1
|
Zhang J, Dou P, Xu J, Jiang J, Du H, Zhu T, Luo J, Zhao G, Wang Y, Qiu Q, Feng L, Deng X, Ma T, Zhou S, Shen B, Wang S. Room-Temperature Magnetic Antiskyrmions in Canted Ferrimagnetic CoHo Alloy Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413700. [PMID: 39791303 DOI: 10.1002/adma.202413700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Indexed: 01/12/2025]
Abstract
Magnetic antiskyrmions, the anti-quasiparticles of magnetic skyrmions, possess alternating Bloch- and Néel-type spin spirals, rendering them promising for advanced spintronics-based information storage. To date, antiskyrmions are demonstrated in a few bulk materials featuring anisotropic Dzyaloshinskii-Moriya interactions and a limited number of artificial multilayers. Identifying novel film materials capable of hosting isolated antiskyrmions is critical for memory applications in topological spintronics. Herein, the formation of room-temperature antiskyrmions in single ferrimagnetic CoHo rare-metal alloy films of varying thicknesses, observed using Lorentz transmission electron microscopy is reported. Furthermore, rotating magnetic fields (H) are proposed to facilitate antiskyrmion nucleation and enhance their areal density by an order of magnitude compared to that in the same area under individual vertical H. In addition, experimental and phenomenological analysis confirm that antiskyrmion nucleation can be attributed to spin reorientation involving spontaneous canted magnetism, as evidenced by polarized neutron reflectometry. Micromagnetic simulations further show that the antiskyrmion density significantly depends on the magnitude of the rotating field. These findings expand the family of known antiskyrmion-hosting materials and provide insights into their formation mechanisms, thus serving as a basis for their application in topological spintronics.
Collapse
Affiliation(s)
- Jingyan Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
| | - Pengwei Dou
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiawang Xu
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Jialiang Jiang
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Haifeng Du
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Tao Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jia Luo
- College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, 610068, China
| | - Guoping Zhao
- College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, 610068, China
| | - Yuanbo Wang
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
| | - Quangao Qiu
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
| | - Liangyu Feng
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiao Deng
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tianping Ma
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Shiming Zhou
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
| | - Baogen Shen
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Shouguo Wang
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| |
Collapse
|
2
|
Tang J, Jiang J, Wu Y, Kong L, Wang Y, Li J, Soh Y, Xiong Y, Wang S, Tian M, Du H. Creating and Deleting a Single Dipolar Skyrmion by Surface Spin Twists. NANO LETTERS 2025; 25:121-128. [PMID: 39727285 DOI: 10.1021/acs.nanolett.4c04606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
We report deterministic operations on single dipolar skyrmions confined in nanostructured cuboids by using in-plane currents. We achieve highly reversible writing and deleting of skyrmions in a simple cuboid without any artificial defects or pinning sites. The current-induced creation of skyrmions is well-understood through the spin-transfer torque acting on surface spin twists of the spontaneous 3D ferromagnetic state, caused by the magnetic dipole-dipole interaction of the uniaxial Fe3Sn2 magnet with a low-quality factor. Current-induced deletions of skyrmions result from the combined effects of magnetic hysteresis and Joule thermal heating. Our results are replicated consistently through 3D micromagnetic simulations. Our approach offers a viable method for achieving reliable single-bit operations in skyrmionic devices for applications such as random-access memories.
Collapse
Affiliation(s)
- Jin Tang
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, 230601, China
- School of Physics and Materials Engineering, Hefei Normal University, Hefei, 230601, China
| | - Jialiang Jiang
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, 230601, China
| | - Yaodong Wu
- School of Physics and Materials Engineering, Hefei Normal University, Hefei, 230601, China
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Lingyao Kong
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, 230601, China
| | - Yihao Wang
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Junbo Li
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Y Soh
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Yimin Xiong
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, 230601, China
| | - Shouguo Wang
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Mingliang Tian
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, 230601, China
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Haifeng Du
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
3
|
Wu K, Zhao Y, Hao H, Yang S, Li S, Liu Q, Zhang S, Zhang X, Åkerman J, Xi L, Zhang Y, Cai K, Zhou Y. Topological transformation of synthetic ferromagnetic skyrmions: thermal assisted switching of helicity by spin-orbit torque. Nat Commun 2024; 15:10463. [PMID: 39622790 PMCID: PMC11612389 DOI: 10.1038/s41467-024-54851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
This study demonstrates the controllable switching of skyrmion helicity using spin-orbit torque, enhanced by thermal effects. Electric current pulses applied to a [Pt/Co]3/Ru/[Co/Pt]3 multilayer stripe drive skyrmions in a direction opposite to the current flow. Continuous pulsing results in an unexpected reversal of skyrmion motion. Micromagnetic simulations reveal that skyrmions in the upper and lower ferromagnetic layers exhibit distinct helicities, forming a hybrid synthetic skyrmion. The helicity switch of this hybrid structure accounts for the motion reversal. This study introduces innovative helicity control methods, advancing spintronic device applications, including data storage and quantum computing based on skyrmion helicity.
Collapse
Affiliation(s)
- Kai Wu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Yuelei Zhao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Hongyuan Hao
- School of Physical Science and Technology, Lanzhou University, Lanzhou, China
| | - Sheng Yang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Shuang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Qingfang Liu
- School of Physical Science and Technology, Lanzhou University, Lanzhou, China
| | - Senfu Zhang
- School of Physical Science and Technology, Lanzhou University, Lanzhou, China.
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Johan Åkerman
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
- Center for Science and Innovation in Spintronics, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
| | - Li Xi
- School of Physical Science and Technology, Lanzhou University, Lanzhou, China
| | - Ying Zhang
- State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Kaiming Cai
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
| |
Collapse
|
4
|
Ohki Y, Mochizuki M. Fundamental theory of current-induced motion of magnetic skyrmions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:023003. [PMID: 39393399 DOI: 10.1088/1361-648x/ad861b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/11/2024] [Indexed: 10/13/2024]
Abstract
Magnetic skyrmions are topological spin textures that appear in magnets with broken spatial inversion symmetry as a consequence of competition between the (anti)ferromagnetic exchange interactions and the Dzyaloshinskii-Moriya interactions in a magnetic field. In the research of spintronics, the current-driven dynamics of skyrmions has been extensively studied aiming at their applications to next-generation spintronic devices. However, current-induced skyrmion motion exhibits diverse behaviors depending on various factors and conditions such as the type of skyrmion, driving mechanism, system geometry, direction of applied current, and type of the magnet. While this variety attracts enormous research interest of fundamental science and enriches their possibilities of technical applications, it is, at the same time, a source of difficulty and complexity that hinders their comprehensive understandings. In this article, we discuss fundamental and systematic theoretical descriptions of current-induced motion of skyrmions driven by the spin-transfer torque and the spin-orbit torque. Specifically, we theoretically describe the behaviors of current-driven skyrmions depending on the factors and conditions mentioned above by means of analyses using the Thiele equation. Furthermore, the results of the analytical theory are visually demonstrated and quantitatively confirmed by micromagnetic simulations using the Landau-Lifshitz-Gilbert-Slonczewski equation. In particular, we discuss dependence of the direction and velocity of motion on the type of skyrmion (Bloch type and Néel type) and its helicity, the system geometry (thin plate and nanotrack), the direction of applied current (length and width direction of the nanotrack) and its spin-polarization orientation, and the type of magnet (ferromagnet and antiferromagnet). The comprehensive theory provided by this article is expected to contribute significantly to research on the manipulation and control of magnetic skyrmions by electric currents for future spintronics applications.
Collapse
Affiliation(s)
- Yuto Ohki
- Department of Applied Physics, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 229-8558, Japan
| | - Masahito Mochizuki
- Department of Applied Physics, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
5
|
Zhao L, Hua C, Song C, Yu W, Jiang W. Realization of skyrmion shift register. Sci Bull (Beijing) 2024; 69:2370-2378. [PMID: 38960814 DOI: 10.1016/j.scib.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/15/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024]
Abstract
The big data explosion demands novel data storage technology. Among many different approaches, solitonic racetrack memory devices hold great promise for accommodating nonvolatile and low-power functionalities. As representative topological solitons, magnetic skyrmions are envisioned as potential information carriers for efficient information processing. While their advantages as memory and logic elements have been vastly exploited from theoretical perspectives, the corresponding experimental efforts are rather limited. These challenges, which are key to versatile skyrmionic devices, will be studied in this work. Through patterning concaved surface topography with designed arrays of indentations on standard Si/SiO2 substrates, we demonstrate that the resultant non-flat energy landscape could lead to the formation of hexagonal and square skyrmion lattices in Ta/CoFeB/MgO multilayers. Based on these films, one-dimensional racetrack devices are subsequently fabricated, in which a long-distance deterministic shifting of skyrmions between neighboring indentations is achieved at room temperature. Through separating the word line and the bit line, a prototype shift register device, which can sequentially generate and precisely shift complex skyrmionic data strings, is presented. The deterministic writing and long-distance shifting of skyrmionic bits can find potential applications in transformative skyrmionic memory, logic as well as the in-memory computing devices.
Collapse
Affiliation(s)
- Le Zhao
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Chensong Hua
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China; Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
| | - Chengkun Song
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Weichao Yu
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China; Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China.
| | - Wanjun Jiang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
He Z, Li Z, Chen Z, Wang Z, Shen J, Wang S, Song C, Zhao T, Cai J, Lin SZ, Zhang Y, Shen B. Experimental observation of current-driven antiskyrmion sliding in stripe domains. NATURE MATERIALS 2024; 23:1048-1054. [PMID: 38605194 DOI: 10.1038/s41563-024-01870-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
Magnetic skyrmions are promising as next-generation information units. Their antiparticle-the antiskyrmion-has also been discovered in chiral magnets. Here we experimentally demonstrate antiskyrmion sliding in response to a pulsed electric current at room temperature without the requirement of an external magnetic field. This is realized by embedding antiskyrmions in helical stripe domains, which naturally provide one-dimensional straight tracks along which antiskyrmion sliding can be easily launched with low current density and without transverse deflection from the antiskyrmion Hall effect. The higher mobility of the antiskyrmions in the background of helical stripes in contrast to the typical ferromagnetic state is a result of intrinsic material parameters and elastic energy of the stripe domain, thereby smearing out the random pinning potential, as supported by micromagnetic simulations. The demonstration and comprehensive understanding of antiskyrmion movement along naturally straight tracks offers a new perspective for (anti)skyrmion application in spintronics.
