one. Crystals with multiple structures often perform special functions in nature, inspiring the creation of synthetic analogues. Here, the authors subject polyhedral nanoparticles to two self-assembly micro-environments to realize supercrystals with dual structures, in which the order of the surface layer differs from the bulk structure.
Collapse
|
21
|
Bouju X, Duguet É, Gauffre F, Henry CR, Kahn ML, Mélinon P, Ravaine S. Nonisotropic Self-Assembly of Nanoparticles: From Compact Packing to Functional Aggregates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706558. [PMID: 29740924 DOI: 10.1002/adma.201706558] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Indexed: 06/08/2023]
Abstract
Quantum strongly correlated systems that exhibit interesting features in condensed matter physics often need an unachievable temperature or pressure range in classical materials. One solution is to introduce a scaling factor, namely, the lattice parameter. Synthetic heterostructures named superlattices or supracrystals are synthesized by the assembling of colloidal atoms. These include semiconductors, metals, and insulators for the exploitation of their unique properties. Most of them are currently limited to dense packing. However, some of desired properties need to adjust the colloidal atoms neighboring number. Here, the current state of research in nondense packing is summarized, discussing the benefits, outlining possible scenarios and methodologies, describing examples reported in the literature, briefly discussing the challenges, and offering preliminary conclusions. Penetrating such new and intriguing research fields demands a multidisciplinary approach accounting for the coupling of statistic physics, solid state and quantum physics, chemistry, computational science, and mathematics. Standard interactions between colloidal atoms and emerging fields, such as the use of Casimir forces, are reported. In particular, the focus is on the novelty of patchy colloidal atoms to meet this challenge.
Collapse
Affiliation(s)
- Xavier Bouju
- Centre d'élaboration de matériaux et d'études structurales (CEMES), CNRS, Université de Toulouse, UPR CNRS 8011, 29 Rue J. Marvig, F-31055, Toulouse, France
- Observatoire des micro et nanotechnologies (OMNT), Minatec, 17 rue des Martyrs, F-38000, Grenoble, France
| | - Étienne Duguet
- Observatoire des micro et nanotechnologies (OMNT), Minatec, 17 rue des Martyrs, F-38000, Grenoble, France
- CNRS, Univ. Bordeaux, ICMCB, UMR 5026, F-33600, Pessac, France
| | - Fabienne Gauffre
- Observatoire des micro et nanotechnologies (OMNT), Minatec, 17 rue des Martyrs, F-38000, Grenoble, France
- Institut des sciences chimiques de Rennes (ISCR), CNRS, Université de Rennes, UMR CNRS 6226, 263 avenue du Général Leclerc, F-35000, Rennes, France
| | - Claude R Henry
- Observatoire des micro et nanotechnologies (OMNT), Minatec, 17 rue des Martyrs, F-38000, Grenoble, France
- Centre interdisciplinaire de nanoscience de Marseille (CINAM), CNRS, Aix-Marseille Université, UMR CNRS 7325, Campus de Luminy, F-13288, Marseille, France
| | - Myrtil L Kahn
- Observatoire des micro et nanotechnologies (OMNT), Minatec, 17 rue des Martyrs, F-38000, Grenoble, France
- Laboratoire de chimie de coordination (LCC), CNRS, Université de Toulouse, UPR CNRS 8241, F-31000, Toulouse, France
| | - Patrice Mélinon
- Observatoire des micro et nanotechnologies (OMNT), Minatec, 17 rue des Martyrs, F-38000, Grenoble, France
- Institut Lumière Matière (ILM), CNRS, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5306, F-69622, Villeurbanne, France
| | - Serge Ravaine
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600, Pessac, France
| |
Collapse
|
22
|
Song W, Wu X, Di Q, Xue T, Zhu J, Quan Z. Morphologically controlled synthesis of ionic cesium iodide colloidal nanocrystals and electron beam-induced transformations. RSC Adv 2018; 8:18519-18524. [PMID: 35541154 PMCID: PMC9080543 DOI: 10.1039/c8ra02582g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Colloidal nanocrystals (NCs) have become an important group of novel materials with applications in various fields such as lighting, medicine, and optoelectronic devices. Compared to common semiconductor NCs (e.g., CdSe, CdS, PbS) with covalent bonds and metal NCs (e.g., Au, Ag, Pt) with metallic bonds, the synthesis of colloidal NCs with ionic bonds has rarely been