1
|
Krajewska CJ, Kick M, Kaplan AEK, Berkinsky DB, Zhu H, Sverko T, Van Voorhis T, Bawendi MG. A-Site Cation Influence on the Structural and Optical Evolution of Ultrathin Lead Halide Perovskite Nanoplatelets. ACS NANO 2024; 18:8248-8258. [PMID: 38428021 DOI: 10.1021/acsnano.3c12286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Imposing quantum confinement has the potential to significantly modulate both the structural and optical parameters of interest in many material systems. In this work, we investigate strongly confined ultrathin perovskite nanoplatelets APbBr3. We compare the all-inorganic and hybrid compositions with the A-sites cesium and formamidinium, respectively. Compared to each other and their bulk counterparts, the materials show significant differences in variable-temperature structural and optical evolution. We quantify and correlate structural asymmetry with the excitonic transition energy, spectral purity, and emission rate. Negative thermal expansion, structural and photoluminescence asymmetry, photoluminescence full width at half-maximum, and splitting between bright and dark excitonic levels are found to be reduced in the hybrid composition. This work provides composition- and structure-based mechanisms for engineering of the excitons in these materials.
Collapse
Affiliation(s)
- Chantalle J Krajewska
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Matthias Kick
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander E K Kaplan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David B Berkinsky
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hua Zhu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tara Sverko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Krajewska CJ, Kaplan AEK, Kick M, Berkinsky DB, Zhu H, Sverko T, Van Voorhis T, Bawendi MG. Controlled Assembly and Anomalous Thermal Expansion of Ultrathin Cesium Lead Bromide Nanoplatelets. NANO LETTERS 2023; 23:2148-2157. [PMID: 36884029 DOI: 10.1021/acs.nanolett.2c04526] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Quantum confined lead halide perovskite nanoplatelets are anisotropic materials displaying strongly bound excitons with spectrally pure photoluminescence. We report the controlled assembly of CsPbBr3 nanoplatelets through varying the evaporation rate of the dispersion solvent. We confirm the assembly of superlattices in the face-down and edge-up configurations by electron microscopy, as well as X-ray scattering and diffraction. Polarization-resolved spectroscopy shows that superlattices in the edge-up configuration display significantly polarized emission compared to face-down counterparts. Variable-temperature X-ray diffraction of both face-down and edge-up superlattices uncovers a uniaxial negative thermal expansion in ultrathin nanoplatelets, which reconciles the anomalous temperature dependence of the emission energy. Additional structural aspects are investigated by multilayer diffraction fitting, revealing a significant decrease in superlattice order with decreasing temperature, with a concomitant expansion of the organic sublattice and increase of lead halide octahedral tilt.
Collapse
Affiliation(s)
- Chantalle J Krajewska
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander E K Kaplan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Matthias Kick
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David B Berkinsky
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hua Zhu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tara Sverko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Korath Shivan S, Maier A, Scheele M. Emergent properties in supercrystals of atomically precise nanoclusters and colloidal nanocrystals. Chem Commun (Camb) 2022; 58:6998-7017. [DOI: 10.1039/d2cc00778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We provide a comprehensive account of the optical, electrical and mechanical properties that result from the self-assembly of colloidal nanocrystals or atomically precise nanoclusters into crystalline arrays with long-range order....
Collapse
|
4
|
Marino E, Vasilyev OA, Kluft BB, Stroink MJB, Kondrat S, Schall P. Controlled deposition of nanoparticles with critical Casimir forces. NANOSCALE HORIZONS 2021; 6:751-758. [PMID: 34268545 PMCID: PMC8381518 DOI: 10.1039/d0nh00670j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/20/2021] [Indexed: 05/28/2023]
Abstract
Nanocrystal assembly represents the key fabrication step to develop next-generation optoelectronic devices with properties defined from the bottom-up. Despite numerous efforts, our limited understanding of nanoscale interactions has so far delayed the establishment of assembly conditions leading to reproducible superstructure morphologies, therefore hampering integration with large-scale, industrial processes. In this work, we demonstrate the deposition of a layer of semiconductor nanocrystals on a flat and unpatterned silicon substrate as mediated by the interplay of critical Casimir attraction and electrostatic repulsion. We show experimentally and rationalize with Monte Carlo and molecular dynamics simulations how this assembly process can be biased towards the formation of 2D layers or 3D islands and how the morphology of the deposited superstructure can be tuned from crystalline to amorphous. Our findings demonstrate the potential of the critical Casimir interaction to direct the growth of future artificial solids based on nanocrystals as the ultimate building blocks.
