1
|
Banhart F. The Formation and Transformation of Low-Dimensional Carbon Nanomaterials by Electron Irradiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2310462. [PMID: 38700071 DOI: 10.1002/smll.202310462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/19/2024] [Indexed: 05/05/2024]
Abstract
Low-dimensional materials based on graphene or graphite show a large variety of phenomena when they are subjected to irradiation with energetic electrons. Since the 1990s, electron microscopy studies, where a certain irradiation dose is unavoidable, have witnessed unexpected structural transformations of graphitic nanoparticles. It is recognized that electron irradiation is not only detrimental but also bears considerable potential in the formation of new graphitic structures. With the availability of aberration-corrected electron microscopes and the discovery of techniques to produce monolayers of graphene, detailed insight into the atomic processes occurring during electron irradiation became possible. Threshold energies for atom displacements are determined and models of different types of lattice vacancies are confirmed experimentally. However, experimental evidence for the configuration of interstitial atoms in graphite or adatoms on graphene remained indirect, and the understanding of defect dynamics still depends on theoretical concepts. This article reviews irradiation phenomena in graphene- or graphite-based nanomaterials from the scale of single atoms to tens of nanometers. Observations from the 1990s can now be explained on the basis of new results. The evolution of the understanding during three decades of research is presented, and the remaining problems are pointed out.
Collapse
Affiliation(s)
- Florian Banhart
- Institut de Physique et Chimie des Matériaux, UMR 7504, Université de Strasbourg, CNRS, Strasbourg, 67034, France
| |
Collapse
|
2
|
Dyck O, Lupini AR, Jesse S. The Synthescope: A Vision for Combining Synthesis with Atomic Fabrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301560. [PMID: 37574252 DOI: 10.1002/adma.202301560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/09/2023] [Indexed: 08/15/2023]
Abstract
The scanning transmission electron microscope, a workhorse instrument in materials characterization, is being transformed into an atomic-scale material-manipulation platform. With an eye on the trajectory of recent developments and the obstacles toward progress in this field, a vision for a path toward an expanded set of capabilities and applications is provided. The microscope is reconceptualized as an instrument for fabrication and synthesis with the capability to image and characterize atomic-scale structural formation as it occurs. Further development and refinement of this approach may have substantial impact on research in microelectronics, quantum information science, and catalysis, where precise control over atomic-scale structure and chemistry of a few "active sites" can have a dramatic impact on larger-scale functionality and where developing a better understanding of atomic-scale processes can help point the way to larger-scale synthesis approaches.
Collapse
Affiliation(s)
- Ondrej Dyck
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Andrew R Lupini
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Stephen Jesse
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| |
Collapse
|
3
|
Dyck O, Lupini AR, Jesse S. A Platform for Atomic Fabrication and In Situ Synthesis in a Scanning Transmission Electron Microscope. SMALL METHODS 2023; 7:e2300401. [PMID: 37415539 DOI: 10.1002/smtd.202300401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/30/2023] [Indexed: 07/08/2023]
Abstract
The engineering of quantum materials requires the development of tools able to address various synthesis and characterization challenges. These include the establishment and refinement of growth methods, material manipulation, and defect engineering. Atomic-scale modification will be a key enabling factor for engineering quantum materials where desired phenomena are critically determined by atomic structures. Successful use of scanning transmission electron microscopes (STEMs) for atomic scale material manipulation has opened the door for a transformed view of what can be accomplished using electron-beam-based strategies. However, serious obstacles exist on the pathway from possibility to practical reality. One such obstacle is the in situ delivery of atomized material in the STEM to the region of interest for further fabrication processes. Here, progress on this front is presented with a view toward performing synthesis (deposition and growth) processes in a scanning transmission electron microscope in combination with top-down control over the reaction region. An in situ thermal deposition platform is presented, tested, and deposition and growth processes are demonstrated. In particular, it is shown that isolated Sn atoms can be evaporated from a filament and caught on the nearby sample, demonstrating atomized material delivery. This platform is envisioned to facilitate real-time atomic resolution imaging of growth processes and open new pathways toward atomic fabrication.