explored, possibly due to their high solubility in polar solvents. In this work, we demonstrate a wet chemical synthesis route to prepare ionic cesium iodide (CsI) colloidal NCs, and they can be controllably made into different morphologies with good uniformity, including nanospheres, hexagonal nanoplates and nanocubes. The degradation of CsI NCs during transmission electron microscopy (TEM) has been investigated, revealing their sensitivity to high energy electron beam irradiation. The as-prepared CsI NCs exhibit strong absorption bands peaking at 275–280 nm, which should be ascribed to the presence of F-centers inside the band gap of CsI NCs. This study provides an efficient way to achieve controllable synthesis of high-quality CsI NCs that may find promising applications as advanced nanoscintillators in medical imaging, particle physics, position emission tomography and other various fields. Morphologically controlled synthesis of cesium iodide colloidal nanocrystals.![]()
Collapse
Affiliation(s)
- Weidong Song
- Department of Chemistry, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China .,School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT) Harbin 150001 P. R. China
| | - Xiaotong Wu
- Department of Chemistry, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China
| | - Qian Di
- Department of Chemistry, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China
| | - Tianjiao Xue
- Department of Chemistry, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China
| | - Jichao Zhu
- Department of Chemistry, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China .,School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT) Harbin 150001 P. R. China
| | - Zewei Quan
- Department of Chemistry, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
23
|
Wang Z, Bian K, Nagaoka Y, Fan H, Cao YC. Regulating Multiple Variables To Understand the Nucleation and Growth and Transformation of PbS Nanocrystal Superlattices. J Am Chem Soc 2017; 139:14476-14482. [PMID: 28953387 DOI: 10.1021/jacs.7b06908] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nanocrystals (NCs) can self-assemble into ordered superlattices with collective properties, but the ability for controlling NC assembly remains poorly understandable toward achievement of desired superlattice. This work regulates several key variables of PbS NC assembly (e.g., NC concentration and solubility, solvent type, evaporation rate, seed mediation and thermal treatment), and thoroughly exploits the nucleation and growth as well as subsequent superlattice transformation of NC assembles and underneath mechanisms. PbS NCs in toluene self-assemble into a single face-centered-cubic (fcc) and body-centered-cubic (bcc) superlattice, respectively, at concentrations ≤17.5 and ≥70 mg/mL, but an intermediate concentration between them causes the coexistence of the two superlattices. Differently, NCs in hexane or chloroform self-assemble into only a single bcc superlattice. Distinct controls of NC assembly in solvent with variable concentrations confirm the NC concentration/solubility mediated nucleation and growth of superlattice, in which an evaporation-induced local gradient of NC concentration causes simultaneous nucleation of the two superlattices. The observation for the dense packing planes of NCs in fast growing fcc rather than bcc reveals the difference of entropic driving forces responsible for the two distinct superlattices. Decelerating the solvent evaporation does not amend the superlattice symmetry, but improves the superlattice crystallinity. In addition to shrinking the superlattice volume, thermal treatment also transforms the bcc to an fcc superlattice at 175 °C. Through a seed-meditated growth, the concentration-dependent superlattice does not change lattice symmetry over the course of continuous growth, whereas the newly nucleated secondary small nuclei through a concentration change have relatively higher surface energy and quickly dissolve in solution, providing additional NC sources for the ripening of the primarily nucleated larger and stable seeds. The observations under multiple controls of assembly parameters not only provide insights into the nucleation and growth as well as transformation of various superlattice polymorphs but also lay foundation for controlled fabrication of desired superlattice with tailored property.