Collapse
Affiliation(s)
- Emanuele Marino
- Department of Chemistry, University of PennsylvaniaPhiladelphiaPennsylvania 19104USA
- van der Waals-Zeeman Institute, University of AmsterdamAmsterdamThe Netherlands
| | - Oleg A. Vasilyev
- Max-Planck-Institut für Intelligente SystemeHeisenbergstraße 3D-70569 StuttgartGermany
- IV. Institut für Theoretische Physik, Universität StuttgartPfaffenwaldring 57D-70569 StuttgartGermany
| | - Bas B. Kluft
- van der Waals-Zeeman Institute, University of AmsterdamAmsterdamThe Netherlands
| | - Milo J. B. Stroink
- van der Waals-Zeeman Institute, University of AmsterdamAmsterdamThe Netherlands
| | - Svyatoslav Kondrat
- Max-Planck-Institut für Intelligente SystemeHeisenbergstraße 3D-70569 StuttgartGermany
- IV. Institut für Theoretische Physik, Universität StuttgartPfaffenwaldring 57D-70569 StuttgartGermany
- Institute of Physical Chemistry, Polish Academy of SciencesKasprzaka 44/5201-224 WarsawPoland
| | - Peter Schall
- van der Waals-Zeeman Institute, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
5
|
Bagiński M, Pedrazo-Tardajos A, Altantzis T, Tupikowska M, Vetter A, Tomczyk E, Suryadharma RN, Pawlak M, Andruszkiewicz A, Górecka E, Pociecha D, Rockstuhl C, Bals S, Lewandowski W. Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices. ACS NANO 2021; 15:4916-4926. [PMID: 33621046 PMCID: PMC8028333 DOI: 10.1021/acsnano.0c09746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The crystallization of nanomaterials is a primary source of solid-state, photonic structures. Thus, a detailed understanding of this process is of paramount importance for the successful application of photonic nanomaterials in emerging optoelectronic technologies. While colloidal crystallization has been thoroughly studied, for example, with advanced in situ electron microscopy methods, the noncolloidal crystallization (freezing) of nanoparticles (NPs) remains so far unexplored. To fill this gap, in this work, we present proof-of-principle experiments decoding a crystallization of reconfigurable assemblies of NPs at a solid state. The chosen material corresponds to an excellent testing bed, as it enables both in situ and ex situ investigation using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atomic force microscopy (AFM), and optical spectroscopy in visible and ultraviolet range (UV-vis) techniques. In particular, ensemble measurements with small-angle XRD highlighted the dependence of the correlation length in the NPs assemblies on the number of heating/cooling cycles and the rate of cooling. Ex situ TEM imaging further supported these results by revealing a dependence of domain size and structure on the sample preparation route and by showing we can control the domain size over 2 orders of magnitude. The application of HAADF-STEM tomography, combined with in situ thermal control, provided three-dimensional single-particle level information on the positional order evolution within assemblies. This combination of real and reciprocal space provides insightful information on the anisotropic, reversibly reconfigurable assemblies of NPs. TEM measurements also highlighted the importance of interfaces in the polydomain structure of nanoparticle solids, allowing us to understand experimentally observed differences in UV-vis extinction spectra of the differently prepared crystallites. Overall, the obtained results show that the combination of in situ heating HAADF-STEM tomography with XRD and ex situ TEM techniques is a powerful approach to study nanoparticle freezing processes and to reveal the crucial impact of disorder in the solid-state aggregates of NPs on their plasmonic properties.
Collapse
Affiliation(s)
- Maciej Bagiński
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Adrián Pedrazo-Tardajos
- Electron
Microscopy for Materials Research, University
of Antwerp, Groenenborgerlaan, 171, 2020 Antwerp, Belgium
| | - Thomas Altantzis
- Electron
Microscopy for Materials Research, University
of Antwerp, Groenenborgerlaan, 171, 2020 Antwerp, Belgium
| | - Martyna Tupikowska
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Andreas Vetter
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology, 76131 Karlsruhe, Germany
| | - Ewelina Tomczyk
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Radius N.S. Suryadharma
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology, 76131 Karlsruhe, Germany
| | - Mateusz Pawlak
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Aneta Andruszkiewicz
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
- Department
of Chemistry, Uppsala Universitet, Lägerhyddsvägen 1, 751 20 Uppsala, Sweden
| | - Ewa Górecka
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Damian Pociecha
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Carsten Rockstuhl
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology, 76131 Karlsruhe, Germany
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, 76021 Karlsruhe, Germany
| | - Sara Bals
- Electron
Microscopy for Materials Research, University
of Antwerp, Groenenborgerlaan, 171, 2020 Antwerp, Belgium
- (S.B.)