Collapse
Affiliation(s)
- Ondrej Dyck
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN, 37830, USA
| | - Andrew R Lupini
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN, 37830, USA
| | - Stephen Jesse
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN, 37830, USA
| |
Collapse
|
4
|
Roccapriore KM, Boebinger MG, Dyck O, Ghosh A, Unocic RR, Kalinin SV, Ziatdinov M. Probing Electron Beam Induced Transformations on a Single-Defect Level via Automated Scanning Transmission Electron Microscopy. ACS NANO 2022; 16:17116-17127. [PMID: 36206357 DOI: 10.1021/acsnano.2c07451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A robust approach for real-time analysis of the scanning transmission electron microscopy (STEM) data streams, based on ensemble learning and iterative training (ELIT) of deep convolutional neural networks, is implemented on an operational microscope, enabling the exploration of the dynamics of specific atomic configurations under electron beam irradiation via an automated experiment in STEM. Combined with beam control, this approach allows studying beam effects on selected atomic groups and chemical bonds in a fully automated mode. Here, we demonstrate atomically precise engineering of single vacancy lines in transition metal dichalcogenides and the creation and identification of topological defects in graphene. The ELIT-based approach facilitates direct on-the-fly analysis of the STEM data and engenders real-time feedback schemes for probing electron beam chemistry, atomic manipulation, and atom by atom assembly.
Collapse
Affiliation(s)
- Kevin M Roccapriore
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Matthew G Boebinger
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Ondrej Dyck
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Ayana Ghosh
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Raymond R Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Sergei V Kalinin
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee37916, United States
| | - Maxim Ziatdinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| |
Collapse
|
5
|
Romanin D, Monacelli L, Bianco R, Errea I, Mauri F, Calandra M. Dominant Role of Quantum Anharmonicity in the Stability and Optical Properties of Infinite Linear Acetylenic Carbon Chains. J Phys Chem Lett 2021; 12:10339-10345. [PMID: 34664958 DOI: 10.1021/acs.jpclett.1c02964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carbyne, an infinite-length straight chain of carbon atoms, is supposed to undergo a second order phase transition from the metallic bond-symmetric cumulene (═C═C═)∞ toward the distorted insulating polyyne chain (-C≡C-)∞ displaying bond-length alternation. However, recent synthesis of ultra long carbon chains (∼6000 atoms, [Nat. Mater., 2016, 15, 634]) did not show any phase transition and detected only the polyyne phase, in agreement with previous experiments on capped finite carbon chains. Here, by performing first-principles calculations, we show that quantum-anharmonicity reduces the energy gain of the polyyne phase with respect to the cumulene one by 71%. The magnitude of the bond-length alternation increases by increasing temperature, in stark contrast with a second order phase transition, confining the cumulene-to-polyyne transition to extremely high and unphysical temperatures. Finally, we predict that a high temperature insulator-to-metal transition occurs in the polyyne phase confined in insulating nanotubes with sufficiently large dielectric constant due to a giant quantum-anharmonic bandgap renormalization.
Collapse
Affiliation(s)
- Davide Romanin
- Institut des Nanosciences de Paris, UMR7588, Sorbonne Université, CNRS, F-75252, Paris, France
| | - Lorenzo Monacelli
- Dipartimento di Fisica, Universitá di Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Raffaello Bianco
- Centro de Física de Materiales (CSIC-UPV/EHU), Manuel de Lardizabal pasealekua 5, 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Ion Errea
- Centro de Física de Materiales (CSIC-UPV/EHU), Manuel de Lardizabal pasealekua 5, 20018 Donostia-San Sebastián, Basque Country, Spain
- Fisika Aplikatua 1 Saila, Gipuzkoako Ingeniaritza Eskola, University of the Basque Country (UPV/EHU), Europa Plaza 1, 20018, Donostia San Sebastián, Basque Country, Spain
| | - Francesco Mauri
- Dipartimento di Fisica, Universitá di Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Matteo Calandra
- Institut des Nanosciences de Paris, UMR7588, Sorbonne Université, CNRS, F-75252, Paris, France
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo, Italy
| |
Collapse
|
6
|
Zhang J, Ishizuka K, Tomitori M, Arai T, Hongo K, Maezono R, Tosatti E, Oshima Y. Peculiar Atomic Bond Nature in Platinum Monatomic Chains. NANO LETTERS 2021; 21:3922-3928. [PMID: 33914553 DOI: 10.1021/acs.nanolett.1c00564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal atomic chains have been reported to change their electronic or magnetic properties by slight mechanical stimulus. However, the mechanical response has been veiled because of lack of information on the bond nature. Here, we clarify the bond nature in platinum (Pt) monatomic chains by our in situ transmission electron microscope method. The stiffness is measured with sub-N/m precision by quartz length-extension resonator. The bond stiffnesses at the middle of the chain and at the connection to the base are estimated to be 25 and 23 N/m, respectively, which are higher than the bulk counterpart. Interestingly, the bond length of 0.25 nm is found to be elastically stretched to 0.31 nm, corresponding to a 24% strain. Such peculiar bond nature could be explained by a novel concept of "string tension". This study is a milestone that will significantly change the way we think about atomic bonds in one-dimension.