Collapse
Affiliation(s)
- Zhidong He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuolin Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaohui Chen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zhan Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jun Shen
- Department of Energy and Power Engineering, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
| | - Shouguo Wang
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, China
| | - Cheng Song
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Tongyun Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianwang Cai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shi-Zeng Lin
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Ying Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, China.
| | - Baogen Shen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
7
|
Guo Y, Zhuo F, Li H. Influence of the Hall-bar geometry on texture-induced topological spin transport in two-dimensional Rashba spin-orbit ferromagnets. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:415801. [PMID: 38959901 DOI: 10.1088/1361-648x/ad5eea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
While the recent prediction and observation of magnetic skyrmions bears inspiring promise for next-generation spintronic devices, how to detect and track their position becomes an important issue. In this work, we investigate the spin transport in a two-dimensional magnetic nanoribbon with the Hall-bar geometry in the presence of Rashba spin-orbit coupling and magnetic skyrmions. We employ the Kwant tight-binding code to compute the Hall conductance and local spin-polarized current density. We consider two versions of the model: One with single skyrmion and one with two separate skyrmions. It is found that the size and position of the skyrmions strongly modulate the Hall conductance near the Hall-bar position. The geometry of the Hall bar also has a strong influence on the Hall conductance of the system. With the decreasing of the width of Hall leads, the peak of Hall conductance becomes sharper. We also show the spatial distribution of the spin-polarized current density around a skyrmion located at different positions. We extend this study toward two separate skyrmions, where the Hall conductance also reveals a sizable dependence on the position of the skyrmions and their distance. Our numerical analysis offers the possibility of electrically detecting the skyrmion position, which could have potential applications in ultrahigh-density storage design.
Collapse
Affiliation(s)
- Yufei Guo
- School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China
| | - Fengjun Zhuo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Hang Li
- School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
8
|
Song D, Wang W, Zhang S, Liu Y, Wang N, Zheng F, Tian M, Dunin-Borkowski RE, Zang J, Du H. Steady motion of 80-nm-size skyrmions in a 100-nm-wide track. Nat Commun 2024; 15:5614. [PMID: 38965221 PMCID: PMC11224351 DOI: 10.1038/s41467-024-49976-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
The current-driven movement of magnetic skyrmions along a nanostripe is essential for the advancement and functionality of a new category of spintronic devices resembling racetracks. Despite extensive research into skyrmion dynamics, experimental verification of current-induced motion of ultra-small skyrmions within an ultrathin nanostripe is still pending. Here, we unveil the motion of individual 80 nm-size skyrmions in an FeGe track with an ultrathin width of 100 nm. The skyrmions can move steadily along the track over a broad range of current densities by using controlled pulse durations of as low as 2 ns. The potential landscape, arising from the magnetic edge twists in such a geometrically confined system, introduces skyrmion inertia and ensures efficient motion with a vanishing skyrmion Hall angle. Our results showcase the steady motion of skyrmions in an ultrathin track, offering a practical pathway for implementing skyrmion-based spintronic devices.
Collapse
Affiliation(s)
- Dongsheng Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Weiwei Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Shuisen Zhang
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yizhou Liu
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Ning Wang
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Fengshan Zheng
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425, Jülich, Germany
- Spin-X Institute, Center for Electron Microscopy, School of Physics and Optoelectronics State Key Laboratory of Luminescent Materials and Devices Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Mingliang Tian
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, 230601, China
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Jiadong Zang
- Department of Physics and Astronomy, University of New Hampshire, Durham, NH, 03824, USA
- Materials Science Program, University of New Hampshire, Durham, NH, 03824, USA
| | - Haifeng Du
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
9
|
Xu H, Liu Y, Finocchio G, Wang KL, Yu G. Progress and perspective on the topological spin textures in two-dimensional van der Waals magnets. Sci Bull (Beijing) 2024; 69:1612-1616. [PMID: 38653683 DOI: 10.1016/j.scib.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Affiliation(s)
- Hongjun Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yizhou Liu
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Giovanni Finocchio
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Messina 98166, Italy
| | - Kang L Wang
- Department of Electrical Engineering, University of California, Los Angeles CA 90095, USA
| | - Guoqiang Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
10
|
Yang S, Shen L, Zhao Y, Wu K, Li X, Shen K, Zhang S, Xu X, Åkerman J, Zhou Y. Generation of skyrmions by combining thermal and spin-orbit torque: breaking half skyrmions into skyrmions. NANOSCALE 2024; 16:7068-7075. [PMID: 38450557 DOI: 10.1039/d3nr05803d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Skyrmions, swirling spin textures with topologically protected stability and low critical driven-current density, can be generated from the stripe domain with current pulses, bringing them closer to practical applications in racetrack memory. However, the mechanism of this topological transition from the stripe domain to the skyrmion remains unclear because the transition process occurs at a nanosecond timescale, giving rise to difficulties in observing this process using imaging tools. In this study, we controlled the domain wall - skyrmion transition by combining Joule heating with spin-orbit torque (SOT) and experimentally observed the details of this process, by which we confirmed the mechanism: the spatial variation of the topological charge density induces half skyrmions branching from the stripe domains, and these half skyrmions overcome the surface tension and break away from the stripe domain, resulting in the generation of skyrmions. The details were observed by employing Joule heating to overcome the pinning effect and manipulating the strength of the SOT to induce the branching and breaking of half skyrmions. These findings offer new insights into skyrmion generation and serve as an important step towards the development of highly efficient devices for processing and computing based on skyrmionics.
Collapse
Affiliation(s)
- Sheng Yang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Laichuan Shen
- The Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing, 100875, China
- Key Laboratory of Multi-scale Spin Physics, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Yuelei Zhao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Kai Wu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Xiaoguang Li
- Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, China
| | - Ka Shen
- The Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing, 100875, China
- Key Laboratory of Multi-scale Spin Physics, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Senfu Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Xiaohong Xu
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan, 030006, China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, Taiyuan, 030006, China
| | - Johan Åkerman
- Department of Physics, University of Gothenburg, Gothenburg, 41296, Sweden
- Science and Innovation in Spintronics Research Institute of Electrical Communication, Tohoku University, Aoba-ku, 980-8577, Japan
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
11
|
Shao Q. Magnetic whirlpools offer improved data storage. Nature 2024; 627:494-495. [PMID: 38509273 DOI: 10.1038/d41586-024-00576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
|
12
|
Sara S, Murapaka C, Haldar A. Voltage-controlled magnetic anisotropy gradient-driven skyrmion-based half-adder and full-adder. NANOSCALE 2024; 16:1843-1852. [PMID: 38168698 DOI: 10.1039/d3nr05545k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Spintronic devices have revolutionized the way we process or store information compared to dissipative charge-based electronics. Among various spin-based technologies, skyrmions - topologically protected nano-size spin textures - have emerged as the most promising alternative for future data processing. Here, we have proposed binary adder circuits - central to most digital logic circuits - based on skyrmions. Using micromagnetic simulations, we have demonstrated half-adder and full-adder logic functionalities by precisely driving the skyrmions through voltage-controlled magnetic anisotropy gradient, besides taking advantage of the physical effects such as the skyrmion Hall effect, skyrmion-skyrmion topological repulsion and skyrmion-edge repulsions. The proposed voltage-control-based method of driving the skyrmions is energy efficient compared to the electrical current-driven approach, and it also overcomes the issue of Joule heating. A reliable operation in a wide range of Dzyaloshinskii-Moriya interaction strengths, magnetic anisotropy gradient, and dimensional parameters has been shown, which offers robustness to the device design. The results pave the way for the skyrmion-based computational architecture, which is significant for next-generation non-volatile data processing.
Collapse
Affiliation(s)
- Sarwath Sara
- Department of Physics, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| | - Chandrasekhar Murapaka
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Arabinda Haldar
- Department of Physics, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| |
Collapse
|
13
|
He B, Tomasello R, Luo X, Zhang R, Nie Z, Carpentieri M, Han X, Finocchio G, Yu G. All-Electrical 9-Bit Skyrmion-Based Racetrack Memory Designed with Laser Irradiation. NANO LETTERS 2023; 23:9482-9490. [PMID: 37818857 DOI: 10.1021/acs.nanolett.3c02978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Racetrack memories with magnetic skyrmions have recently been proposed as a promising storage technology. To be appealing, several challenges must still be faced for the deterministic generation of skyrmions, their high-fidelity transfer, and accurate reading. Here, we realize the first proof-of-concept of a 9-bit skyrmion racetrack memory with all-electrical controllable functionalities implemented in the same device. The key ingredient is the generation of a tailored nonuniform distribution of magnetic anisotropy via laser irradiation in order to (i) create a well-defined skyrmion nucleation center, (ii) define the memory cells hosting the information coded as the presence/absence of skyrmions, and (iii) improve the signal-to-noise ratio of anomalous Hall resistance measurements. This work introduces a strategy to unify previous findings and predictions for the development of a generation of racetrack memories with robust control of skyrmion nucleation and position, as well as effective skyrmion electrical detection.
Collapse
Affiliation(s)
- Bin He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Riccardo Tomasello
- Department of Electrical and Information Engineering, Politecnico of Bari, Bari 70125, Italy
| | - Xuming Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ran Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhuyang Nie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Mario Carpentieri
- Department of Electrical and Information Engineering, Politecnico of Bari, Bari 70125, Italy
| | - Xiufeng Han
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Giovanni Finocchio
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Messina 98166, Italy
| | - Guoqiang Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
14
|
Tian B, Jiang J, Zheng Z, Wang X, Liu S, Huang W, Jiang T, Chen H, Deng S. Néel-type optical target skyrmions inherited from evanescent electromagnetic fields with rotational symmetry. NANOSCALE 2023; 15:13224-13232. [PMID: 37492006 DOI: 10.1039/d3nr02143b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Optical skyrmions have recently attracted growing interest due to their potential applications in deep-subwavelength imaging and nanometrology. While optical skyrmions have been successfully demonstrated using different field vectors, the study of their generation and control, as well as their general correlation with electromagnetic (EM) fields, is still in its infancy. Here, we theoretically propose that evanescent transverse-magnetic-polarized (TM-polarized) EM fields with rotational symmetry are actually Néel-type optical target skyrmions of the electric field vectors. Such optical target skyrmions are independent of the operation frequency and medium. Our proposal was verified by numerical simulations and real-space nano-imaging experiments performed on a graphene monolayer, where the target skyrmions could be as small as ∼100 nm in diameter. The results can therefore not only further our understanding of the formation mechanisms of EM topological textures, but also provide guidelines for the facile construction of EM skyrmions that may impact future information technologies.
Collapse
Affiliation(s)
- Bo Tian
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jingyao Jiang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zebo Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ximiao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Shaojing Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Wuchao Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Tian Jiang
- Institute for Quantum Information Science and Technology, College of Science, National University of Defense Technology, Changsha 410073, China.
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
15
|
Yang S, Zhao Y, Wu K, Chu Z, Xu X, Li X, Åkerman J, Zhou Y. Reversible conversion between skyrmions and skyrmioniums. Nat Commun 2023; 14:3406. [PMID: 37296114 DOI: 10.1038/s41467-023-39007-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Skyrmions and skyrmioniums are topologically non-trivial spin textures found in chiral magnetic systems. Understanding the dynamics of these particle-like excitations is crucial for leveraging their diverse functionalities in spintronic devices. This study investigates the dynamics and evolution of chiral spin textures in [Pt/Co]3/Ru/[Co/Pt]3 multilayers with ferromagnetic interlayer exchange coupling. By precisely controlling the excitation and relaxation processes through combined magnetic field and electric current manipulation, reversible conversion between skyrmions and skyrmioniums is achieved. Additionally, we observe the topological conversion from a skyrmionium to a skyrmion, characterized by the sudden emergence of the skyrmion Hall effect. The experimental realization of reversible conversion between distinct magnetic topological spin textures represents a significant development that promises to expedite the advancement of the next generation of spintronic devices.