| | - Wiktor Lewandowski
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
- (W.L.)
| |
Collapse
|
6
|
Deng K, Luo Z, Tan L, Quan Z. Self-assembly of anisotropic nanoparticles into functional superstructures. Chem Soc Rev 2020; 49:6002-6038. [PMID: 32692337 DOI: 10.1039/d0cs00541j] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Self-assembly of colloidal nanoparticles (NPs) into superstructures offers a flexible and promising pathway to manipulate the nanometer-sized particles and thus make full use of their unique properties. This bottom-up strategy builds a bridge between the NP regime and a new class of transformative materials across multiple length scales for technological applications. In this field, anisotropic NPs with size- and shape-dependent physical properties as self-assembly building blocks have long fascinated scientists. Self-assembly of anisotropic NPs not only opens up exciting opportunities to engineer a variety of intriguing and complex superlattice architectures, but also provides access to discover emergent collective properties that stem from their ordered arrangement. Thus, this has stimulated enormous research interests in both fundamental science and technological applications. This present review comprehensively summarizes the latest advances in this area, and highlights their rich packing behaviors from the viewpoint of NP shape. We provide the basics of the experimental techniques to produce NP superstructures and structural characterization tools, and detail the delicate assembled structures. Then the current understanding of the assembly dynamics is discussed with the assistance of in situ studies, followed by emergent collective properties from these NP assemblies. Finally, we end this article with the remaining challenges and outlook, hoping to encourage further research in this field.
Collapse
Affiliation(s)
- Kerong Deng
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zhishan Luo
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Li Tan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
7
|
Mukharamova N, Lapkin D, Zaluzhnyy IA, André A, Lazarev S, Kim YY, Sprung M, Kurta RP, Schreiber F, Vartanyants IA, Scheele M. Revealing Grain Boundaries and Defect Formation in Nanocrystal Superlattices by Nanodiffraction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904954. [PMID: 31729151 DOI: 10.1002/smll.201904954] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/18/2019] [Indexed: 05/13/2023]
Abstract
X-ray nanodiffraction is applied to study the formation and correlation of domain boundaries in mesocrystalline superlattices of PbS nanocrystals with face-centered cubic structure. Each domain of the superlattice can be described with one of two mesocrystalline polymorphs with different orientational orders. Close to a grain boundary, the lattice constant decreases and the superlattice undergoes an out-of-plane rotation, while the orientation of the nanocrystals with respect to the superlattice remains unchanged. These findings are explained with the release of stress on the expense of specific nanocrystal-substrate interactions. The fact that correlations between adjacent nanocrystals are found to survive the structural changes at most grain boundaries implies that the key to nanocrystal superlattices with macroscopic domain sizes are strengthened interactions with the substrate.
Collapse
Affiliation(s)
- Nastasia Mukharamova
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Dmitry Lapkin
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Ivan A Zaluzhnyy
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607, Hamburg, Germany
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409, Moscow, Russia
| | - Alexander André
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Sergey Lazarev
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607, Hamburg, Germany
- Tomsk Open Laboratory for Material Inspection (TOLMI), National Research Tomsk Polytechnic University (TPU), pr. Lenina 30, 634050, Tomsk, Russia
| | - Young Yong Kim
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Ruslan P Kurta
- European XFEL GmbH, Holzkoppel 4, D-22869, Schenefeld, Germany
| | - Frank Schreiber
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
- Center for Light-Matter Interaction, Sensors & Analytics LISA+, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Ivan A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607, Hamburg, Germany
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409, Moscow, Russia
| | - Marcus Scheele
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
- Center for Light-Matter Interaction, Sensors & Analytics LISA+, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| |
Collapse
|
8
|
Angular X-Ray Cross-Correlation Analysis (AXCCA): Basic Concepts and Recent Applications to Soft Matter and Nanomaterials. MATERIALS 2019; 12:ma12213464. [PMID: 31652689 PMCID: PMC6862311 DOI: 10.3390/ma12213464] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 01/25/2023]
Abstract
Angular X-ray cross-correlation analysis (AXCCA) is a technique which allows quantitative measurement of the angular anisotropy of X-ray diffraction patterns and provides insights into the orientational order in the system under investigation. This method is based on the evaluation of the angular cross-correlation function of the scattered intensity distribution on a two-dimensional (2D) detector and further averaging over many diffraction patterns for enhancement of the anisotropic signal. Over the last decade, AXCCA was successfully used to study the anisotropy in various soft matter systems, such as solutions of anisotropic particles, liquid crystals, colloidal crystals, superlattices composed by nanoparticles, etc. This review provides an introduction to the technique and gives a survey of the recent experimental work in which AXCCA in combination with micro- or nanofocused X-ray microscopy was used to study the orientational order in various soft matter systems.