Collapse
Affiliation(s)
- Zhongwu Wang
- Cornell High Energy Synchrotron Source, Cornell University , Ithaca, New York 14853, United States
| | - Kaifu Bian
- Sandia National Laboratories, Advanced Materials Laboratory , 1001 University Boulevard SE, Albuquerque, New Mexico 87106, United States
| | - Yasutaka Nagaoka
- Department of Chemistry, University of Florida , Gainesville, Florida 32611, United States
| | - Hongyou Fan
- Sandia National Laboratories, Advanced Materials Laboratory , 1001 University Boulevard SE, Albuquerque, New Mexico 87106, United States.,Department of Chemical and Nuclear Engineering, Center for Micro-Engineered Materials, University of New Mexico , Albuquerque, New Mexico 87106, United States
| | - Y Charles Cao
- Department of Chemistry, University of Florida , Gainesville, Florida 32611, United States
| |
Collapse
|
24
|
Abstract
In this review, we briefly summarize the history of mesocrystal research. We introduce the current structural definition of mesocrystals and discuss the appropriate base for the classification of mesocrystals and their relations with other classes of solid state materials in terms of their structure. Building up on this, we comment on the problems in mesocrystal research both fundamental and methodological. Additionally, we make the short overview of the mesocrystal formation principles and synthetic routes used for their fabrications. As an outlook into the future, we highlight the most notable trends in mesocrystal research and developments.
Collapse
|
25
|
Zhu H, Nagaoka Y, Hills-Kimball K, Tan R, Yu L, Fang Y, Wang K, Li R, Wang Z, Chen O. Pressure-Enabled Synthesis of Hetero-Dimers and Hetero-Rods through Intraparticle Coalescence and Interparticle Fusion of Quantum-Dot-Au Satellite Nanocrystals. J Am Chem Soc 2017; 139:8408-8411. [PMID: 28594551 DOI: 10.1021/jacs.7b04018] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This report presents the fabrication and pressure-driven processing of heterostructural nanocrystal superlattices (HNC-SLs) self-assembled from quantum-dot-Au (QD-Au) satellite-type HNCs. In situ small/wide-angle X-ray scattering and electron microscopic measurements showed that the HNC-SLs underwent structural transformation at both atomic- and mesoscales during the pressure processing. Upon deviatoric stress-driven orientational migration, the intraparticle coalescence of Au satellites at QD surfaces transforms individual HNCs into heterodimers, whereas the interparticle fusion drives assembled HNCs into ordered heterorod arrays. These results demonstrate high-pressure-processing as a clean and fast means for conversion of HNCs into novel heteromaterials that are difficult to achieve through conventional synthetic routes.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Yasutaka Nagaoka
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Katie Hills-Kimball
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Rui Tan
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Long Yu
- Department of Materials Science and Engineering, University of Florida , Gainesville, Florida 32611, United States
| | - Yin Fang
- Department of Materials Science and Engineering, University of Florida , Gainesville, Florida 32611, United States
| | - Kelly Wang
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Ruipeng Li
- Cornell High Energy Synchrotron Source, Cornell University , Ithaca, New York 14853, United States
| | - Zhongwu Wang
- Cornell High Energy Synchrotron Source, Cornell University , Ithaca, New York 14853, United States
| | - Ou Chen
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
26
|
Yang PW, Thoka S, Lin PC, Su CJ, Sheu HS, Huang MH, Jeng US. Tracing the Surfactant-Mediated Nucleation, Growth, and Superpacking of Gold Supercrystals Using Time and Spatially Resolved X-ray Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3253-3261. [PMID: 28288275 DOI: 10.1021/acs.langmuir.6b04319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The nucleation and growth process of gold supercrystals in a surfactant diffusion approach is followed by simultaneous small- and wide-angle X-ray scattering (SAXS/WAXS), supplemented with scanning electron microscopy. The results indicate that supercrystal nucleation can be activated efficiently upon placing a concentrated surfactant solution of a nematic phase on top of a gold nanocrystal solution droplet trapped in the middle of a vertically oriented capillary tube. Supercrystal nuclei comprised of tens of gold nanocubes are observed nearly instantaneously in the broadened liquid-liquid interface zone of a steep gradient of surfactant concentration, revealing a diffusion-kinetics-controlled nucleation process. Once formed, the nuclei can sediment into the naoncrystal zone below, and grow efficiently into cubic or tetragonal supercrystals of ∼1 μm size within ∼100 min. Supercrystals matured during sedimentation in the capillary can accumulate and face-to-face align at the bottom liquid-air interface of the nanocrystal droplet. This is followed by superpacking of the supercrystals into highly oriented hierarchical sheets, with a huge number of gold nanocubes aligned for largely coherent crystallographic orientations.
