1
|
Zhang G, Wu H, Zhang L, Yang L, Xie Y, Guo F, Li H, Tao B, Wang G, Zhang W, Chang H. Two-Dimensional Van Der Waals Topological Materials: Preparation, Properties, and Device Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204380. [PMID: 36135779 DOI: 10.1002/smll.202204380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Over the past decade, 2D van der Waals (vdW) topological materials (TMs), including topological insulators and topological semimetals, which combine atomically flat 2D layers and topologically nontrivial band structures, have attracted increasing attention in condensed-matter physics and materials science. These easily cleavable and integrated TMs provide the ideal platform for exploring topological physics in the 2D limit, where new physical phenomena may emerge, and represent a potential to control and investigate exotic properties and device applications in nanoscale topological phases. However, multifaced efforts are still necessary, which is the prerequisite for the practical application of 2D vdW TMs. Herein, this review focuses on the preparation, properties, and device applications of 2D vdW TMs. First, three common preparation strategies for 2D vdW TMs are summarized, including single crystal exfoliation, chemical vapor deposition, and molecular beam epitaxy. Second, the origin and regulation of various properties of 2D vdW TMs are introduced, involving electronic properties, transport properties, optoelectronic properties, thermoelectricity, ferroelectricity, and magnetism. Third, some device applications of 2D vdW TMs are presented, including field-effect transistors, memories, spintronic devices, and photodetectors. Finally, some significant challenges and opportunities for the practical application of 2D vdW TMs in 2D topological electronics are briefly addressed.
Collapse
Affiliation(s)
- Gaojie Zhang
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Wu
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Zhang
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Li Yang
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuanmiao Xie
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Fei Guo
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Hongda Li
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Boran Tao
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Guofu Wang
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Wenfeng Zhang
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen, 518000, China
| | - Haixin Chang
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen, 518000, China
| |
Collapse
|
2
|
Li H, Wang HW, Li Y, Zhang H, Zhang S, Pan XC, Jia B, Song F, Wang J. Quantitative Analysis of Weak Antilocalization Effect of Topological Surface States in Topological Insulator BiSbTeSe 2. NANO LETTERS 2019; 19:2450-2455. [PMID: 30915851 DOI: 10.1021/acs.nanolett.8b05186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quantitative analysis of the weak antilocalization (WAL) effect of topological surface states in topological insulators is of tremendous importance. The major obstacle to achieve accurate results is how to eliminate the contribution of the anisotropic magnetoconductance of bulk states when the Fermi level lies in bulk bands. Here, we demonstrate that we can analyze quantitatively and accurately the WAL effect of topological surface states in topological insulator, BiSbTeSe2 (BSTS), by measuring the anisotropic magnetoconductance. The anomalous conductance peaks induced by the WAL effect of topological surface states of BSTS together with the anisotropic magnetoconductance of bulk states have been observed. By subtracting the anisotropic magnetoconductance of bulk states, we are able to analyze the WAL effect of topological surface states using the Hikami-Larkin-Nagaoka expression. Our findings offer an alternative strategy for the quantitative exploration of the WAL effect of topological surface states in topological insulators.
Collapse
Affiliation(s)
- Hui Li
- Department of Physics , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong China
| | - Huan-Wen Wang
- Department of Physics , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong China
| | - Yang Li
- Department of Physics , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong China
| | - Huachen Zhang
- Department of Physics , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong China
| | - Shuai Zhang
- National Laboratory of Solid State Microstructures, School of Physics , Nanjing University , Nanjing 210093 , China
- Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Xing-Chen Pan
- National Laboratory of Solid State Microstructures, School of Physics , Nanjing University , Nanjing 210093 , China
- Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Bin Jia
- National Laboratory of Solid State Microstructures, School of Physics , Nanjing University , Nanjing 210093 , China
- Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Fengqi Song
- National Laboratory of Solid State Microstructures, School of Physics , Nanjing University , Nanjing 210093 , China
- Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Jiannong Wang
- Department of Physics , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong China
- William Mong Institute of Nano Science and Technology , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong China
| |
Collapse
|
3
|
Novel synthesis of topological insulator based nanostructures (Bi 2Te 3) demonstrating high performance photodetection. Sci Rep 2019; 9:3804. [PMID: 30846755 PMCID: PMC6405830 DOI: 10.1038/s41598-019-40394-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/13/2019] [Indexed: 11/18/2022] Open
Abstract
The rapid progress in 2D material research has triggered the growth of various quantum nanostructures- nanosheets, nanowires, nanoribbons, nanocrystals and the exotic nature originating through 2D heterostructures has extended the synthesis of hybrid materials beyond the conventional approaches. Here we introduce simple, one step confined thin melting approach to form nanostructures of TI (topological insulator) materials, their hybrid heterostructures with other novel 2D materials and their scalable growth. The substrate and temperature dependent growth is investigated on insulating, superconducting, metallic, semiconducting and ferromagnetic materials. The temperature dependent synthesis enables the growth of single, few quintuples to nanosheets and nanocrystals. The density of nanostructure growth is seen more on fabricated patterns or textured substrates. The fabricated nanostructure based devices show the broadband photodetection from ultraviolet to near infrared and exhibit high photoresponsivity. Ultimately, this unique synthesis process will give easy access to fabricate devices on user friendly substrates, study nanostructures and scalable growth will enable their future technology applications.