Collapse
Affiliation(s)
- Jiaqi Zhang
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Keisuke Ishizuka
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Masahiko Tomitori
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Toyoko Arai
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenta Hongo
- Research Center for Advanced Computing Infrastructure, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Ryo Maezono
- School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Erio Tosatti
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
- CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste, Italy
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
| | - Yoshifumi Oshima
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
7
|
Anderson HL, Patrick CW, Scriven LM, Woltering SL. A Short History of Cyclocarbons. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200345] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Harry L. Anderson
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Connor W. Patrick
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Lorel M. Scriven
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Steffen L. Woltering
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| |
Collapse
|
8
|
Zhao X, Loh KP, Pennycook SJ. Electron beam triggered single-atom dynamics in two-dimensional materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:063001. [PMID: 33007771 DOI: 10.1088/1361-648x/abbdb9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling atomic structure and dynamics with single-atom precision is the ultimate goal in nanoscience and nanotechnology. Despite great successes being achieved by scanning tunneling microscopy (STM) over the past a few decades, fundamental limitations, such as ultralow temperature, and low throughput, significantly hinder the fabrication of a large array of atomically defined structures by STM. The advent of aberration correction in scanning transmission electron microscopy (STEM) revolutionized the field of nanomaterials characterization pushing the detection limit down to single-atom sensitivity. The sub-angstrom focused electron beam (e-beam) of STEM is capable of interacting with an individual atom, thereby it is the ideal platform to direct and control matter at the level of a single atom or a small cluster. In this article, we discuss the transfer of energy and momentum from the incident e-beam to atoms and their subsequent potential dynamics under different e-beam conditions in 2D materials, particularly transition metal dichalcogenides (TMDs). Next, we systematically discuss the e-beam triggered structural evolutions of atomic defects, line defects, grain boundaries, and stacking faults in a few representative 2D materials. Their formation mechanisms, kinetic paths, and practical applications are comprehensively discussed. We show that desired structural evolution or atom-by-atom assembly can be precisely manipulated by e-beam irradiation which could introduce intriguing functionalities to 2D materials. In particular, we highlight the recent progress on controlling single Si atom migration in real-time on monolayer graphene along an extended path with high throughput in automated STEM. These results unprecedentedly demonstrate that single-atom dynamics can be realized by an atomically focused e-beam. With the burgeoning of artificial intelligence and big data, we can expect that fully automated microscopes with real-time data analysis and feedback could readily design and fabricate large scale nanostructures with unique functionalities in the near future.
Collapse
Affiliation(s)
- Xiaoxu Zhao
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Stephen J Pennycook
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| |
Collapse
|
9
|
Yu X, Li X, Lin H, Liu M, Cai L, Qiu X, Yang D, Fan X, Qiu X, Xu W. Bond-Scission-Induced Structural Transformation from Cumulene to Diyne Moiety and Formation of Semiconducting Organometallic Polyyne. J Am Chem Soc 2020; 142:8085-8089. [PMID: 32321241 DOI: 10.1021/jacs.0c01925] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The structural transformation from symmetric cumulene to broken-symmetry polyyne within a one-dimensional (1-D) atomic carbon chain is a signature of Peierls distortion. Direct observation of such a structural transformation with single-bond resolution is, however, still challenging. Herein, we design a molecule with a cumulene moiety (Br2C═C═C═CBr2) and employ STM tip manipulation to achieve the molecular skeleton rearrangement from a cumulene to a diyne moiety (Br-C≡C-C≡C-Br). Furthermore, by an on-surface reaction strategy, thermally induced entire debromination (:C═C═C═C:) leads to the formation of a 1-D organometallic polyyne (-C≡C-C≡C-Au-) with a semiconducting characteristic, which implies that a Peierls-like transition may occur in a rationally designed molecular system with limited length.
