1
|
Shi X, Liu C, Zhang X, Zhan G, Cai Y, Zhou D, Zhao Y, Wang N, Hu F, Wang X, Ma H, Wang L. Vapor Phase Growth of Air-Stable Hybrid Perovskite FAPbBr 3 Single-Crystalline Nanosheets. NANO LETTERS 2024; 24:2299-2307. [PMID: 38334593 DOI: 10.1021/acs.nanolett.3c04604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Organic-inorganic hybrid perovskites have attracted tremendous attention owing to their fascinating optoelectronic properties. However, their poor air stability seriously hinders practical applications, which becomes more serious with thickness down to the nanoscale. Here we report a one-step vapor phase growth of HC(NH2)2PbBr3 (FAPbBr3) single-crystalline nanosheets of tunable size up to 50 μm and thickness down to 20 nm. The FAPbBr3 nanosheets demonstrate high stability for over months of exposure to air with no degradation in surface roughness and photoluminescence efficiency. Besides, the FAPbBr3 photodetectors exhibit superior overall performance as compared to previous devices based on nonlayered perovskite nanosheets, such as an ultralow dark current of 24 pA, an ultrahigh responsivity of 1033 A/W, an external quantum efficiency over 3000%, a rapid response time around 25 ms, and a high on/off ratio of 104. This work provides a strategy to tackle the challenges of hybrid perovskites toward integrated optoelectronics with requirements of nanoscale thickness, high stability, and excellent performance.
Collapse
Affiliation(s)
- Xinyu Shi
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Chao Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Xiaomin Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Yuxiao Cai
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Yuwei Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Nana Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Fengrui Hu
- School of Physics, College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaoyong Wang
- School of Physics, College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Huifang Ma
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| |
Collapse
|
2
|
Cimrová V, Guesmi M, Eom S, Kang Y, Výprachtický D. Formamidinium Lead Iodide Perovskite Thin Films Formed by Two-Step Sequential Method: Solvent-Morphology Relationship. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1049. [PMID: 36770056 PMCID: PMC9919648 DOI: 10.3390/ma16031049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Thin films made of formamidinium lead iodide (FAPbI3) perovskites prepared by a two-step sequential deposition method using various solvents for formamidinium iodide (FAI) - isopropanol, n-butanol and tert-butanol, were studied with the aim of finding a correlation between morphology and solvent properties to improve film quality. They were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and their photophysical properties were studied by means of absorption and photoluminescence (PL) spectroscopies. XRD patterns, absorption and PL spectra proved α-phase formation for all selected solvents. An excessive amount of PbI2 found in perovskite films prepared with n-butanol indicates incomplete conversion. Thin film morphology, such as grain and crystallite size, depended on the solvent. Using tert-butanol, thin films with a very large grain size of up to several micrometers and with preferred crystallite orientation were fabricated. The grain size increased as follows: 0.2-0.5, 0.2-1 and 2-5 µm for isopropanol, n-butanol and tert-butanol, respectively. A correlation between the grain size and viscosity, electric permittivity and polarizability of the solvent could be considered. Our results, including fabrication of perovskite films with large grains and fewer grain boundaries, are important and of interest for many optoelectronic applications.
Collapse
Affiliation(s)
- Věra Cimrová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic
| | - Mariem Guesmi
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic
| | - Sangwon Eom
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Youngjong Kang
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Drahomír Výprachtický
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic
| |
Collapse
|
3
|
Jin B, Liang F, Zhao D, Lu Y, Liu L, Liu F, Chen Z, Bi G, Wang P, Zhang Q, Qiu M. Suppression of Phase Transitions in Perovskite Thin Films through Cryogenic Electron Beam Irradiation. NANO LETTERS 2022; 22:7449-7456. [PMID: 36098785 DOI: 10.1021/acs.nanolett.2c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic-inorganic hybrid perovskites (OIHPs) with superior optoelectronic properties have emerged as revolutionary semiconductor materials for diverse applications. A fundamental understanding of the interplay between the microscopic molecular-level structure and the macroscopic optoelectronic properties is essential to boost device performance toward theoretical limits. Here, we reveal the critical role of CH3NH3+ (MA) in the regulation of the physicochemical and optoelectronic properties of a MAPbI3 film irradiated by an electron beam at 130 K. The order-to-disorder transformation of the MA cation not only leads to a notably enhanced photoluminescence emission but also results in the suppression of the orthorhombic phase down to 85 K. Taking advantage of the regulation of MA cation dynamics, we demonstrate a perovskite photodetector with 100% photocurrent enhancement and long-term stability exceeding one month. Our study provides a powerful tool for regulating the optoelectronic properties and stabilities of perovskites and highlights potential opportunities related to the organic cation in OIHPs.