Collapse
Affiliation(s)
- Sheng Yang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Yuelei Zhao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Kai Wu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, China
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, 999077, China
| | - Xiaohong Xu
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, Linfen, 041004, China
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Linfen, 041004, China
| | - Xiaoguang Li
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Johan Åkerman
- Department of Physics, University of Gothenburg, Gothenburg, 41296, Sweden.
- Center for Science and Innovation in Spintronics, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
16
|
Xu T, Zhang Y, Wang Z, Bai H, Song C, Liu J, Zhou Y, Je SG, N'Diaye AT, Im MY, Yu R, Chen Z, Jiang W. Systematic Control of Ferrimagnetic Skyrmions via Composition Modulation in Pt/Fe 1-xTb x/Ta Multilayers. ACS NANO 2023; 17:7920-7928. [PMID: 37010987 DOI: 10.1021/acsnano.3c02006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Magnetic skyrmions are topological spin textures that can be used as memory and logic components for advancing the next generation spintronics. In this regard, control of nanoscale skyrmions, including their sizes and densities, is of particular importance for enhancing the storage capacity of skyrmionic devices. Here, we propose a viable route for engineering ferrimagnetic skyrmions via tuning the magnetic properties of the involved ferrimagnets Fe1-xTbx. Via tuning the composition of Fe1-xTbx that alters the magnetic anisotropy and the saturation magnetization, the size of the ferrimagnetic skyrmion (ds) and the average density (ηs) can be effectively tailored in [Pt/Fe1-xTbx/Ta]10 multilayers. In particular, a stabilization of sub-50 nm skyrmions with a high density is demonstrated at room temperature. Our work provides an effective approach for designing ferrimagnetic skyrmions with the desired size and density, which could be useful for enabling high-density ferrimagnetic skyrmionics.
Collapse
Affiliation(s)
- Teng Xu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Yuxuan Zhang
- School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
| | - Zidong Wang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Hao Bai
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Chengkun Song
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Jiahao Liu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Soong-Geun Je
- Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, California 94720, United States
| | - Alpha T N'Diaye
- Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, California 94720, United States
| | - Mi-Young Im
- Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, California 94720, United States
| | - Rong Yu
- School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
| | - Zhen Chen
- School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
| | - Wanjun Jiang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|
17
|
Dai B, Wu D, Razavi SA, Xu S, He H, Shu Q, Jackson M, Mahfouzi F, Huang H, Pan Q, Cheng Y, Qu T, Wang T, Tai L, Wong K, Kioussis N, Wang KL. Electric field manipulation of spin chirality and skyrmion dynamic. SCIENCE ADVANCES 2023; 9:eade6836. [PMID: 36791189 PMCID: PMC9931210 DOI: 10.1126/sciadv.ade6836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
The Dzyaloshinskii-Moriya interaction (DMI) is an antisymmetric exchange interaction that stabilizes spin chirality. One scientific and technological challenge is understanding and controlling the interaction between spin chirality and electric field. In this study, we investigate an unconventional electric field effect on interfacial DMI, skyrmion helicity, and skyrmion dynamics in a system with broken inversion symmetry. We design heterostructures with a 3d-5d atomic orbital interface to demonstrate the gate bias control of the DMI energy and thus transform the DMI between opposite chiralities. Furthermore, we use this voltage-controlled DMI (VCDMI) to manipulate the skyrmion spin texture. As a result, a type of intermediate skyrmion with a unique helicity is created, and its motion can be controlled and made to go straight. Our work shows the effective control of spin chirality, skyrmion helicity, and skyrmion dynamics by VCDMI. It promotes the emerging field of voltage-controlled chiral interactions and voltage-controlled skyrmionics.
Collapse
Affiliation(s)
- Bingqian Dai
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Di Wu
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Seyed Armin Razavi
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shijie Xu
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haoran He
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Qingyuan Shu
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Malcolm Jackson
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Farzad Mahfouzi
- Department of Physics and Astronomy, California State University, Northridge, Los Angeles, CA 91330-8268, USA
| | - Hanshen Huang
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Quanjun Pan
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yang Cheng
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tao Qu
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tianyi Wang
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lixuan Tai
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kin Wong
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nicholas Kioussis
- Department of Physics and Astronomy, California State University, Northridge, Los Angeles, CA 91330-8268, USA
| | - Kang L. Wang
- Departments of Electrical and Computer Engineering, Physics and Astronomy, and Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Song C, Zhao L, Liu J, Jiang W. Experimental Realization of a Skyrmion Circulator. NANO LETTERS 2022; 22:9638-9644. [PMID: 36411254 DOI: 10.1021/acs.nanolett.2c03789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Magnetic skyrmions are mobile topological spin textures that can be manipulated by different means. Their applications have been frequently discussed in the context of information carriers for racetrack memory devices, which on the other hand, exhibit a skyrmion Hall effect as a result of the nontrivial real-space topology. While the skyrmion Hall effect is believed to be detrimental for constructing racetrack devices, we show here that it can be implemented for realizing a three-terminal skyrmion circulator. In analogy to the microwave circulator, nonreciprocal transportation and circulation of skyrmions are studied both numerically and experimentally. In particular, successful control of the circulating direction of being either clockwise or counterclockwise is demonstrated, simply by changing the sign of the topological charge. Our studies suggest that the topological property of skyrmions can be incorporated for enabling novel spintronic functionalities; the skyrmion circulator is just one example.
Collapse
Affiliation(s)
- Chengkun Song
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing100084, China
| | - Le Zhao
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing100084, China
| | - Jiahao Liu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing100084, China
- Institute for Quantum Information & State Key Laboratory of High-Performance Computing, College of Computer, National University of Defense Technology, Changsha410073, China
| | - Wanjun Jiang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing100084, China
| |
Collapse
|
19
|
Yang S, Ju TS, Kim C, Kim HJ, An K, Moon KW, Park S, Hwang C. Magnetic Field Magnitudes Needed for Skyrmion Generation in a General Perpendicularly Magnetized Film. NANO LETTERS 2022; 22:8430-8436. [PMID: 36282733 PMCID: PMC9650724 DOI: 10.1021/acs.nanolett.2c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Due to its topological protection, the magnetic skyrmion has been intensively studied for both fundamental aspects and spintronics applications. However, despite recent advancements in skyrmion research, the deterministic creation of isolated skyrmions in a generic perpendicularly magnetized film is still one of the most essential and challenging techniques. Here, we present a method to create magnetic skyrmions in typical perpendicular magnetic anisotropy (PMA) films by applying a magnetic field pulse and a method to determine the magnitude of the required external magnetic fields. Furthermore, to demonstrate the usefulness of this result for future skyrmion research, we also experimentally study the PMA dependence on the minimum size of skyrmions. Although field-driven skyrmion generation is unsuitable for device application, this result can provide an easier approach for obtaining isolated skyrmions, making skyrmion-based research more accessible.
Collapse
Affiliation(s)
- Seungmo Yang
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
| | - Tae-Seong Ju
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
- Department
of Physics, Pusan National University, Busan46241, Republic of Korea
| | - Changsoo Kim
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
| | - Hyun-Joong Kim
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
| | - Kyongmo An
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
| | - Kyoung-Woong Moon
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
| | - Sungkyun Park
- Department
of Physics, Pusan National University, Busan46241, Republic of Korea
| | - Chanyong Hwang
- Quantum
Spin Team, Korea Research Institute of Standards
and Science, Daejeon34113, Republic of Korea
| |
Collapse
|
20
|
Tai L, Dai B, Li J, Huang H, Chong SK, Wong KL, Zhang H, Zhang P, Deng P, Eckberg C, Qiu G, He H, Wu D, Xu S, Davydov A, Wu R, Wang KL. Distinguishing the Two-Component Anomalous Hall Effect from the Topological Hall Effect. ACS NANO 2022; 16:17336-17346. [PMID: 36126321 DOI: 10.1021/acsnano.2c08155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In transport, the topological Hall effect (THE) presents itself as nonmonotonic features (or humps and dips) in the Hall signal and is widely interpreted as a sign of chiral spin textures, like magnetic skyrmions. However, when the anomalous Hall effect (AHE) is also present, the coexistence of two AHEs could give rise to similar artifacts, making it difficult to distinguish between genuine THE with AHE and two-component AHE. Here, we confirm genuine THE with AHE by means of transport and magneto-optical Kerr effect (MOKE) microscopy, in which magnetic skyrmions are directly observed, and find that genuine THE occurs in the transition region of the AHE. In sharp contrast, the artifact "THE" or two-component AHE occurs well beyond the saturation of the "AHE component" (under the false assumption of THE + AHE). Furthermore, we distinguish artifact "THE" from genuine THE by three methods: (1) minor loops, (2) temperature dependence, and (3) gate dependence. Minor loops of genuine THE with AHE are always within the full loop, while minor loops of the artifact "THE" may reveal a single loop that cannot fit into the "AHE component". In addition, the temperature or gate dependence of the artifact "THE" may also be accompanied by a polarity change of the "AHE component", as the nonmonotonic features vanish, while the temperature dependence of genuine THE with AHE reveals no such change. Our work may help future researchers to exercise caution and use these methods for careful examination in order to ascertain the genuine THE.
Collapse
Affiliation(s)
- Lixuan Tai
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Bingqian Dai
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Jie Li
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Hanshen Huang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Su Kong Chong
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Kin L Wong
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Huairuo Zhang
- Theiss Research, Inc., La Jolla, California 92037, United States
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Peng Zhang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Peng Deng
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Christopher Eckberg
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
- Fibertek, Inc., Herndon, Virginia 20171, United States
- US Army Research Laboratory, Adelphi, Maryland 20783, United States
- US Army Research Laboratory, Playa Vista, California 90094, United States
| | - Gang Qiu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Haoran He
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Di Wu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Shijie Xu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
- Shanghai Key Laboratory of Special Artificial Microstructure and Pohl Institute of Solid State Physics and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Albert Davydov
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Kang L Wang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
21
|
Paradezhenko GV, Pervishko AA, Swain N, Sengupta P, Yudin D. Spin-hedgehog-derived electromagnetic effects in itinerant magnets. Phys Chem Chem Phys 2022; 24:24317-24322. [PMID: 36173187 DOI: 10.1039/d2cp03486g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In itinerant magnets, the indirect exchange coupling of Ruderman-Kittel-Kasuya-Yosida type is known to stabilize incommensurate spin spirals, whereas an account of higher order spin interactions favors the formation of a noncoplanar magnetic texture. This is manifested by the finite Berry phase the conduction electrons accumulate when their spins follow this texture, leading thus to the topological Hall effect. We herein utilize the effective spin model with bilinear-biquadratic exchange interactions for studying the formation of the magnetic hedgehog lattice, that represents a periodic array of magnetic anti- and monopoles and has been recently observed in the B20-type compounds, in a three-dimensional itinerant magnet. As opposed to widely used Monte Carlo simulations, we employ a neural-network-based approach for exploring the ground state spin configuration in a noncentrosymmetric crystal structure. Further, we address the topological Hall conductivity, associated with nonzero scalar spin chirality, in the itinerant magnet due to the coupling to the spin hedgehog lattice, and provide the evidence of a magneto-optic Kerr effect.