Collapse
Affiliation(s)
- Po-Wei Yang
- National Synchrotron Radiation Research Center , 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | | | - Po-Chang Lin
- National Synchrotron Radiation Research Center , 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center , 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Hwo-Shuenn Sheu
- National Synchrotron Radiation Research Center , 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Michael H Huang
- Department of Chemistry, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center , 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
- Department of Chemical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan
| |
Collapse
|
27
|
Gong J, Newman RS, Engel M, Zhao M, Bian F, Glotzer SC, Tang Z. Shape-dependent ordering of gold nanocrystals into large-scale superlattices. Nat Commun 2017; 8:14038. [PMID: 28102198 PMCID: PMC5253678 DOI: 10.1038/ncomms14038] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 11/18/2016] [Indexed: 01/13/2023] Open
Abstract
Self-assembly of individual building blocks into highly ordered structures, analogous to spontaneous growth of crystals from atoms, is a promising approach to realize the collective properties of nanocrystals. Yet the ability to reliably produce macroscopic assemblies is unavailable and key factors determining assembly quality/yield are not understood. Here we report the formation of highly ordered superlattice films, with single crystalline domains of up to half a millimetre in two dimensions and thickness of up to several microns from nanocrystals with tens of nanometres in diameter. Combining experimental and computational results for gold nanocrystals in the shapes of spheres, cubes, octahedra and rhombic dodecahedra, we investigate the entire self-assembly process from disordered suspensions to large-scale ordered superlattices induced by nanocrystal sedimentation and eventual solvent evaporation. Our findings reveal that the ultimate coherence length of superlattices strongly depends on nanocrystal shape. Factors inhibiting the formation of high-quality large-scale superlattices are explored in detail.
Collapse
Affiliation(s)
- Jianxiao Gong
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Richmond S. Newman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Michael Engel
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Man Zhao
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fenggang Bian
- Shanghai Synchrotron Radiation Facility, Shanghai Institutes of Applied Physics, No. 239, Zhangheng Road, Shanghai, 201204, China
| | - Sharon C. Glotzer
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Zhiyong Tang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
28
|
Zhang J, Zhu J, Li R, Fang J, Wang Z. Entropy-Driven Pt 3Co Nanocube Assembles and Thermally Mediated Electrical Conductivity with Anisotropic Variation of the Rhombohedral Superlattice. NANO LETTERS 2017; 17:362-367. [PMID: 27936796 DOI: 10.1021/acs.nanolett.6b04295] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Understanding the shape-dependent superlattices and resultant anisotropies of both structure and property allows for rational design of materials processing and engineering to fabricate transformative materials with useful properties for applications. This work shows the structural evolution from square lattice of two-dimensional (2D) thin film to rhombic lattice of large three-dimensional (3D) assembles of Pt3Co nanocubes (NCs). Synchrotron-based X-ray supercrystallography determines the superlattice of large 3D supercrystal into an obtuse rhombohedral (Rh) symmetry, which holds a long-range coherence of both NC translation and atomic crystallographic orientation. The Rh superlattice has a trigonal cell angle of 104°, and the constitute NCs orient their atomic Pt3Co(111) planes to the superlattice Rh[111] direction. The temperature-dependent in situ small and wide-angle X-ray scattering (SAXS/WAXS) measurements reveal a thermally induced superlattice contraction of supercrystal, which maintains translational ordering but slightly develops orientational disordering. The observed increases of both the packing density and the rotation magnitude of NCs indicate a rational compromise between configurational and rotational entropies of NCs. The resultant minimization of the total free energy is responsible for the formation and stability of the obtuse Rh superlattice. The temperature-dependent in situ measurements of SAXS and electrical resistance reveal that, in conjunction with the thermally induced sharp contraction of superlattice at 160 °C, the supercrystal becomes measurable of electrical resistance, which was followed by a temperature-dependent linear increase. Upon rapid annealing from 250 °C, the supercrystal remains almost constant in both structure and electrical resistance. The heating-enabled electrical conductivity of the supercrystal at high temperature implies the formation of a NC-interconnected architecture. The experiments and overall analysis provide solid evidence and essential information for the use of shape-dependent structural anisotropies of supercrystal to create nanobased novel architecture with desired properties.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum , Qingdao 266580, China