Collapse
Affiliation(s)
- Xin Yu
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Xin Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Haiping Lin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, People's Republic of China
| | - Mengxi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Liangliang Cai
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Xia Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dandan Yang
- Department of Chemistry, State University of New York, Stony Brook, New York 11794-3400, United States
| | - Xing Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, People's Republic of China
| | - Xiaohui Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Xu
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| |
Collapse
|
10
|
|
11
|
Raman spectroscopy and transmission electron microscopy of long linear atomic carbon chains generated by field electron emission accompanied with electrical discharge of carbon nanotube films. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
12
|
Lee JK, Lee GD, Lee S, Yoon E, Anderson HL, Briggs GAD, Warner JH. Atomic Scale Imaging of Reversible Ring Cyclization in Graphene Nanoconstrictions. ACS NANO 2019; 13:2379-2388. [PMID: 30673212 DOI: 10.1021/acsnano.8b09211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present an atomic level study of reversible cyclization processes in suspended nanoconstricted regions of graphene that form linear carbon chains (LCCs). Before the nanoconstricted region reaches a single linear carbon chain (SLCC), we observe that a double linear carbon chain (DLCC) structure often reverts back to a ribbon of sp2 hybridized oligoacene rings, in a process akin to the Bergman rearrangement. When the length of the DLCC system only consists of ∼5 atoms in each LCC, full recyclization occurs for all atoms present, but for longer DLCCs we find that only single sections of the chain are modified in their bonding hybridization and no full ring closure occurs along the entire DLCCs. This process is observed in real time using aberration-corrected transmission electron microscopy and simulated using density functional theory and tight binding molecular dynamics calculations. These results show that DLCCs are highly sensitive to the adsorption of local gas molecules or surface diffusion impurities and undergo structural modifications.
Collapse
Affiliation(s)
- Ja Kyung Lee
- Department of Materials , University of Oxford , Parks Road , Oxford OX1 3PH , United Kingdom
| | - Gun-Do Lee
- Department of Materials Science and Engineering , Seoul National University , Seoul 151-743 , Korea
| | - Sungwoo Lee
- Department of Materials Science and Engineering , Seoul National University , Seoul 151-743 , Korea
| | - Euijoon Yoon
- Department of Materials Science and Engineering , Seoul National University , Seoul 151-743 , Korea
| | - Harry L Anderson
- Department of Chemistry , University of Oxford , Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - G Andrew D Briggs
- Department of Materials , University of Oxford , Parks Road , Oxford OX1 3PH , United Kingdom
| | - Jamie H Warner
- Department of Materials , University of Oxford , Parks Road , Oxford OX1 3PH , United Kingdom
| |
Collapse
|
13
|
Jiang J, Xu T, Lu J, Sun L, Ni Z. Defect Engineering in 2D Materials: Precise Manipulation and Improved Functionalities. RESEARCH (WASHINGTON, D.C.) 2019; 2019:4641739. [PMID: 31912036 PMCID: PMC6944491 DOI: 10.34133/2019/4641739] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/07/2019] [Indexed: 05/01/2023]
Abstract
Two-dimensional (2D) materials have attracted increasing interests in the last decade. The ultrathin feature of 2D materials makes them promising building blocks for next-generation electronic and optoelectronic devices. With reducing dimensionality from 3D to 2D, the inevitable defects will play more important roles in determining the properties of materials. In order to maximize the functionality of 2D materials, deep understanding and precise manipulation of the defects are indispensable. In the recent years, increasing research efforts have been made on the observation, understanding, manipulation, and control of defects in 2D materials. Here, we summarize the recent research progress of defect engineering on 2D materials. The defect engineering triggered by electron beam (e-beam), plasma, chemical treatment, and so forth is comprehensively reviewed. Firstly, e-beam irradiation-induced defect evolution, structural transformation, and novel structure fabrication are introduced. With the assistance of a high-resolution electron microscope, the dynamics of defect engineering can be visualized in situ. Subsequently, defect engineering employed to improve the performance of 2D devices by means of other methods of plasma, chemical, and ozone treatments is reviewed. At last, the challenges and opportunities of defect engineering on promoting the development of 2D materials are discussed. Through this review, we aim to build a correlation between defects and properties of 2D materials to support the design and optimization of high-performance electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Jie Jiang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Tao Xu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Junpeng Lu
- School of Physics, Southeast University, Nanjing 211189, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Zhenhua Ni
- School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
14
|
Kang D, Ju W, Zhang S, Xia C. Driving interference control by side carbon chains in molecular and two-dimensional nano-constrictions. Phys Chem Chem Phys 2019; 21:25993-26002. [DOI: 10.1039/c9cp05185f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Interference pattern modulation by side carbon chains is a general phenomenon, which is demonstrated in a benzene molecular device, a zigzag graphene nanoribbon device and a SiC nanoribbon device.