Collapse
Affiliation(s)
- G V Paradezhenko
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - A A Pervishko
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - N Swain
- MajuLab, CNRS-UCA-SU-NUS-NTU International Joint Research Unit IRL, 3654, Singapore.,Centre for Quantum Technologies, National University of Singapore, 117543, Singapore
| | - P Sengupta
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - D Yudin
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| |
Collapse
|
22
|
Yıldırım O, Tomasello R, Feng Y, Carlotti G, Tacchi S, Vaghefi PM, Giordano A, Dutta T, Finocchio G, Hug HJ, Mandru AO. Tuning the Coexistence Regime of Incomplete and Tubular Skyrmions in Ferromagnetic/Ferrimagnetic/Ferromagnetic Trilayers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34002-34010. [PMID: 35830277 DOI: 10.1021/acsami.2c06608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of skyrmionic devices requires a suitable tuning of material parameters to stabilize skyrmions and control their density. It has been demonstrated recently that different skyrmion types can be simultaneously stabilized at room temperature in heterostructures involving ferromagnets, ferrimagnets, and heavy metals, offering a new platform of coding binary information in the type of skyrmion instead of the presence/absence of skyrmions. Here, we tune the energy landscape of the two skyrmion types in such heterostructures by engineering the geometrical and material parameters of the individual layers. We find that a fine adjustment of the ferromagnetic layer thickness, and thus its magnetic anisotropy, allows the trilayer system to support either one of the skyrmion types or the coexistence of both and with varying densities.
Collapse
Affiliation(s)
- Oğuz Yıldırım
- Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Riccardo Tomasello
- Department of Electrical and Information Engineering, Politecnico di Bari, 70125 Bari, Italy
| | - Yaoxuan Feng
- Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Giovanni Carlotti
- Dipartimento di Fisica e Geologia, Università di Perugia, 06123 Perugia, Italy
| | - Silvia Tacchi
- Istituto Officina dei Materiali del CNR (CNR-IOM), Sede Secondaria di Perugia, c/o Dipartimento di Fisica e Geologia, Università di Perugia, 06123 Perugia, Italy
| | - Pegah Mirzadeh Vaghefi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Anna Giordano
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, I-98166 Messina, Italy
| | - Tanmay Dutta
- Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Giovanni Finocchio
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, I-98166 Messina, Italy
| | - Hans J Hug
- Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Department of Physics, University of Basel, CH-4056 Basel, Switzerland
| | - Andrada-Oana Mandru
- Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
23
|
Jefremovas EM, Svedlindh P, Damay F, Alba Venero D, Michels A, Blanco JA, Fernández Barquín L. Magnetic order and disorder environments in superantiferromagnetic [Formula: see text] nanoparticles. Sci Rep 2022; 12:9733. [PMID: 35697857 PMCID: PMC9192703 DOI: 10.1038/s41598-022-13817-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/27/2022] [Indexed: 11/08/2022] Open
Abstract
Magnetic nanoparticles exhibit two different local symmetry environments, one ascribed to the core and one corresponding to the nanoparticle surface. This implies the existence of a dual spin dynamics, leading to the presence of two different magnetic arrangements governed by different correlation lengths. In this work, two ensembles of [Formula: see text] nanoparticles with mean sizes of 18 nm and 13 nm have been produced to unravel the magnetic couplings established among the magnetic moments located within the core and at the nanoparticle surface. To this end, we have combined neutron diffraction measurements, appropriate to investigate magnetically-ordered spin arrangements, with time-dependent macroscopic AC susceptibility measurements to reveal memory and aging effects. The observation of the latter phenomena are indicative of magnetically-frustrated states. The obtained results indicate that, while the [Formula: see text] magnetic moments located within the nanoparticle core keep the bulk antiferromagnetic commensurate structure in the whole magnetic state, the correlations among the surface spins give rise to a collective frustrated spin-glass phase. The interpretation of the magnetic structure of the nanoparticles is complemented by specific-heat measurements, which further support the lack of incommensurability in the nanoparticle state.
Collapse
Affiliation(s)
- E. M. Jefremovas
- Department CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander, Spain
| | - P. Svedlindh
- Department of Materials Science and Engineering, Uppsala University, Box 35, 751 03 Uppsala, Sweden
| | - F. Damay
- Laboratoire Léon Brillouin, Université Paris–Saclay, CEA–CNRS, 91191 Gif–sur–Yvette Cedex, France
| | - D. Alba Venero
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Didcot, OX11 0QX UK
| | - A. Michels
- Department of Physics and Materials Science, University of Luxembourg, 1511 Luxembourg, Luxembourg
| | - J. A. Blanco
- Department of Physics, University of Oviedo, 33007 Oviedo, Spain
| | - L. Fernández Barquín
- Department CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander, Spain
| |
Collapse
|
24
|
Sekiguchi F, Budzinauskas K, Padmanabhan P, Versteeg RB, Tsurkan V, Kézsmárki I, Foggetti F, Artyukhin S, van Loosdrecht PHM. Slowdown of photoexcited spin dynamics in the non-collinear spin-ordered phases in skyrmion host GaV 4S 8. Nat Commun 2022; 13:3212. [PMID: 35680864 PMCID: PMC9184521 DOI: 10.1038/s41467-022-30829-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
Formation of magnetic order alters the character of spin excitations, which then affects transport properties. We investigate the photoexcited ultrafast spin dynamics in different magnetic phases in Néel-type skyrmion host GaV4S8 with time-resolved magneto-optical Kerr effect experiments. The coherent spin precession, whose amplitude is enhanced in the skyrmion-lattice phase, shows a signature of phase coexistence across the magnetic phase transitions. The incoherent spin relaxation dynamics slows down by a factor of two in the skyrmion-lattice/cycloid phases, indicating significant decrease in thermal conductivity triggered by a small change of magnetic field. The slow heat diffusion in the skyrmion-lattice/cycloid phases is attributed to the stronger magnon scattering off the domain walls formed in abundance in the skyrmion-lattice/cycloid phase. These results highlight the impact of spatial spin structure on the ultrafast heat transport in spin systems, providing a useful insight for the step toward ultrafast photocontrol of the magnets with novel spin orders. Skyrmions are a topological magnetic texture that have garnered considerable interest for various technological applications. Here, Sekiguchi et al. investigate the ultrafast optical response of GaV4S6, and find a significant reduction in the thermal conductivity in the skyrmion phase.
Collapse
Affiliation(s)
- Fumiya Sekiguchi
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937, Köln, Germany.
| | - Kestutis Budzinauskas
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937, Köln, Germany
| | - Prashant Padmanabhan
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937, Köln, Germany
| | - Rolf B Versteeg
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937, Köln, Germany
| | - Vladimir Tsurkan
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany.,Institute of Applied Physics, MD 2028, Chișinău, Republic of Moldova
| | - István Kézsmárki
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany
| | - Francesco Foggetti
- Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.,Dipartimento di Fisica, Università di Genova, Via Dodecaneso, 33, 16146, Genova, Italy
| | - Sergey Artyukhin
- Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Paul H M van Loosdrecht
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937, Köln, Germany.
| |
Collapse
|
25
|
Cui B, Zhu Z, Wu C, Guo X, Nie Z, Wu H, Guo T, Chen P, Zheng D, Yu T, Xi L, Zeng Z, Liang S, Zhang G, Yu G, Wang KL. Comprehensive Study of the Current-Induced Spin-Orbit Torque Perpendicular Effective Field in Asymmetric Multilayers. NANOMATERIALS 2022; 12:nano12111887. [PMID: 35683740 PMCID: PMC9182025 DOI: 10.3390/nano12111887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022]
Abstract
The spin–orbit torques (SOTs) in the heavy metal (HM)/ferromagnetic metal (FM) structure hold promise for next-generation low-power and high-density spintronic memory and logic applications. For the SOT switching of a perpendicular magnetization, an external magnetic field is inevitable for breaking the mirror symmetry, which is not practical for high-density nanoelectronics applications. In this work, we study the current-induced field-free SOT switching and SOT perpendicular effective field (Hzeff) in a variety of laterally asymmetric multilayers, where the asymmetry is introduced by growing the FM layer in a wedge shape. We show that the design of structural asymmetry by wedging the FM layer is a universal scheme for realizing field-free SOT switching. Moreover, by comparing the FM layer thickness dependence of (Hzeff) in different samples, we show that the efficiency (β =Hzeff/J, J is the current density) is sensitive to the HM/FM interface and the FM layer thickness. The sign of β for thin FM thicknesses is related to the spin Hall angle (θSH) of the HM layer attached to the FM layer. β changes its sign with the thickness of the FM layer increasing, which may be caused by the thickness dependence of the work function of FM. These results show the possibility of engineering the deterministic field-free switching by combining the symmetry breaking and the materials design of the HM/FM interface.
Collapse
Affiliation(s)
- Baoshan Cui
- Songshan Lake Materials Laboratory, Dongguan 523808, China; (B.C.); (Z.Z.); (C.W.); (T.G.); (P.C.); (D.Z.); (G.Z.)
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Zengtai Zhu
- Songshan Lake Materials Laboratory, Dongguan 523808, China; (B.C.); (Z.Z.); (C.W.); (T.G.); (P.C.); (D.Z.); (G.Z.)
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
| | - Chuangwen Wu
- Songshan Lake Materials Laboratory, Dongguan 523808, China; (B.C.); (Z.Z.); (C.W.); (T.G.); (P.C.); (D.Z.); (G.Z.)
- Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, China;
| | - Xiaobin Guo
- School of Physics & Optoelectric Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Zhuyang Nie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
- College of Physics, Sichuan University, Chengdu 610064, China;
| | - Hao Wu
- Songshan Lake Materials Laboratory, Dongguan 523808, China; (B.C.); (Z.Z.); (C.W.); (T.G.); (P.C.); (D.Z.); (G.Z.)
- Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA;
- Correspondence: (H.W.); (G.Y.)
| | - Tengyu Guo
- Songshan Lake Materials Laboratory, Dongguan 523808, China; (B.C.); (Z.Z.); (C.W.); (T.G.); (P.C.); (D.Z.); (G.Z.)
| | - Peng Chen
- Songshan Lake Materials Laboratory, Dongguan 523808, China; (B.C.); (Z.Z.); (C.W.); (T.G.); (P.C.); (D.Z.); (G.Z.)
| | - Dongfeng Zheng
- Songshan Lake Materials Laboratory, Dongguan 523808, China; (B.C.); (Z.Z.); (C.W.); (T.G.); (P.C.); (D.Z.); (G.Z.)
| | - Tian Yu
- College of Physics, Sichuan University, Chengdu 610064, China;
- Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA;
| | - Li Xi
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Zhongming Zeng
- Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China;
| | - Shiheng Liang
- Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, China;
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, China; (B.C.); (Z.Z.); (C.W.); (T.G.); (P.C.); (D.Z.); (G.Z.)
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
| | - Guoqiang Yu
- Songshan Lake Materials Laboratory, Dongguan 523808, China; (B.C.); (Z.Z.); (C.W.); (T.G.); (P.C.); (D.Z.); (G.Z.)
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
- Correspondence: (H.W.); (G.Y.)
| | - Kang L. Wang
- Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
26
|
Kern LM, Pfau B, Deinhart V, Schneider M, Klose C, Gerlinger K, Wittrock S, Engel D, Will I, Günther CM, Liefferink R, Mentink JH, Wintz S, Weigand M, Huang MJ, Battistelli R, Metternich D, Büttner F, Höflich K, Eisebitt S. Deterministic Generation and Guided Motion of Magnetic Skyrmions by Focused He +-Ion Irradiation. NANO LETTERS 2022; 22:4028-4035. [PMID: 35577328 PMCID: PMC9137908 DOI: 10.1021/acs.nanolett.2c00670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/02/2022] [Indexed: 05/18/2023]
Abstract
Magnetic skyrmions are quasiparticles with nontrivial topology, envisioned to play a key role in next-generation data technology while simultaneously attracting fundamental research interest due to their emerging topological charge. In chiral magnetic multilayers, current-generated spin-orbit torques or ultrafast laser excitation can be used to nucleate isolated skyrmions on a picosecond time scale. Both methods, however, produce randomly arranged skyrmions, which inherently limits the precision on the location at which the skyrmions are nucleated. Here, we show that nanopatterning of the anisotropy landscape with a He+-ion beam creates well-defined skyrmion nucleation sites, thereby transforming the skyrmion localization into a deterministic process. This approach allows control of individual skyrmion nucleation as well as guided skyrmion motion with nanometer-scale precision, which is pivotal for both future fundamental studies of skyrmion dynamics and applications.
Collapse
Affiliation(s)
- Lisa-Marie Kern
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Bastian Pfau
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
- E-mail:
| | - Victor Deinhart
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
- Ferdinand-Braun-Institut
gGmbH, Leibniz-Institut für Höchstfrequenztechnik, 12489 Berlin, Germany
- Helmholtz-Zentrum
für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Michael Schneider
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Christopher Klose
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Kathinka Gerlinger
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Steffen Wittrock
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Dieter Engel
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Ingo Will
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Christian M. Günther
- Technische
Universität Berlin, Zentraleinrichtung Elektronenmikroskopie (ZELMI), 10623 Berlin, Germany
| | - Rein Liefferink
- Radboud
University, Institute for
Molecules and Materials (IMM), 6525 AJ Nijmegen, Netherlands
| | - Johan H. Mentink
- Radboud
University, Institute for
Molecules and Materials (IMM), 6525 AJ Nijmegen, Netherlands
| | - Sebastian Wintz
- Max
Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Markus Weigand
- Helmholtz-Zentrum
für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Meng-Jie Huang
- Deutsches
Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
| | | | - Daniel Metternich
- Helmholtz-Zentrum
für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Felix Büttner
- Helmholtz-Zentrum
für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Katja Höflich
- Ferdinand-Braun-Institut
gGmbH, Leibniz-Institut für Höchstfrequenztechnik, 12489 Berlin, Germany
- Helmholtz-Zentrum
für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Stefan Eisebitt
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
- Technische
Universität Berlin, Institut für
Optik und Atomare Physik, 10623 Berlin, Germany
| |
Collapse
|
27
|
Niu X, Chen BB, Zhong N, Xiang PH, Duan CG. Topological Hall effect in SrRuO 3thin films and heterostructures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:244001. [PMID: 35325882 DOI: 10.1088/1361-648x/ac60d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Transition metal oxides hold a wide spectrum of fascinating properties endowed by the strong electron correlations. In 4dand 5doxides, exotic phases can be realized with the involvement of strong spin-orbit coupling (SOC), such as unconventional magnetism and topological superconductivity. Recently, topological Hall effects (THEs) and magnetic skyrmions have been uncovered in SrRuO3thin films and heterostructures, where the presence of SOC and inversion symmetry breaking at the interface are believed to play a key role. Realization of magnetic skyrmions in oxides not only offers a platform to study topological physics with correlated electrons, but also opens up new possibilities for magnetic oxides using in the low-power spintronic devices. In this review, we discuss recent observations of THE and skyrmions in the SRO film interfaced with various materials, with a focus on the electric tuning of THE. We conclude with a discussion on the directions of future research in this field.
Collapse
Affiliation(s)
- Xu Niu
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Bin-Bin Chen
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Ni Zhong
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Ping-Hua Xiang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Chun-Gang Duan
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
28
|
Abstract
Writing, erasing and computing are three fundamental operations required by any working electronic device. Magnetic skyrmions could be essential bits in promising in emerging topological spintronic devices. In particular, skyrmions in chiral magnets have outstanding properties like compact texture, uniform size, and high mobility. However, creating, deleting, and driving isolated skyrmions, as prototypes of aforementioned basic operations, have been a grand challenge in chiral magnets ever since the discovery of skyrmions, and achieving all these three operations in a single device is even more challenging. Here, by engineering chiral magnet Co8Zn10Mn2 into the customized micro-devices for in-situ Lorentz transmission electron microscopy observations, we implement these three operations of skyrmions using nanosecond current pulses with a low current density of about 1010 A·m−2 at room temperature. A notched structure can create or delete magnetic skyrmions depending on the direction and magnitude of current pulses. We further show that the magnetic skyrmions can be deterministically shifted step-by-step by current pulses, allowing the establishment of the universal current-velocity relationship. These experimental results have immediate significance towards the skyrmion-based memory or logic devices. There has been much interest in using skyrmions for new approaches to compution, however, creating, deleting and driving skyrmions remains a challenge. Here, Wang et al demonstrate all three operations for skyrmions in tailored Co8Zn10Mn2 nanodevices using tailored current pulses.
Collapse
|
29
|
Ju H, Zhao X, Liu W, Song Y, Liu L, Ma J, Li Y, Wu J, Zhang Z. Enhanced Spin-Orbit Torque and Low Critical Current Density in Pt 100-xRu x/[CoNi]/Ru Multilayer for Spintronic Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61742-61750. [PMID: 34905352 DOI: 10.1021/acsami.1c17653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Using a heavy-metal (HM) alloy layer in spin-orbit torque (SOT)-based devices is an effective method for obtaining a high current-spin conversion efficiency θSH. In this work, SOT-based spintronic devices with a Pt100-xRux-alloyed HM layer are studied by applying harmonic Hall measurements and magneto-optical Kerr effect microscopy to detect the θSH and to observe the process of current-induced magnetization switching. Both the highest θSH of 0.132 and the lowest critical current density (Jc) of 8 × 105 A/cm2 are realized in a device with x = 20, which satisfies the high SOT efficiency and low energy consumption simultaneously. The interfacial Dzyaloshinskii-Moriya interaction can be overcome by increasing the in-plane assist field. Meanwhile, the minimum in-plane field required for current-induced complete switching can be reduced to ±60 Oe. Our study reveals that using the Pt-Ru alloyed HM layer is an effective route for SOT application with enhanced performance.
Collapse
Affiliation(s)
- Hongzhan Ju
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Xiaotian Zhao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wei Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yuhang Song
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Long Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Jun Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yang Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Jinxiang Wu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Zhidong Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
30
|
Yang S, Moon K, Ju T, Kim C, Kim H, Kim J, Tran BX, Hong J, Hwang C. Electrical Generation and Deletion of Magnetic Skyrmion-Bubbles via Vertical Current Injection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104406. [PMID: 34569658 PMCID: PMC11469294 DOI: 10.1002/adma.202104406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/28/2021] [Indexed: 06/13/2023]
Abstract
The magnetic skyrmion is a topologically protected spin texture that has attracted much attention as a promising information carrier because of its distinct features of suitability for high-density storage, low power consumption, and stability. One of the skyrmion devices proposed so far is the skyrmion racetrack memory, which is the skyrmion version of the domain-wall racetrack memory. For application in devices, skyrmion racetrack memory requires electrical generation, deletion, and displacement of isolated skyrmions. Despite the progress in experimental demonstrations of skyrmion generation, deletion, and displacement, these three operations have yet to be realized in one device. Here, a route for generating and deleting isolated skyrmion-bubbles through vertical current injection with an explanation of its microscopic origin is presented. By combining the proposed skyrmion-bubble generation/deletion method with the spin-orbit-torque-driven skyrmion shift, a proof-of-concept experimental demonstration of the skyrmion racetrack memory operation in a three-terminal device structure is provided.
Collapse
Affiliation(s)
- Seungmo Yang
- Quantum Spin TeamKorea Research Institute of Standards and ScienceDaejeon34113Republic of Korea
| | - Kyoung‐Woong Moon
- Quantum Spin TeamKorea Research Institute of Standards and ScienceDaejeon34113Republic of Korea
| | - Tae‐Seong Ju
- Quantum Spin TeamKorea Research Institute of Standards and ScienceDaejeon34113Republic of Korea
| | - Changsoo Kim
- Quantum Spin TeamKorea Research Institute of Standards and ScienceDaejeon34113Republic of Korea
| | - Hyun‐Joong Kim
- Quantum Spin TeamKorea Research Institute of Standards and ScienceDaejeon34113Republic of Korea
| | - Juran Kim
- Quantum Spin TeamKorea Research Institute of Standards and ScienceDaejeon34113Republic of Korea
| | - Bao Xuan Tran
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - Jung‐Il Hong
- Department of Emerging Materials ScienceDGISTDaegu42988Republic of Korea
| | - Chanyong Hwang
- Quantum Spin TeamKorea Research Institute of Standards and ScienceDaejeon34113Republic of Korea
| |
Collapse
|
31
|
Kandukuri S, Murthy VSN, Thiruvikraman PK. Isolated skyrmion, skyrmion lattice and antiskyrmion lattice creation through magnetization reversal in Co/Pd nanostructure. Sci Rep 2021; 11:18945. [PMID: 34556719 PMCID: PMC8460664 DOI: 10.1038/s41598-021-98337-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022] Open
Abstract
Skyrmion and antiskyrmion spin textures are axisymmetric inhomogeneous localized objects with distinct chirality in magnetic systems. These spin textures are potential candidates for the next generation energy-efficient spintronic applications due to their unique topological properties. Controlled and effective creation of the spin textures is required to use in conventional and neuromorphic computing applications. Here we show by micromagnetic simulations creating an isolated skyrmion, skyrmion lattice and antiskyrmion lattice through the magnetization reversal in Co/Pd multilayer nanostructure using spin-polarized current. The spin textures' stability depends on the spin-polarized current density, current pulse width, and Dzyaloshinskii-Moriya interaction (DMI). Antiskyrmions are evolved during the formation of a single skyrmion and skyrmion lattice. Skyrmion and antiskyrmion lattices together are observed for lower pulse width, 0.05 ns. Our micromagnetic studies suggest that the two distinct lattice phases' evolution could help to design the topological spin textures-based devices.