| | - Jinlong Zhu
- Department of Physics and Astronomy, University of Nevada , Las Vegas, Nevada 89154, United States
- Center for High Pressure Science and Technology and Advanced Research , Beijing 100094, China
| | - Ruipeng Li
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University , Ithaca, New York 14850, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton , Binghamton, New York 13902, United States
| | - Zhongwu Wang
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University , Ithaca, New York 14850, United States
| |
Collapse
|
29
|
Agthe M, Plivelic TS, Labrador A, Bergström L, Salazar-Alvarez G. Following in Real Time the Two-Step Assembly of Nanoparticles into Mesocrystals in Levitating Drops. NANO LETTERS 2016; 16:6838-6843. [PMID: 27779885 DOI: 10.1021/acs.nanolett.6b02586] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mesocrystals composed of crystallographically aligned nanocrystals are present in biominerals and assembled materials which show strongly directional properties of importance for mechanical protection and functional devices. Mesocrystals are commonly formed by complex biomineralization processes and can also be generated by assembly of anisotropic nanocrystals. Here, we follow the evaporation-induced assembly of maghemite nanocubes into mesocrystals in real time in levitating drops. Analysis of time-resolved small-angle X-ray scattering data and ex situ scanning electron microscopy together with interparticle potential calculations show that the substrate-free, particle-mediated crystallization process proceeds in two stages involving the formation and rapid transformation of a dense, structurally disordered phase into ordered mesocrystals. Controlling and tailoring the particle-mediated formation of mesocrystals could be utilized to assemble designed nanoparticles into new materials with unique functions.
Collapse
Affiliation(s)
- Michael Agthe
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Tomás S Plivelic
- MAX IV Laboratory, Lund University , P.O. Box 118, SE-22100 Lund, Sweden
| | - Ana Labrador
- MAX IV Laboratory, Lund University , P.O. Box 118, SE-22100 Lund, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - German Salazar-Alvarez
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| |
Collapse
|
30
|
Cordeiro MAL, Leite ER, Stach EA. Controlling the Formation and Structure of Nanoparticle Superlattices through Surface Ligand Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11606-11614. [PMID: 27673391 DOI: 10.1021/acs.langmuir.6b03026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The tailoring of nanoparticle superlattices is fundamental to the design of novel nanostructured materials and devices. To obtain specific collective properties of these nanoparticle superlattices, reliable protocols for their self-assembly are required. This study provides insight into the self-assembly process by using oleate-covered CeO2 nanoparticles (cubic and polyhedral shapes) through the correlation of experimental and theoretical investigations. The self-assembly of CeO2 nanoparticles is controlled by tuning the colloid deposition parameters (temperature and evaporation rate), and the ordered structures so obtained were correlated to the Gibbs free energy variation of the system. The analysis of the interparticle force contributions for each structure showed the importance of both the effective ligand mean size and its Flory-Huggins parameter in determining the total potential energies. Additionally, the roles of ligand solubility and effective mean size were used to understand the formation of specific superlattice phases as a function of temperature and ligand accommodation in the arrangement. Furthermore, the face-to-face interactions between nanoparticles were correlated to the type of exposed crystallographic facet in each particle.
Collapse
Affiliation(s)
- Marco A L Cordeiro
- Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Edson R Leite
- Department of Chemistry, Federal University of Sao Carlos , 13565-905 Sao Carlos, SP Brazil
| | - Eric A Stach
- Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States
| |
Collapse
|
31
|
Paterson S, Thompson SA, Gracie J, Wark AW, de la Rica R. Self-assembly of gold supraparticles with crystallographically aligned and strongly coupled nanoparticle building blocks for SERS and photothermal therapy. Chem Sci 2016; 7:6232-6237. [PMID: 30034763 PMCID: PMC6024203 DOI: 10.1039/c6sc02465c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
A new method is introduced for self-assembling citrate-capped gold nanoparticles into supraparticles with crystallographically aligned building blocks. It consists in confining gld nanoparticles inside a cellulose acetate membrane. The constituent nanoparticles are in close contact in the superstructure, and therefore generate hot spots leading to intense Surface-Enhanced Raman Scattering (SERS) signals. They also generate more plasmonic heat than the nanoparticle building blocks. The supraparticles are internalized by cells and show low cytotoxicity, but can kill cancer cells when irradiated with a laser. This, along with the improved plasmonic properties arising from their assembly, makes the gold supraparticles promising materials for applications in bioimaging and nanomedicine.
