1
|
Demontis V, Zannier V, Sorba L, Rossella F. Surface Nano-Patterning for the Bottom-Up Growth of III-V Semiconductor Nanowire Ordered Arrays. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2079. [PMID: 34443910 PMCID: PMC8398085 DOI: 10.3390/nano11082079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022]
Abstract
Ordered arrays of vertically aligned semiconductor nanowires are regarded as promising candidates for the realization of all-dielectric metamaterials, artificial electromagnetic materials, whose properties can be engineered to enable new functions and enhanced device performances with respect to naturally existing materials. In this review we account for the recent progresses in substrate nanopatterning methods, strategies and approaches that overall constitute the preliminary step towards the bottom-up growth of arrays of vertically aligned semiconductor nanowires with a controlled location, size and morphology of each nanowire. While we focus specifically on III-V semiconductor nanowires, several concepts, mechanisms and conclusions reported in the manuscript can be invoked and are valid also for different nanowire materials.
Collapse
Affiliation(s)
- Valeria Demontis
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR, Piazza S. Silvestro 12, 56127 Pisa, Italy; (V.Z.); (L.S.)
| | - Valentina Zannier
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR, Piazza S. Silvestro 12, 56127 Pisa, Italy; (V.Z.); (L.S.)
| | - Lucia Sorba
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR, Piazza S. Silvestro 12, 56127 Pisa, Italy; (V.Z.); (L.S.)
| | - Francesco Rossella
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR, Piazza S. Silvestro 12, 56127 Pisa, Italy; (V.Z.); (L.S.)
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
2
|
Koval OY, Fedorov VV, Bolshakov AD, Eliseev IE, Fedina SV, Sapunov GA, Udovenko SA, Dvoretckaia LN, Kirilenko DA, Burkovsky RG, Mukhin IS. XRD Evaluation of Wurtzite Phase in MBE Grown Self-Catalyzed GaP Nanowires. NANOMATERIALS 2021; 11:nano11040960. [PMID: 33918690 PMCID: PMC8070561 DOI: 10.3390/nano11040960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 01/11/2023]
Abstract
Control and analysis of the crystal phase in semiconductor nanowires are of high importance due to the new possibilities for strain and band gap engineering for advanced nanoelectronic and nanophotonic devices. In this letter, we report the growth of the self-catalyzed GaP nanowires with a high concentration of wurtzite phase by molecular beam epitaxy on Si (111) and investigate their crystallinity. Varying the growth temperature and V/III flux ratio, we obtained wurtzite polytype segments with thicknesses in the range from several tens to 500 nm, which demonstrates the high potential of the phase bandgap engineering with highly crystalline self-catalyzed phosphide nanowires. The formation of rotational twins and wurtzite polymorph in vertical nanowires was observed through complex approach based on transmission electron microscopy, powder X-ray diffraction, and reciprocal space mapping. The phase composition, volume fraction of the crystalline phases, and wurtzite GaP lattice parameters were analyzed for the nanowires detached from the substrate. It is shown that the wurtzite phase formation occurs only in the vertically-oriented nanowires during vapor-liquid-solid growth, while the wurtzite phase is absent in GaP islands parasitically grown via the vapor-solid mechanism. The proposed approach can be used for the quantitative evaluation of the mean volume fraction of polytypic phase segments in heterostructured nanowires that are highly desirable for the optimization of growth technologies.
Collapse
Affiliation(s)
- Olga Yu. Koval
- Nanotechnology Research and Education Centre of the Russian Academy of Sciences, Alferov University, Khlopina 8/3, 194021 Saint Petersburg, Russia; (V.V.F.); (A.D.B.); (I.E.E.); (S.V.F.); (G.A.S.); (L.N.D.); (I.S.M.)
- Correspondence:
| | - Vladimir V. Fedorov
- Nanotechnology Research and Education Centre of the Russian Academy of Sciences, Alferov University, Khlopina 8/3, 194021 Saint Petersburg, Russia; (V.V.F.); (A.D.B.); (I.E.E.); (S.V.F.); (G.A.S.); (L.N.D.); (I.S.M.)