Collapse
|
9
|
Lokteva I, Koof M, Walther M, Grübel G, Lehmkühler F. Coexistence of hcp and bct Phases during In Situ Superlattice Assembly from Faceted Colloidal Nanocrystals. J Phys Chem Lett 2019; 10:6331-6338. [PMID: 31578064 DOI: 10.1021/acs.jpclett.9b02622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We study the in situ self-assembly of faceted PbS nanocrystals from colloidal suspensions upon controlled solvent evaporation using time-resolved small-angle X-ray scattering and X-ray cross-correlation analysis. In our bulk-sensitive experiment in transmission geometry, the superlattice crystallization is observed in real time, revealing a hexagonal closed-packed (hcp) structure followed by formation of a body-centered cubic (bcc) superlattice. The bcc superlattice undergoes continuous tetragonal distortion in the solvated state shortly after its formation, resulting in the body-centered tetragonal (bct) structure. Upon solvent evaporation, the bct superstructure becomes more pronounced with the still coexisting hcp phase. These findings corroborate the existing simulations of assembling cuboctahedral-shaped particles and illustrate that we observed the predicted equilibrium states. This work is essential for a deeper understanding of the fundamental forces that direct nanocrystal assembly including nanocrystal shape and ligand coverage.
Collapse
Affiliation(s)
- Irina Lokteva
- Deutsches Elektronen-Synchrotron (DESY) , Notkestraße 85 , 22607 Hamburg , Germany
- The Hamburg Centre for Ultrafast Imaging (CUI) , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Michael Koof
- Deutsches Elektronen-Synchrotron (DESY) , Notkestraße 85 , 22607 Hamburg , Germany
- The Hamburg Centre for Ultrafast Imaging (CUI) , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Michael Walther
- Deutsches Elektronen-Synchrotron (DESY) , Notkestraße 85 , 22607 Hamburg , Germany
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron (DESY) , Notkestraße 85 , 22607 Hamburg , Germany
- The Hamburg Centre for Ultrafast Imaging (CUI) , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron (DESY) , Notkestraße 85 , 22607 Hamburg , Germany
- The Hamburg Centre for Ultrafast Imaging (CUI) , Luruper Chaussee 149 , 22761 Hamburg , Germany
| |
Collapse
|
10
|
Xue Z, Wang P, Peng A, Wang T. Architectural Design of Self-Assembled Hollow Superstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801441. [PMID: 30256464 DOI: 10.1002/adma.201801441] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/01/2018] [Indexed: 06/08/2023]
Abstract
Colloidal nanoparticle assemblies are widely designed and fabricated via various building blocks to enhance their intrinsic properties and potential applications. Self-assembled hollow superstructures have been a focal point in nanotechnology for several decades and are likely to remain so for the foreseeable future. The novel properties of self-assembled hollow superstructures stem from their effective spatial utilization. As such, a comprehensive appreciation of the interactive forces at play among individual building blocks is a prerequisite for designing and managing the self-assembly process, toward the fabrication of optimal hollow nanoproducts. Herein, the emerging approaches to the fabrication of self-assembled hollow superstructures, including hard-templated, soft-templated, self-templated, and template-free methods, are classified and discussed. The corresponding reinforcement mechanisms, such as strong ligand interaction strategies and extra-capping strategies, are discussed in detail. Finally, possible future directions for the construction of multifunctional hollow superstructures with highly efficient catalytic reaction systems and an integration platform for bioapplications are discussed.
Collapse
Affiliation(s)
- Zhenjie Xue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peilong Wang
- Institute of Quality Standards & Testing Technology for Agriculture Products, China Agricultural Academy of Science, Beijing, 100081, P. R. China
| | - Aidong Peng
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|