Collapse
Affiliation(s)
- Dawei Kang
- School of Physics and Engineering
- Henan University of Science and Technology
- Luoyang 471023
- China
- Collaborative Innovation Center of Light Manipulations and Applications
| | - Weiwei Ju
- School of Physics and Engineering
- Henan University of Science and Technology
- Luoyang 471023
- China
| | - Shuai Zhang
- School of Physics and Engineering
- Henan University of Science and Technology
- Luoyang 471023
- China
| | - Caijuan Xia
- School of Science
- Xi’an Polytechnic University
- Xi’an 710048
- China
| |
Collapse
|
15
|
Ni B, Shi Y, Wang X. The Sub-Nanometer Scale as a New Focus in Nanoscience. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802031. [PMID: 30039573 DOI: 10.1002/adma.201802031] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Size is one of the central issues in nanoscience. The practical meaning of the term "sub-nanometric material (SNM)" requires two aspects: (1) its size should be at the atomic level; (2) it shows unique (size-related) properties compared to its nano-counterparts with larger sizes. Here, SNMs in the form of wires (SNWs) and the unique properties arising from their special size are reviewed. First, their polymer-like behavior, including rheological behavior and self-assembly, is dicussed. Their origins may stem from the special size and the ligands around the wire. Even a slight increase in diameter would risk the polymer-like behavior. Meanwhile, the ligands on SNWs are proportional to the inorganic entity at this scale. Consequently, surface ligands should have a profound impact on the properties, like catalysis, self-assembly, optics, etc. To reveal more potential applications, their applications in energy conversion are comprehensively reviewed. To some extent, characterization can greatly influence the way things are observed. Thus, some appropriate characterization techniques are briefly introduced. Finally, another emerging part of SNWs (atomic chain material) is briefly introduced. It is hoped that this review can provide new insights to this special scale.
Collapse
Affiliation(s)
- Bing Ni
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuang Shi
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Wu Q, Hou S, Sadeghi H, Lambert CJ. A single-molecule porphyrin-based switch for graphene nano-gaps. NANOSCALE 2018; 10:6524-6530. [PMID: 29570203 DOI: 10.1039/c8nr00025e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stable single-molecule switches with high on-off ratios are an essential component for future molecular-scale circuitry. Unfortunately, devices using gold electrodes are neither complementary metal-oxide-semiconductor (CMOS) compatible nor stable at room temperature. To overcome these limitations, several groups have been developing electroburnt graphene electrodes for single molecule electronics. Here, in anticipation of these developments, we examine how the electrical switching properties of a series of porphyrin molecules with pendant dipoles can be tuned by systematically increasing the number of spacer units between the porphyrin core and graphene electrodes. The porphyrin is sandwiched between a graphene source and drain and gated by a third electrode. It is found that the system has two stable states with high and low conductances, which can be controlled by coupling the dipole of the functionalised porphyrin to an external electric field. The associated rotation leads to the breaking of conjugation and a decrease in electrical conductances. As the number of spacers is increased, the conductance ratio can increase from 100 with one spacer to 200 with four spacers. This switching ratio is further enhanced by decreasing the temperature, reaching approximately 2200 at 100 K. This design for a molecular switch using graphene electrodes could be extended to other aromatic systems.
Collapse
Affiliation(s)
- Qingqing Wu
- Quantum Technology Centre, Lancaster University, LA1 4YB Lancaster, UK.
| | - Songjun Hou
- Quantum Technology Centre, Lancaster University, LA1 4YB Lancaster, UK.
| | - Hatef Sadeghi
- Quantum Technology Centre, Lancaster University, LA1 4YB Lancaster, UK.
| | - Colin J Lambert
- Quantum Technology Centre, Lancaster University, LA1 4YB Lancaster, UK.