Collapse
Affiliation(s)
- Sateesh Kandukuri
- Department of Physics, BITS Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, 500078, Telangana, India
| | - V Satya Narayana Murthy
- Department of Physics, BITS Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, 500078, Telangana, India.
| | - P K Thiruvikraman
- Department of Physics, BITS Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, 500078, Telangana, India
| |
Collapse
|
32
|
Wu Y, Wen H, Chen W, Zheng Y. Microdynamic Study of Spin-Lattice Coupling Effects on Skyrmion Transport. PHYSICAL REVIEW LETTERS 2021; 127:097201. [PMID: 34506159 DOI: 10.1103/physrevlett.127.097201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/30/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Skyrmion transport fundamentally determines the speed, energy consumption, and functionality of skyrmion-based spintronic devices, attracting considerable attention. Recent experimental studies found there is a migration barrier for the thermal activated transport of a skyrmion, which is speculated to be induced by the pinning effects of crystalline defects. In this Letter, we propose an alternative source of migration barrier for skyrmion transport, i.e., a local lattice distortion field due to spin-lattice coupling, which can lead to the same Arrhenius diffusion behavior in defect-free skyrmion materials. By performing spin-lattice dynamics simulations, we study the microdynamic insight into the influence of local lattice distortion field, which refreshes the mechanistic understanding on skyrmion transport.
Collapse
Affiliation(s)
- Yifeng Wu
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Haohua Wen
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Weijin Chen
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- School of Materials, Sun Yat-sen University, Shenzhen 518107, China
| | - Yue Zheng
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
33
|
Batle J. Topological structures, spontaneous symmetry breaking and energy spectra in dipole hexagonal lattices. Sci Rep 2021; 11:4154. [PMID: 33603046 PMCID: PMC7893179 DOI: 10.1038/s41598-021-83359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/28/2021] [Indexed: 11/28/2022] Open
Abstract
The interplay between the special triangular/hexagonal two dimensional lattice and the long range dipole-dipole interaction gives rise to topological defects, specifically the vortex, formed by a particular arrangement of the interacting classic dipoles. The nature of such vortices has been traditionally explained on the basis of numerical evidence. Here we propose the emerging formation of vortices as the natural minimum energy configuration of interacting (in-plane) two-dimensional dipoles based on the mechanism of spontaneous symmetry breaking. As opposed to the quantal case, where spin textures such as skyrmions or bimerons occur due to non-linearities in their Hamiltonian, it is still possible to witness classic topological structures due only to the nature of the dipole-dipole force. We shall present other (new) topological structures for the in-plane honeycomb lattice, as well as for two-dimensional out-of-plane dipoles. These structures will prove to be essential in the minimum energy configurations for three-dimensional simple hexagonal and hexagonal-closed-packed structures, whose energies in the bulk are obtained for the first time.
Collapse
Affiliation(s)
- Josep Batle
- Departament de Física, Universitat de les Illes Balears, 07122, Palma de Mallorca, Balearic Islands, Spain.
| |
Collapse
|
34
|
Göbel B, Mertig I. Skyrmion ratchet propagation: utilizing the skyrmion Hall effect in AC racetrack storage devices. Sci Rep 2021; 11:3020. [PMID: 33542288 PMCID: PMC7862652 DOI: 10.1038/s41598-021-81992-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/14/2021] [Indexed: 11/23/2022] Open
Abstract
Magnetic skyrmions are whirl-like nano-objects with topological protection. When driven by direct currents, skyrmions move but experience a transverse deflection. This so-called skyrmion Hall effect is often regarded a drawback for memory applications. Herein, we show that this unique effect can also be favorable for spintronic applications: We show that in a racetrack with a broken inversion symmetry, the skyrmion Hall effect allows to translate an alternating current into a directed motion along the track, like in a ratchet. We analyze several modes of the ratchet mechanism and show that it is unique for topological magnetic whirls. We elaborate on the fundamental differences compared to the motion of topologically trivial magnetic objects, as well as classical particles driven by periodic forces. Depending on the exact racetrack geometry, the ratchet mechanism can be soft or strict. In the latter case, the skyrmion propagates close to the efficiency maximum.
Collapse
Affiliation(s)
- Börge Göbel
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099, Halle (Saale), Germany.
| | - Ingrid Mertig
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099, Halle (Saale), Germany
| |
Collapse
|
35
|
Chen S, Yuan S, Hou Z, Tang Y, Zhang J, Wang T, Li K, Zhao W, Liu X, Chen L, Martin LW, Chen Z. Recent Progress on Topological Structures in Ferroic Thin Films and Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000857. [PMID: 32815214 DOI: 10.1002/adma.202000857] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Topological spin/polarization structures in ferroic materials continue to draw great attention as a result of their fascinating physical behaviors and promising applications in the field of high-density nonvolatile memories as well as future energy-efficient nanoelectronic and spintronic devices. Such developments have been made, in part, based on recent advances in theoretical calculations, the synthesis of high-quality thin films, and the characterization of their emergent phenomena and exotic phases. Herein, progress over the last decade in the study of topological structures in ferroic thin films and heterostructures is explored, including the observation of topological structures and control of their structures and emergent physical phenomena through epitaxial strain, layer thickness, electric, magnetic fields, etc. First, the evolution of topological spin structures (e.g., magnetic skyrmions) and associated functionalities (e.g., topological Hall effect) in magnetic thin films and heterostructures is discussed. Then, the exotic polar topologies (e.g., domain walls, closure domains, polar vortices, bubble domains, and polar skyrmions) and their emergent physical properties in ferroelectric oxide films and heterostructures are explored. Finally, a brief overview and prospectus of how the field may evolve in the coming years is provided.
Collapse
Affiliation(s)
- Shanquan Chen
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Shuai Yuan
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Zhipeng Hou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yunlong Tang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
| | - Jinping Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Tao Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Kang Li
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Weiwei Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Xingjun Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Lang Chen
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Zuhuang Chen
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
36
|
Shao Q, Li P, Liu L, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F, Mokrousov Y, Stiles MD, Emori S, Hoffmann A, Åkerman J, Roy K, Wang JP, Yang SH, Garello K, Zhang W. Roadmap of spin-orbit torques. IEEE TRANSACTIONS ON MAGNETICS 2021; 57:10.48550/arXiv.2104.11459. [PMID: 37057056 PMCID: PMC10091395 DOI: 10.48550/arxiv.2104.11459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Spin-orbit torque (SOT) is an emerging technology that enables the efficient manipulation of spintronic devices. The initial processes of interest in SOTs involved electric fields, spin-orbit coupling, conduction electron spins and magnetization. More recently interest has grown to include a variety of other processes that include phonons, magnons, or heat. Over the past decade, many materials have been explored to achieve a larger SOT efficiency. Recently, holistic design to maximize the performance of SOT devices has extended material research from a nonmagnetic layer to a magnetic layer. The rapid development of SOT has spurred a variety of SOT-based applications. In this Roadmap paper, we first review the theories of SOTs by introducing the various mechanisms thought to generate or control SOTs, such as the spin Hall effect, the Rashba-Edelstein effect, the orbital Hall effect, thermal gradients, magnons, and strain effects. Then, we discuss the materials that enable these effects, including metals, metallic alloys, topological insulators, two-dimensional materials, and complex oxides. We also discuss the important roles in SOT devices of different types of magnetic layers, such as magnetic insulators, antiferromagnets, and ferrimagnets. Afterward, we discuss device applications utilizing SOTs. We discuss and compare three-terminal and two-terminal SOT-magnetoresistive random-access memories (MRAMs); we mention various schemes to eliminate the need for an external field. We provide technological application considerations for SOT-MRAM and give perspectives on SOT-based neuromorphic devices and circuits. In addition to SOT-MRAM, we present SOT-based spintronic terahertz generators, nano-oscillators, and domain wall and skyrmion racetrack memories. This paper aims to achieve a comprehensive review of SOT theory, materials, and applications, guiding future SOT development in both the academic and industrial sectors.
Collapse
Affiliation(s)
- Qiming Shao
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology
| | - Peng Li
- Department of Electrical and Computer Engineering, Auburn University
| | - Luqiao Liu
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology
| | - Hyunsoo Yang
- Department of Electrical and Computer Engineering, National University of Singapore
| | - Shunsuke Fukami
- Research Institute of Electrical Communication, Tohoku University
| | - Armin Razavi
- Department of Electrical and Computer Engineering, University of California, Los Angeles
| | - Hao Wu
- Department of Electrical and Computer Engineering, University of California, Los Angeles
| | - Kang Wang
- Department of Electrical and Computer Engineering, University of California, Los Angeles
| | | | | | - Mark D Stiles
- Alternative Computing Group, National Institute of Standards and Technology
| | | | - Axel Hoffmann
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign
| | | | - Kaushik Roy
- Department of Electrical and Computer Engineering, Purdue University
| | - Jian-Ping Wang
- Electrical and Computer Engineering Department, University of Minnesota
| | | | - Kevin Garello
- IMEC, Leuven, Belgium; CEA-Spintec, Grenoble, France
| | - Wei Zhang
- Physics Department, Oakland University
| |
Collapse
|
37
|
Coexistence of distinct skyrmion phases observed in hybrid ferromagnetic/ferrimagnetic multilayers. Nat Commun 2020; 11:6365. [PMID: 33311480 PMCID: PMC7733481 DOI: 10.1038/s41467-020-20025-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/11/2020] [Indexed: 11/11/2022] Open
Abstract
Materials hosting magnetic skyrmions at room temperature could enable compact and energetically-efficient storage such as racetrack memories, where information is coded by the presence/absence of skyrmions forming a moving chain through the device. The skyrmion Hall effect leading to their annihilation at the racetrack edges can be suppressed, for example, by antiferromagnetically-coupled skyrmions. However, avoiding modifications of the inter-skyrmion distances remains challenging. As a solution, a chain of bits could also be encoded by two different solitons, such as a skyrmion and a chiral bobber, with the limitation that it has solely been realized in B20-type materials at low temperatures. Here, we demonstrate that a hybrid ferro/ferri/ferromagnetic multilayer system can host two distinct skyrmion phases at room temperature, namely tubular and partial skyrmions. Furthermore, the tubular skyrmion can be converted into a partial skyrmion. Such systems may serve as a platform for designing memory applications using distinct skyrmion types. Topological spin textures are of technological interest due to their potential as a store of information. Here the authors experimentally demonstrate two distinct topological spin textures, tubular and incomplete skyrmions, and their mutual conversion in a ferromagnetic/ferromagnetic heterostructure.