Collapse
Affiliation(s)
- Binbin Jin
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
- School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou, Zhejiang 310015, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Fei Liang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ding Zhao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yihan Lu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Lufang Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Fengjiang Liu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zhong Chen
- Instrumentation and Service Center for Molecular Sciences, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Gang Bi
- School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou, Zhejiang 310015, China
| | - Pan Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qing Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Min Qiu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
4
|
Moon J, Kwon S, Alahbakhshi M, Lee Y, Cho K, Zakhidov A, Kim MJ, Gu Q. Surface Energy-Driven Preferential Grain Growth of Metal Halide Perovskites: Effects of Nanoimprint Lithography Beyond Direct Patterning. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5368-5378. [PMID: 33476143 DOI: 10.1021/acsami.0c17655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybrid organic-inorganic lead halide perovskites have attracted much attention in the field of optoelectronic devices because of their desirable properties such as high crystallinity, smooth morphology, and well-oriented grains. Recently, it was shown that thermal nanoimprint lithography (NIL) is an effective method not only to directly pattern but also to improve the morphology, crystallinity, and crystallographic orientations of annealed perovskite films. However, the underlining mechanisms behind the positive effects of NIL on perovskite material properties have not been understood. In this work, we study the kinetics of perovskite grain growth with surface energy calculations by first-principles density functional theory (DFT) and reveal that the surface energy-driven preferential grain growth during NIL, which involves multiplex processes of restricted grain growth in the surface-normal direction, abnormal grain growth, crystallographic reorientation, and grain boundary migration, is the enabler of the material quality enhancement. Moreover, we develop an optimized NIL process and prove its effectiveness by employing it in a perovskite light-emitting electrochemical cell (PeLEC) architecture, in which we observe a fourfold enhancement of maximum current efficiency and twofold enhancement of luminance compared to a PeLEC without NIL, reaching a maximum current efficiency of 0.07598 cd/A at 3.5 V and luminance of 1084 cd/m2 at 4 V.
Collapse
Affiliation(s)
- Jiyoung Moon
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sunah Kwon
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Masoud Alahbakhshi
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Yeonghun Lee
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Kyeongjae Cho
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Anvar Zakhidov
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg 197101, Russia
| | - Moon J Kim
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Qing Gu
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
5
|
Shim H, Shin N. VLS Homoepitaxy of Lead Iodide Nanowires for Hybrid Perovskite Conversion. J Phys Chem Lett 2019; 10:6741-6749. [PMID: 31557441 DOI: 10.1021/acs.jpclett.9b02543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Controlled fabrication of lead halide-based perovskite (LHP) nanostructures provides a new methodology for exploiting the excellent optoelectronic properties of the material. Here, we report the vapor-liquid-solid (VLS) growth of a highly uniform and dense array of [0001]-oriented PbI2 nanowires using PbI2 thin film as the epitaxial substrate layer. We show that reducing the lattice mismatch of the van der Waals epitaxial PbI2 substrate layer is necessary to accommodate the aligned nanowire growth. Our proposed layer growth model suggests that the nanowire growth is stabilized by maintaining the {0001} liquid-solid interface, which stems from the nucleation on the PbI2 substrate layer. We also demonstrate that the strain-induced nanowire deflection after conversion into CH3NH3PbI3 depends on the transfer sequence and conversion time. These findings provide a general opportunity to design and fabricate nanostructures, such as heterojunctions or superstructures for future device applications, rationally based on lead halide or LHP nanowires.