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great Saint Petersburg Polytechnic University, Politekhnicheskaya 29, 195251 Saint Petersburg, Russia; (S.A.U.); (R.G.B.)
| | - Alexey D. Bolshakov
- Nanotechnology Research and Education Centre of the Russian Academy of Sciences, Alferov University, Khlopina 8/3, 194021 Saint Petersburg, Russia; (V.V.F.); (A.D.B.); (I.E.E.); (S.V.F.); (G.A.S.); (L.N.D.); (I.S.M.)
- School of Photonics, ITMO University, Kronverksky Prospekt 49, 197101 Saint Petersburg, Russia
| | - Igor E. Eliseev
- Nanotechnology Research and Education Centre of the Russian Academy of Sciences, Alferov University, Khlopina 8/3, 194021 Saint Petersburg, Russia; (V.V.F.); (A.D.B.); (I.E.E.); (S.V.F.); (G.A.S.); (L.N.D.); (I.S.M.)
| | - Sergey V. Fedina
- Nanotechnology Research and Education Centre of the Russian Academy of Sciences, Alferov University, Khlopina 8/3, 194021 Saint Petersburg, Russia; (V.V.F.); (A.D.B.); (I.E.E.); (S.V.F.); (G.A.S.); (L.N.D.); (I.S.M.)
| | - Georgiy A. Sapunov
- Nanotechnology Research and Education Centre of the Russian Academy of Sciences, Alferov University, Khlopina 8/3, 194021 Saint Petersburg, Russia; (V.V.F.); (A.D.B.); (I.E.E.); (S.V.F.); (G.A.S.); (L.N.D.); (I.S.M.)
| | - Stanislav A. Udovenko
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great Saint Petersburg Polytechnic University, Politekhnicheskaya 29, 195251 Saint Petersburg, Russia; (S.A.U.); (R.G.B.)
| | - Liliia N. Dvoretckaia
- Nanotechnology Research and Education Centre of the Russian Academy of Sciences, Alferov University, Khlopina 8/3, 194021 Saint Petersburg, Russia; (V.V.F.); (A.D.B.); (I.E.E.); (S.V.F.); (G.A.S.); (L.N.D.); (I.S.M.)
| | - Demid A. Kirilenko
- Ioffe Institute, Politekhnicheskaya 26, 194021 Saint Petersburg, Russia;
| | - Roman G. Burkovsky
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great Saint Petersburg Polytechnic University, Politekhnicheskaya 29, 195251 Saint Petersburg, Russia; (S.A.U.); (R.G.B.)
| | - Ivan S. Mukhin
- Nanotechnology Research and Education Centre of the Russian Academy of Sciences, Alferov University, Khlopina 8/3, 194021 Saint Petersburg, Russia; (V.V.F.); (A.D.B.); (I.E.E.); (S.V.F.); (G.A.S.); (L.N.D.); (I.S.M.)
- School of Photonics, ITMO University, Kronverksky Prospekt 49, 197101 Saint Petersburg, Russia
| |
Collapse
|
3
|
Sarkar K, Devi P, Kim KH, Kumar P. III-V nanowire-based ultraviolet to terahertz photodetectors: Device strategies, recent developments, and future possibilities. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
4
|
Abstract
Photovoltaics (PVs) based on nanostructured III/V semiconductors can potentially reduce the material usage and increase the light-to-electricity conversion efficiency, which are anticipated to make a significant impact on the next-generation solar cells. In particular, GaAs nanowire (NW) is one of the most promising III/V nanomaterials for PVs due to its ideal bandgap and excellent light absorption efficiency. In order to achieve large-scale practical PV applications, further controllability in the NW growth and device fabrication is still needed for the efficiency improvement. This article reviews the recent development in GaAs NW-based PVs with an emphasis on cost-effectively synthesis of GaAs NWs, device design and corresponding performance measurement. We first discuss the available manipulated growth methods of GaAs NWs, such as the catalytic vapor-liquid-solid (VLS) and vapor-solid-solid (VSS) epitaxial growth, followed by the catalyst-controlled engineering process, and typical crystal structure and orientation of resulted NWs. The structure-property relationships are also discussed for achieving the optimal PV performance. At the same time, important device issues are as well summarized, including the light absorption, tunnel junctions and contact configuration. Towards the end, we survey the reported performance data and make some remarks on the challenges for current nanostructured PVs. These results not only lay the ground to considerably achieve the higher efficiencies in GaAs NW-based PVs but also open up great opportunities for the future low-cost smart solar energy harvesting devices.
Collapse
|