Collapse
|
38
|
Ognev AV, Kolesnikov AG, Kim YJ, Cha IH, Sadovnikov AV, Nikitov SA, Soldatov IV, Talapatra A, Mohanty J, Mruczkiewicz M, Ge Y, Kerber N, Dittrich F, Virnau P, Kläui M, Kim YK, Samardak AS. Magnetic Direct-Write Skyrmion Nanolithography. ACS NANO 2020; 14:14960-14970. [PMID: 33152236 DOI: 10.1021/acsnano.0c04748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic skyrmions are stable spin textures with quasi-particle behavior and attract significant interest in fundamental and applied physics. The metastability of magnetic skyrmions at zero magnetic field is particularly important to enable, for instance, a skyrmion racetrack memory. Here, the results of the nucleation of stable skyrmions and formation of ordered skyrmion lattices by magnetic force microscopy in (Pt/CoFeSiB/W)n multilayers, exploiting the additive effect of the interfacial Dzyaloshinskii-Moriya interaction, are presented. The appropriate conditions under which skyrmion lattices are confined with a dense two-dimensional liquid phase are identified. A crucial parameter to control the skyrmion lattice characteristics and the number of scans resulting in the complete formation of a skyrmion lattice is the distance between two adjacent scanning lines of a magnetic force microscopy probe. The creation of skyrmion patterns with complex geometry is demonstrated, and the physical mechanism of direct magnetic writing of skyrmions is comprehended by micromagnetic simulations. This study shows a potential of a direct-write (maskless) skyrmion (topological) nanolithography with sub-100 nm resolution, where each skyrmion acts as a pixel in the final topological image.
Collapse
Affiliation(s)
- A V Ognev
- School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia
| | - A G Kolesnikov
- School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia
| | - Yong Jin Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - In Ho Cha
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - A V Sadovnikov
- Laboratory "Metamaterials", Saratov State University, Saratov 410012, Russia
- Kotel'nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia
| | - S A Nikitov
- Laboratory "Metamaterials", Saratov State University, Saratov 410012, Russia
- Kotel'nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia
| | - I V Soldatov
- Leibniz Institute for Solid State and Material Research (IFW-Dresden), Dresden 01069, Germany
- Institute of Natural Sciences and Mathematic, Ural Federal University, Yekaterinburg 620075, Russia
| | - A Talapatra
- Indian Institute of Technology, Hyderabad 502285, India
| | - J Mohanty
- Indian Institute of Technology, Hyderabad 502285, India
| | - M Mruczkiewicz
- Institute of Electrical Engineering, SAS, Bratislava 841 04, Slovakia
- Centre for Advanced Materials Application (CEMEA), Slovak Academy of Sciences, Bratislava 845 11, Slovakia
| | - Y Ge
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - N Kerber
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - F Dittrich
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - P Virnau
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - M Kläui
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - A S Samardak
- School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia
- National Research South Ural State University, Chelyabinsk 454080, Russia
| |
Collapse
|
39
|
Minimum and maximum energy for crystals of magnetic dipoles. Sci Rep 2020; 10:19113. [PMID: 33154442 PMCID: PMC7645726 DOI: 10.1038/s41598-020-76029-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 09/29/2020] [Indexed: 11/08/2022] Open
Abstract
Properties of many magnetic materials consisting of dipoles depend crucially on the nature of the dipole-dipole interaction. In the present work, we study systems of magnetic dipoles where the dipoles are arranged on various types of one-dimensional, two-dimensional and three-dimensional lattices. It is assumed that we are in the regime of strong dipole moments where a classical treatment is possible. We combine a new classical numerical approach in conjuncture with an ansatz for an energy decomposition method to study the energy stability of various magnetic configurations at zero temperature for systems of dipoles ranging from small to an infinite number of particles. A careful analysis of the data in the bulk limit allows us to identify very accurate minimum and maximum energy bounds as well as ground state configurations corresponding to various types of lattices. The results suggest stabilization of a particularly interesting ground state configuration consisting of three embedded spirals for the case of a two-dimensional hexagonal lattice.
Collapse
|
40
|
Talapatra A, Adeyeye AO. Linear chains of nanomagnets: engineering the effective magnetic anisotropy. NANOSCALE 2020; 12:20933-20944. [PMID: 33090176 DOI: 10.1039/d0nr06026g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper investigates the control of effective magnetic anisotropy in Permalloy linear chain arrays, achieved by tuning the symmetry arrangement of the ellipsoidal nanomagnets and the film thickness. When the ellipsoidal nanomagnets are coupled along their easy axis, stronger effective magnetic anisotropy is achieved compared to when the nanomagnets are coupled along their hard axis. A clear transition from a single domain state to a combination of complex flux closure states such as a vortex or double vortices is observed at different applied field angles when the film thickness is varied in the range from 20 nm to 100 nm. Tunable microwave absorption spectra, obtained by ferromagnetic resonance spectroscopy, established the complex interplay between the shape anisotropy and magnetostatic interactions, which becomes more intriguing at different film thicknesses and applied field angles. The micromagnetic simulations are in good agreement with the experimental results. Our results demonstrate possible ways of manipulating the effective magnetic anisotropy in arrays of nanomagnets for magnonic and microwave applications.
Collapse
Affiliation(s)
- A Talapatra
- Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576.
| | - A O Adeyeye
- Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576. and Department of Physics, Durham University, South Rd, Durham, DH1 3LE, UK
| |
Collapse
|
41
|
Berganza E, Jaafar M, Fernandez-Roldan JA, Goiriena-Goikoetxea M, Pablo-Navarro J, García-Arribas A, Guslienko K, Magén C, De Teresa JM, Chubykalo-Fesenko O, Asenjo A. Half-hedgehog spin textures in sub-100 nm soft magnetic nanodots. NANOSCALE 2020; 12:18646-18653. [PMID: 32584341 DOI: 10.1039/d0nr02173c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Topologically non-trivial structures such as magnetic skyrmions are nanometric spin textures of outstanding potential for spintronic applications due to their unique features. It is well known that Néel skyrmions of definite chirality are stabilized by the Dzyaloshinskii-Moriya exchange interaction (DMI) in bulk non-centrosymmetric materials or ultrathin films with strong spin-orbit coupling at the interface. In this work, we show that soft magnetic (permalloy) hemispherical nanodots are able to host three-dimensional chiral structures (half-hedgehog spin textures) with non-zero tropological charge. They are observed at room temperature, in absence of DMI interaction and they can be further stabilized by the magnetic field arising from the Magnetic Force Microscopy probe. Micromagnetic simulations corroborate the experimental data. Our work implies the existence of a new degree of freedom to create and manipulate complex 3D spin-textures in soft magnetic nanodots and opens up future possibilities to explore their magnetization dynamics.
Collapse
Affiliation(s)
- Eider Berganza
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sub-nanoscale atom-by-atom crafting of skyrmion-defect interaction profiles. Sci Rep 2020; 10:14655. [PMID: 32887911 PMCID: PMC7474088 DOI: 10.1038/s41598-020-71232-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/05/2020] [Indexed: 11/09/2022] Open
Abstract
Magnetic skyrmions are prime candidates as information carriers for spintronic devices due to their topological nature and nanometric size. However, unavoidable inhomogeneities inherent to any material leads to pinning or repulsion of skyrmions that, in analogy to biology concepts, define the phenotype of the skyrmion-defect interaction, generating complexity in their motion and challenging their application as future bits of information. Here, we demonstrate that atom-by-atom manufacturing of multi-atomic defects, being antiferromagnetic or ferromagnetic, permits the breeding of their energy profiles, for which we build schematically a Punnet-square. As established from first-principles for skyrmions generated in PdFe bilayer on Ir(111) surface, the resulting interaction phenotype is rich. It can be opposite to the original one and eventually be of dual pinning-repulsive nature yielding energy landscapes hosting multi-domains. This is dictated by the stacking site, geometry, size and chemical nature of the adsorbed defects, which control the involved magnetic interactions. This work provides new insights towards the development of disruptive device architectures incorporating defects into their design aiming to control and guide skyrmions.
Collapse
|
43
|
Wu H, Groß F, Dai B, Lujan D, Razavi SA, Zhang P, Liu Y, Sobotkiewich K, Förster J, Weigand M, Schütz G, Li X, Gräfe J, Wang KL. Ferrimagnetic Skyrmions in Topological Insulator/Ferrimagnet Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003380. [PMID: 32666575 DOI: 10.1002/adma.202003380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Magnetic skyrmions are topologically nontrivial chiral spin textures that have potential applications in next-generation energy-efficient and high-density spintronic devices. In general, the chiral spins of skyrmions are stabilized by the noncollinear Dzyaloshinskii-Moriya interaction (DMI), originating from the inversion symmetry breaking combined with the strong spin-orbit coupling (SOC). Here, the strong SOC from topological insulators (TIs) is utilized to provide a large interfacial DMI in TI/ferrimagnet heterostructures at room temperature, resulting in small-size (radius ≈ 100 nm) skyrmions in the adjacent ferrimagnet. Antiferromagnetically coupled skyrmion sublattices are observed in the ferrimagnet by element-resolved scanning transmission X-ray microscopy, showing the potential of a vanishing skyrmion Hall effect and ultrafast skyrmion dynamics. The line-scan spin profile of the single skyrmion shows a Néel-type domain wall structure and a 120 nm size of the 180° domain wall. This work demonstrates the sizable DMI and small skyrmions in TI-based heterostructures with great promise for low-energy spintronic devices.
Collapse
Affiliation(s)
- Hao Wu
- Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA
| | - Felix Groß
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, Stuttgart, 70569, Germany
| | - Bingqian Dai
- Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA
| | - David Lujan
- Department of Physics, and Center for Complex Quantum Systems, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Seyed Armin Razavi
- Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA
| | - Peng Zhang
- Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA
| | - Yuxiang Liu
- Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA
| | - Kemal Sobotkiewich
- Department of Physics, and Center for Complex Quantum Systems, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Johannes Förster
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, Stuttgart, 70569, Germany
| | - Markus Weigand
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, Stuttgart, 70569, Germany
| | - Gisela Schütz
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, Stuttgart, 70569, Germany
| | - Xiaoqin Li
- Department of Physics, and Center for Complex Quantum Systems, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Joachim Gräfe
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, Stuttgart, 70569, Germany
| | - Kang L Wang
- Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
44
|
Capic D, Garanin DA, Chudnovsky EM. Skyrmion-skyrmion interaction in a magnetic film. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:415803. [PMID: 32526724 DOI: 10.1088/1361-648x/ab9bc8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Interaction of two skyrmions stabilized by the ferromagnetic exchange, Dzyaloshinskii-Moriya interaction (DMI), and external magnetic field has been studied numerically on a 2D lattice of size large compared to the separation,d, between the skyrmions. We show that two skyrmions of the same chirality (determined by the symmetry of the crystal) repel. In accordance with earlier analytical results, their long-range pair interaction falls out with the separation as exp(-d/δH), whereδHis the magnetic screening length, independent of the DMI. The prefactor in this expression depends on the DMI that drives the repulsion. The latter results in the spiral motion of the two skyrmions around each other, with the separation between them growing logarithmically with time. When two skyrmions of the total topological chargeQ= 2 are pushed close to each other, the discreteness of the atomic lattice makes them collapse into one skyrmion of chargeQ= 1 below a critical separation. Experiment is proposed that would allow one to measure the interaction between two skyrmions by holding them in positions with two magnetic tips. Our findings should be of value for designing topologically protected magnetic memory based upon skyrmions.