Collapse
|
4
|
Thermal Protection System and Thermal Management for Combined-Cycle Engine: Review and Prospects. ENERGIES 2019. [DOI: 10.3390/en12020240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Combined-cycle engine is a potential propulsion system for hypersonic aircraft. To ensure long-term, normal operation of combined-cycle engine under the harsh environment of high thermal load, it is of great significance to study the thermal protection and management of the propulsion system. In this study, the objective and development status of thermal protection and thermal management systems for the combined-cycle propulsion system were described. The latest research progresses of thermal protection, thermal barrier coating, and thermal management system of the combined-cycle propulsion system were summarized. Moreover, the problems and shortcoming in current researches were summarized. In addition, a prospect for the future development of thermal protection and management of the combined-cycle propulsion system was presented, pointing out a direction of great value and vital research significance to thermal protection and management of the combined-cycle propulsion system.
Collapse
|
5
|
Huang H, Jin KH, Liu F. Alloy Engineering of Topological Semimetal Phase Transition in MgTa_{2-x}Nb_{x}N_{3}. PHYSICAL REVIEW LETTERS 2018; 120:136403. [PMID: 29694185 DOI: 10.1103/physrevlett.120.136403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 06/08/2023]
Abstract
Dirac, triple-point, and Weyl fermions represent three topological semimetal phases, characterized with a descending degree of band degeneracy, which have been realized separately in specific crystalline materials with different lattice symmetries. Here we demonstrate an alloy engineering approach to realize all three types of fermions in one single material system of MgTa_{2-x}Nb_{x}N_{3}. Based on symmetry analysis and first-principles calculations, we map out a phase diagram of topological order in the parameter space of alloy concentration and crystalline symmetry, where the intrinsic MgTa_{2}N_{3} with the highest symmetry hosts the Dirac semimetal phase, which transforms into the triple-point and then the Weyl semimetal phases with increasing Nb concentration that lowers the crystalline symmetries. Therefore, alloy engineering affords a unique approach for the experimental investigation of topological transitions of semimetallic phases manifesting different fermionic behaviors.
Collapse
Affiliation(s)
- Huaqing Huang
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Kyung-Hwan Jin
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Feng Liu
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|
6
|
Trivedi T, Roy A, Movva HCP, Walker ES, Bank SR, Neikirk DP, Banerjee SK. Versatile Large-Area Custom-Feature van der Waals Epitaxy of Topological Insulators. ACS NANO 2017; 11:7457-7467. [PMID: 28692797 DOI: 10.1021/acsnano.7b03894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As the focus of applied research in topological insulators (TI) evolves, the need to synthesize large-area TI films for practical device applications takes center stage. However, constructing scalable and adaptable processes for high-quality TI compounds remains a challenge. To this end, a versatile van der Waals epitaxy (vdWE) process for custom-feature bismuth telluro-sulfide TI growth and fabrication is presented, achieved through selective-area fluorination and modification of surface free-energy on mica. The TI features grow epitaxially in large single-crystal trigonal domains, exhibiting armchair or zigzag crystalline edges highly oriented with the underlying mica lattice and only two preferred domain orientations mirrored at 180°. As-grown feature thickness dependence on lateral dimensions and denuded zones at boundaries are observed, as explained by a semiempirical two-species surface migration model with robust estimates of growth parameters and elucidating the role of selective-area surface modification. Topological surface states contribute up to 60% of device conductance at room temperature, indicating excellent electronic quality. High-yield microfabrication and the adaptable vdWE growth mechanism with readily alterable precursor and substrate combinations lend the process versatility to realize crystalline TI synthesis in arbitrary shapes and arrays suitable for facile integration with processes ranging from rapid prototyping to scalable manufacturing.
Collapse
Affiliation(s)
- Tanuj Trivedi
- Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin , Austin, Texas 78758, United States
| | - Anupam Roy
- Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin , Austin, Texas 78758, United States
| | - Hema C P Movva
- Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin , Austin, Texas 78758, United States
| | - Emily S Walker
- Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin , Austin, Texas 78758, United States
| | - Seth R Bank
- Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin , Austin, Texas 78758, United States
| | - Dean P Neikirk
- Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin , Austin, Texas 78758, United States
| | - Sanjay K Banerjee
- Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin , Austin, Texas 78758, United States
| |
Collapse
|
7
|
Tu NH, Tanabe Y, Satake Y, Huynh KK, Tanigaki K. In-plane topological p-n junction in the three-dimensional topological insulator Bi 2-xSb xTe 3-ySe y. Nat Commun 2016; 7:13763. [PMID: 27934857 PMCID: PMC5155151 DOI: 10.1038/ncomms13763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/31/2016] [Indexed: 11/14/2022] Open
Abstract
A topological p-n junction (TPNJ) is an important concept to control spin and charge transport on a surface of three-dimensional topological insulators (3D-TIs). Here we report successful fabrication of such TPNJ on a surface of 3D-TI Bi2−xSbxTe3−ySey thin films and experimental observation of the electrical transport. By tuning the chemical potential of n-type topological Dirac surface of Bi2−xSbxTe3−ySey on its top half by using tetrafluoro-7,7,8,8-tetracyanoquinodimethane as an organic acceptor molecule, a half surface can be converted to p-type with leaving the other half side as the opposite n-type, and consequently TPNJ can be created. By sweeping the back-gate voltage in the field effect transistor structure, the TPNJ was controlled both on the bottom and the top surfaces. A dramatic change in electrical transport observed at the TPNJ on 3D-TI thin films promises novel spin and charge transport of 3D-TIs for future spintronics.
Dirac cone surface states rectify an ultralow dissipative spin and charge current, but it is yet to be confirmed in devices. Here, Tu et al. observe p-type electrical transport on one half surface and n-type on the other in Bi2−xSbxTe3−ySey thin films, realizing a topological p-n junction.
Collapse
Affiliation(s)
- Ngoc Han Tu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yoichi Tanabe
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yosuke Satake
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Khuong Kim Huynh
- WPI-Advanced Institute for Materials Research, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Katsumi Tanigaki
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,WPI-Advanced Institute for Materials Research, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|