Collapse
Affiliation(s)
- Hyewon Shim
- Department of Chemistry and Chemical Engineering , Inha University , Incheon 22212 , Republic of Korea
| | - Naechul Shin
- Department of Chemistry and Chemical Engineering , Inha University , Incheon 22212 , Republic of Korea
| |
Collapse
|
6
|
Ahn SM, Jung ED, Kim SH, Kim H, Lee S, Song MH, Kim JY. Nanomechanical Approach for Flexibility of Organic-Inorganic Hybrid Perovskite Solar Cells. NANO LETTERS 2019; 19:3707-3715. [PMID: 31117753 DOI: 10.1021/acs.nanolett.9b00796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mechanical flexibility of perovskite solar cells as well as high power conversion efficiency is attracting increasing attention. In addition to existing empirical approaches, such as cyclic bending tests, in this study we report the tensile properties of the perovskite materials themselves. Measuring the tensile properties of free-standing perovskite materials is critical because (1) tensile properties represent the realistic mechanical properties of the film-type perovskite layer in the solar cells including the effects of various defects, and (2) deformation behavior of the perovskite layer at any deformed state of the solar cells can be analyzed using solid mechanics with the tensile properties as input. Critical bending radius of MAPbI3-based flexible solar cells is found to be between 0.5 and 1.0 mm by the decrease in power conversion efficiency during cyclic bending deformation. This finding agrees well with the critical bending radius of 0.66 mm determined based on the elastic deformation limit of 1.17% for MAPbI3 found by in situ tensile testing. Scanning electron microscopy observations and hole-nanoindentation tests suggest that the formation of coarse cracks in the perovskite layers is the primary cause of the decrease in power conversion efficiency observed in flexible perovskite solar cells.
Collapse
Affiliation(s)
- Seung-Min Ahn
- School of Materials Science and Engineering , UNIST (Ulsan National Institute of Science and Technology) , UNIST-gil 50, Ulsan 44919 , Republic of Korea
| | - Eui Dae Jung
- School of Materials Science and Engineering , UNIST (Ulsan National Institute of Science and Technology) , UNIST-gil 50, Ulsan 44919 , Republic of Korea
| | - Si-Hoon Kim
- School of Materials Science and Engineering , UNIST (Ulsan National Institute of Science and Technology) , UNIST-gil 50, Ulsan 44919 , Republic of Korea
| | - Hangeul Kim
- School of Materials Science and Engineering , UNIST (Ulsan National Institute of Science and Technology) , UNIST-gil 50, Ulsan 44919 , Republic of Korea
| | - Sukbin Lee
- School of Materials Science and Engineering , UNIST (Ulsan National Institute of Science and Technology) , UNIST-gil 50, Ulsan 44919 , Republic of Korea
| | - Myoung Hoon Song
- School of Materials Science and Engineering , UNIST (Ulsan National Institute of Science and Technology) , UNIST-gil 50, Ulsan 44919 , Republic of Korea
| | - Ju-Young Kim
- School of Materials Science and Engineering , UNIST (Ulsan National Institute of Science and Technology) , UNIST-gil 50, Ulsan 44919 , Republic of Korea
| |
Collapse
|
7
|
Zhou H, Song Z, Grice CR, Chen C, Yang X, Wang H, Yan Y. Pressure-Assisted Annealing Strategy for High-Performance Self-Powered All-Inorganic Perovskite Microcrystal Photodetectors. J Phys Chem Lett 2018; 9:4714-4719. [PMID: 30066567 DOI: 10.1021/acs.jpclett.8b01960] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Owing to their low trap-state density, high carrier mobility, and high thermal stability, CsPbBr3 perovskite microcrystals (MCs) have attracted significant attention for applications as photodetectors (PDs). However, solution synthesis processes lead to MC films with high void density, seriously limiting the performance of the PDs. Here, a pressure-assisted annealing strategy is introduced to significantly reduce the void density and decrease the surface roughness. The resulting self-powered all-inorganic CsPbBr3 perovskite MC thick-film PDs show improved performance characteristics, with responsivities and detectivities of up to 0.206 A W-1 and 7.23 × 1012 Jones, respectively. Moreover, the on/off ratios of the devices are up to 106, and the highest linear dynamic range reaches 123.5 dB. These improved results indicate that the pressure-assisted annealing method is an effective strategy to enhance the performance of solution-synthesized perovskite MC PDs.
Collapse
Affiliation(s)
- Hai Zhou
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization , The University of Toledo , Toledo , Ohio 43606 , United States
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics & Electronic Science , Hubei University , Wuhan , 430062 , People's Republic of China
| | - Zhaoning Song
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization , The University of Toledo , Toledo , Ohio 43606 , United States
| | - Corey R Grice
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization , The University of Toledo , Toledo , Ohio 43606 , United States
| | - Cong Chen
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization , The University of Toledo , Toledo , Ohio 43606 , United States
| | - Xiaohan Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics & Electronic Science , Hubei University , Wuhan , 430062 , People's Republic of China
| | - Hao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics & Electronic Science , Hubei University , Wuhan , 430062 , People's Republic of China
| | - Yanfa Yan
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization , The University of Toledo , Toledo , Ohio 43606 , United States
| |
Collapse
|