Collapse
Affiliation(s)
- D Capic
- Physics Department, Herbert H. Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589, United States of America
| | - D A Garanin
- Physics Department, Herbert H. Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589, United States of America
| | - E M Chudnovsky
- Physics Department, Herbert H. Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589, United States of America
| |
Collapse
|
45
|
Zhao L, Wang Z, Zhang X, Liang X, Xia J, Wu K, Zhou HA, Dong Y, Yu G, Wang KL, Liu X, Zhou Y, Jiang W. Topology-Dependent Brownian Gyromotion of a Single Skyrmion. PHYSICAL REVIEW LETTERS 2020; 125:027206. [PMID: 32701308 DOI: 10.1103/physrevlett.125.027206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Noninteracting particles exhibiting Brownian motion have been observed in many occasions of sciences, such as molecules suspended in liquids, optically trapped microbeads, and spin textures in magnetic materials. In particular, a detailed examination of Brownian motion of spin textures is important for designing thermally stable spintronic devices, which motivates the present study. In this Letter, through using temporally and spatially resolved polar magneto-optic Kerr effect microscopy, we have experimentally observed the thermal fluctuation-induced random walk of a single isolated Néel-type magnetic skyrmion in an interfacially asymmetric Ta/CoFeB/TaO_{x} multilayer. An intriguing topology-dependent Brownian gyromotion behavior of skyrmions has been identified. The onset of Brownian gyromotion of a single skyrmion induced by thermal effects, including a nonlinear temperature-dependent diffusion coefficient and topology-dependent gyromotion are further formulated based on the stochastic Thiele equation. The experimental and numerical demonstration of topology-dependent Brownian gyromotion of skyrmions can be useful for understanding the nonequilibrium magnetization dynamics and implementing spintronic devices.
Collapse
Affiliation(s)
- Le Zhao
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Zidong Wang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Xichao Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Xue Liang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Jing Xia
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Keyu Wu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Heng-An Zhou
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Yiqing Dong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Guoqiang Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kang L Wang
- Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA
| | - Xiaoxi Liu
- Department of Electrical and Computer Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Wanjun Jiang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Lo Conte R, Nandy AK, Chen G, Fernandes Cauduro AL, Maity A, Ophus C, Chen Z, N'Diaye AT, Liu K, Schmid AK, Wiesendanger R. Tuning the Properties of Zero-Field Room Temperature Ferromagnetic Skyrmions by Interlayer Exchange Coupling. NANO LETTERS 2020; 20:4739-4747. [PMID: 32459968 DOI: 10.1021/acs.nanolett.0c00137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic materials offer an opportunity to overcome the scalability and energy consumption limits affecting the semiconductor industry. New computational device architectures, such as low-power solid state magnetic logic and memory-in-logic devices, have been proposed which rely on the unique properties of magnetic materials. Magnetic skyrmions, topologically protected quasi-particles, are at the core of many of the newly proposed spintronic devices. Many different materials systems have been shown hosting ferromagnetic skyrmions at room temperature. However, a magnetic field is a key ingredient to stabilize skyrmions, and this is not desirable for applications, due to the poor scalability of active components generating magnetic fields. Here we report the observation of ferromagnetic skyrmions at room temperature and zero magnetic field, stabilized through interlayer exchange coupling (IEC) between a reference magnet and a free magnet. Most importantly, by tuning the strength of the IEC, we are able to tune the skyrmion size and areal density. Our findings are relevant to the development of skyrmion-based spintronic devices suitable for general-use applications which go beyond modern nanoelectronics.
Collapse
Affiliation(s)
- Roberto Lo Conte
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Department of Physics, University of Hamburg, D-20355 Hamburg, Germany
| | - Ashis K Nandy
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, P.O. Jatni, 752050, Jatni, India
| | - Gong Chen
- Department of Physics, University of California, Davis, California 95616, United States
| | - Andre L Fernandes Cauduro
- National Center for Electron Microscopy, Molecular Foundry - Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ajanta Maity
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, P.O. Jatni, 752050, Jatni, India
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry - Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhijie Chen
- Physics Department, Georgetown University, Washington, DC 20057, United States
| | - Alpha T N'Diaye
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kai Liu
- Department of Physics, University of California, Davis, California 95616, United States
- Physics Department, Georgetown University, Washington, DC 20057, United States
| | - Andreas K Schmid
- National Center for Electron Microscopy, Molecular Foundry - Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | |
Collapse
|
47
|
Liu L, Zhao X, Liu W, Song Y, Zhao X, Zhang Z. Influence of rare earth metal Ho on the interfacial Dzyaloshinskii-Moriya interaction and spin torque efficiency in Pt/Co/Ho multilayers. NANOSCALE 2020; 12:12444-12453. [PMID: 32495785 DOI: 10.1039/d0nr02168g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Owing to the large spin-orbit coupling and tunable magnetization, heavy rare-earth metals Gd and Tb have great effects on the enhancement of spin-orbit torque (SOT) and fast domain wall (DW) motion. However, the reports on the heavy rare-earth metal Ho with more 4f electrons in the research of spintronics are limited. In this work, we found that the interfacial Dzyaloshinskii-Moriya interaction (DMI) and SOT in Pt/Co/Ho multilayers can be strongly influenced by changing the thickness of the Ho (tHo) layer. At tHo = 2.4 nm, DMI exchange constant |D| and spin torque efficiency ξDL reach maximum values of 1.24 mJ m-2 and 0.137 respectively, which are comparable with those in other Pt/Co/nonmagnetic (NM) layer structures. Deterministic current-induced magnetization switching with a low critical current density of 106 A cm-2 can be realized when tHo is less than 5 nm. The Néel-type DW with left-handed chirality and positive sign D can be determined by observing the current-induced asymmetric DW motion. Our results are helpful to prompt the application of heavy rare-earth elements in the fields of the DMI, SOT and chiral DW dynamics.
Collapse
Affiliation(s)
- Long Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China. and School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Xiaotian Zhao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Wei Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Yuhang Song
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China. and School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Xinguo Zhao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Zhidong Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
48
|
Zhang X, Zhou Y, Mee Song K, Park TE, Xia J, Ezawa M, Liu X, Zhao W, Zhao G, Woo S. Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:143001. [PMID: 31689688 DOI: 10.1088/1361-648x/ab5488] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The field of magnetic skyrmions has been actively investigated across a wide range of topics during the last decades. In this topical review, we mainly review and discuss key results and findings in skyrmion research since the first experimental observation of magnetic skyrmions in 2009. We particularly focus on the theoretical, computational and experimental findings and advances that are directly relevant to the spintronic applications based on magnetic skyrmions, i.e. their writing, deleting, reading and processing driven by magnetic field, electric current and thermal energy. We then review several potential applications including information storage, logic computing gates and non-conventional devices such as neuromorphic computing devices. Finally, we discuss possible future research directions on magnetic skyrmions, which also cover rich topics on other topological textures such as antiskyrmions and bimerons in antiferromagnets and frustrated magnets.
Collapse
Affiliation(s)
- Xichao Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Corbett JP, Zhu T, Ahmed AS, Tjung SJ, Repicky JJ, Takeuchi T, Guerrero-Sanchez J, Takeuchi N, Kawakami RK, Gupta JA. Determining Surface Terminations and Chirality of Noncentrosymmetric FeGe Thin Films via Scanning Tunneling Microscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9896-9901. [PMID: 31986007 DOI: 10.1021/acsami.9b19724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Scanning tunneling microscopy was used to study the surfaces of 20-100 nm thick FeGe films grown by molecular beam epitaxy. An average surface lattice constant of ∼6.8 Å, in agreement with the bulk value, was observed via scanning tunneling microscopy, low energy electron diffraction, and reflection high energy electron diffraction. Each of the four possible chemical terminations in the FeGe films were identified by comparing atomic-resolution images, showing distinct contrast with simulations from density functional theory calculations. A detailed study of the atomic layering order and registry across step edges allows us to uniquely determine the grain orientation and chirality in these noncentrosymmetric films.
Collapse
Affiliation(s)
- Joseph P Corbett
- Department of Physics , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Tiancong Zhu
- Department of Physics , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Adam S Ahmed
- Department of Physics , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Steven J Tjung
- Department of Physics , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Jacob J Repicky
- Department of Physics , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Takahiro Takeuchi
- Integrated Graduate School of Medicine, Engineering, and Agricultural Science , University of Yamanashi , Kofu 400-8510 Japan
| | - Jonathan Guerrero-Sanchez
- Centro de Nanociencias y Nanotecnologia , Universidad Nacional Autónoma de México , Apartado Postal 14 , Ensenada , Baja California 22800 , Mexico
| | - Noboru Takeuchi
- Centro de Nanociencias y Nanotecnologia , Universidad Nacional Autónoma de México , Apartado Postal 14 , Ensenada , Baja California 22800 , Mexico
| | - Roland K Kawakami
- Department of Physics , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Jay A Gupta
- Department of Physics , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
50
|
Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination. Nat Commun 2020; 11:949. [PMID: 32075968 PMCID: PMC7031520 DOI: 10.1038/s41467-020-14769-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/29/2020] [Indexed: 11/15/2022] Open
Abstract
Skyrmions, magnetic textures with topological stability, hold promises for high-density and energy-efficient information storage devices owing to their small size and low driving-current density. Precise creation of a single nanoscale skyrmion is a prerequisite to further understand the skyrmion physics and tailor skyrmion-based applications. Here, we demonstrate the creation of individual skyrmions at zero-field in an exchange-biased magnetic multilayer with exposure to soft X-rays. In particular, a single skyrmion with 100-nm size can be created at the desired position using a focused X-ray spot of sub-50-nm size. This single skyrmion creation is driven by the X-ray-induced modification of the antiferromagnetic order and the corresponding exchange bias. Furthermore, artificial skyrmion lattices with various arrangements can be patterned using X-ray. These results demonstrate the potential of accurate optical control of single skyrmion at sub-100 nm scale. We envision that X-ray could serve as a versatile tool for local manipulation of magnetic orders. Skyrmions are objects with whirled magnetization protected by their topology that can be created by different means, however, without control of their position. Here, the authors present a method exploiting x-rays to create skyrmions at the beam position allowing for creation of artificial skyrmion lattices.
Collapse
|