| |
Collapse
|
17
|
Lambert CJ, Liu SX. A Magic Ratio Rule for Beginners: A Chemist's Guide to Quantum Interference in Molecules. Chemistry 2018; 24:4193-4201. [DOI: 10.1002/chem.201704488] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Colin J. Lambert
- Quantum Technology Centre, Physics Department; Lancaster University; Lancaster LA1 4YB UK
| | - Shi-Xia Liu
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
18
|
Sadeghi H, Sangtarash S, Lambert C. Robust Molecular Anchoring to Graphene Electrodes. NANO LETTERS 2017; 17:4611-4618. [PMID: 28700831 DOI: 10.1021/acs.nanolett.7b01001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent advances in the engineering of picoscale gaps between electroburnt graphene electrodes provide new opportunities for studying electron transport through electrostatically gated single molecules. But first we need to understand and develop strategies for anchoring single molecules to such electrodes. Here, for the first time we present a systematic theoretical study of transport properties using four different modes of anchoring zinc-porphyrin monomer, dimer, and trimer molecular wires to graphene electrodes. These involve either amine anchor groups, covalent C-C bonds to the edges of the graphene, or coupling via π-π stacking of planar polyaromatic hydrocarbons formed from pyrene or tetrabenzofluorene (TBF). π-π stacked pyrene anchors are particularly stable, which may be advantageous for forming robust single-molecule transistors. Despite their planar, multiatom coupling to the electrodes, pyrene anchors can exhibit both destructive interference and different degrees of constructive interference, depending on their connectivity to the porphyrin wire, which makes them attractive also for thermoelectricity. TBF anchors are more weakly coupled to both the graphene and the porphyrin wires and induce negative differential conductance at finite source-drain voltages. Furthermore, although direct C-C covalent bonding to the edges of graphene electrodes yields the highest electrical conductance, electron transport is significantly affected by the shape and size of the graphene electrodes because the local density of states at the carbon atoms connecting the electrode edges to the molecule is sensitive to the electrode surface shape. This sensitivity suggests that direct C-C bonding may be the most desirable for sensing applications. The ordering of the low-bias electrical conductances with different anchors is as follows: direct C-C coupling > π-π stacking with the pyrene anchors > direct coupling via amine anchors > π-π stacking with TBF anchors. Despite this dependency of conductances on the mode of anchoring, the decay of conductance with the length of the zinc-porphyrin wires is relatively insensitive with the associated attenuation factor β lying between 0.9 and 0.11 Å-1.
Collapse
Affiliation(s)
- Hatef Sadeghi
- Quantum Technology Centre, Department of Physics, Lancaster University , Lancaster LA1 4YB, United Kingdom
| | - Sara Sangtarash
- Quantum Technology Centre, Department of Physics, Lancaster University , Lancaster LA1 4YB, United Kingdom
| | - Colin Lambert
- Quantum Technology Centre, Department of Physics, Lancaster University , Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
19
|
Komsa HP, Senga R, Suenaga K, Krasheninnikov AV. Structural Distortions and Charge Density Waves in Iodine Chains Encapsulated inside Carbon Nanotubes. NANO LETTERS 2017; 17:3694-3700. [PMID: 28548839 DOI: 10.1021/acs.nanolett.7b00969] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Atomic chains are perfect systems for getting fundamental insights into the electron dynamics and coupling between the electronic and ionic degrees of freedom in one-dimensional metals. Depending on the band filling, they can exhibit Peierls instabilities (or charge density waves), where equally spaced chain of atoms with partially filled band is inherently unstable, exhibiting spontaneous distortion of the lattice that further leads to metal-insulator transition in the system. Here, using high-resolution scanning transmission electron microscopy, we directly image the atomic structures of a chain of iodine atoms confined inside carbon nanotubes. In addition to long equidistant chains, the ones consisting of iodine dimers and trimers were also observed, as well as transitions between them. First-principles calculations reproduce the experimentally observed bond lengths and lattice constants, showing that the ionic movement is largely unconstrained in the longitudinal direction, while naturally confined by the nanotube in the lateral directions. Moreover, the trimerized chain bears the hallmarks of a charge density wave. The transition is driven by changes in the charge transfer between the chain and the nanotube and is enabled by the charge compensation and additional screening provided by the nanotube.
Collapse
Affiliation(s)
- Hannu-Pekka Komsa
- COMP, Department of Applied Physics, Aalto University , P.O. Box 11100, 00076 Aalto, Finland
| | - Ryosuke Senga
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Central 5, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazutomo Suenaga
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Central 5, Tsukuba, Ibaraki 305-8565, Japan
| | - Arkady V Krasheninnikov
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research , 01328 Dresden, Germany
- Department of Applied Physics, Aalto University , P.O. Box 11100, 00076 Aalto, Finland
- National University of Science and Technology MISiS , 4 Leninskiy Prospekt, Moscow 119049, Russian Federation
| |
Collapse
|