Collapse
Affiliation(s)
- S Paterson
- Department of Pure and Applied Chemistry , WestCHEM , University of Strathclyde , Technology and Innovation Centre , 99 George Street , Glasgow , G1 1RD , Scotland , UK .
| | - S A Thompson
- Department of Pure and Applied Chemistry , WestCHEM , University of Strathclyde , Technology and Innovation Centre , 99 George Street , Glasgow , G1 1RD , Scotland , UK .
- Department of Chemistry and Biochemistry , Hunter College-City University of New York , New York 10065 , USA
| | - J Gracie
- Department of Pure and Applied Chemistry , WestCHEM , University of Strathclyde , Technology and Innovation Centre , 99 George Street , Glasgow , G1 1RD , Scotland , UK .
| | - A W Wark
- Department of Pure and Applied Chemistry , WestCHEM , University of Strathclyde , Technology and Innovation Centre , 99 George Street , Glasgow , G1 1RD , Scotland , UK .
| | - R de la Rica
- Department of Pure and Applied Chemistry , WestCHEM , University of Strathclyde , Technology and Innovation Centre , 99 George Street , Glasgow , G1 1RD , Scotland , UK .
| |
Collapse
|
32
|
Boles MA, Engel M, Talapin DV. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem Rev 2016; 116:11220-89. [PMID: 27552640 DOI: 10.1021/acs.chemrev.6b00196] [Citation(s) in RCA: 1091] [Impact Index Per Article: 121.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical methods developed over the past two decades enable preparation of colloidal nanocrystals with uniform size and shape. These Brownian objects readily order into superlattices. Recently, the range of accessible inorganic cores and tunable surface chemistries dramatically increased, expanding the set of nanocrystal arrangements experimentally attainable. In this review, we discuss efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions. This process is often driven by both interparticle interactions and the influence of the assembly environment. The introduction provides the reader with a practical overview of nanocrystal synthesis, self-assembly, and superlattice characterization. We then summarize the theory of nanocrystal interactions and examine fundamental principles governing nanocrystal self-assembly from hard and soft particle perspectives borrowed from the comparatively established fields of micrometer colloids and block copolymer assembly. We outline the extensive catalog of superlattices prepared to date using hydrocarbon-capped nanocrystals with spherical, polyhedral, rod, plate, and branched inorganic core shapes, as well as those obtained by mixing combinations thereof. We also provide an overview of structural defects in nanocrystal superlattices. We then explore the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies. We end with a discussion of the unique optical, magnetic, electronic, and catalytic properties of ordered nanocrystal superlattices, and the coming advances required to make use of this new class of solids.
Collapse
Affiliation(s)
- Michael A Boles
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander University Erlangen-Nürnberg , 91052 Erlangen, Germany.,Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States.,Center for Nanoscale Materials, Argonne National Lab , Argonne, Illinois 60439, United States
| |
Collapse
|
33
|
Tan R, Zhu H, Cao C, Chen O. Multi-component superstructures self-assembled from nanocrystal building blocks. NANOSCALE 2016; 8:9944-61. [PMID: 27136751 DOI: 10.1039/c6nr01662f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
More than three decades of intensive study to make high-quality nanocrystals have created a unique toolbox for building multi-component superstructures, which have been recognized as a new generation of metamaterials important to both fundamental sciences and applied technologies. This minireview summarizes recent advances in this exciting field. We will focus our discussion on the synthetic strategies and superstructures of this multi-component metamaterial, and highlight their novel properties and potential applications. Additionally, some perspectives on possible developments in this field are offered at the end of this review. We hope that this minireview will both inform and stimulate research interests for the design and fabrication of these nanocrystal-based multi-component metamaterials for diverse applications in the future.
Collapse
Affiliation(s)
- Rui Tan
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA.
| | | | | | | |
Collapse
|