1
|
Lin T, Chen X, Xu R, Luo J, Zhu H. Ultrafast Polarization-Resolved Phonon Dynamics in Monolayer Semiconductors. NANO LETTERS 2024; 24:10592-10598. [PMID: 39137095 DOI: 10.1021/acs.nanolett.4c02787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Monolayer transition metal dichalcogenide semiconductors exhibit unique valleytronic properties interacting strongly with chiral phonons that break time-reversal symmetry. Here, we observed the ultrafast dynamics of linearly and circularly polarized E'(Γ) phonons at the Brillouin zone center in single-crystalline monolayer WS2, excited by intense, resonant, and polarization-tunable terahertz pulses and probed by time-resolved anti-Stokes Raman spectroscopy. We separated the coherent phonons producing directional sum-frequency generation from the incoherent phonon population emitting scattered photons. The longer incoherent population lifetime than what was expected from coherence lifetime indicates that inhomogeneous broadening and momentum scattering play important roles in phonon decoherence at room temperature. Meanwhile, the faster depolarization rate in circular bases than in linear bases suggests that the eigenstates are linearly polarized due to lattice anisotropy. Our results provide crucial information for improving the lifetime of chiral phonons in two-dimensional materials and potentially facilitate dynamic control of spin-orbital polarizations in quantum materials.
Collapse
Affiliation(s)
- Tong Lin
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Xiaotong Chen
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Rui Xu
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Jiaming Luo
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Hanyu Zhu
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Mališ M, Vandaele E, Luber S. Spin-Orbit Couplings for Nonadiabatic Molecular Dynamics at the ΔSCF Level. J Chem Theory Comput 2022; 18:4082-4094. [PMID: 35666703 DOI: 10.1021/acs.jctc.1c01046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A procedure for the calculation of spin-orbit coupling (SOC) at the delta self-consistent field (ΔSCF) level of theory is presented. Singlet and triplet excited electronic states obtained with the ΔSCF method are expanded into a linear combination of singly excited Slater determinants composed of ground electronic state Kohn-Sham orbitals. This alleviates the nonorthogonality between excited and ground electronic states and introduces a framework, similar to the auxiliary wave function at the time-dependent density functional theory (TD-DFT) level, for the calculation of observables. The ΔSCF observables of the formaldehyde system were compared to reference TD-DFT values. Our procedure gives all components (energies, gradients, nonadiabatic couplings, and SOC terms) at the ΔSCF level of theory for conducting efficient, full-atomistic nonadiabatic molecular dynamics with intersystem crossing, particularly in condensed phase systems.
Collapse
Affiliation(s)
- Momir Mališ
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Eva Vandaele
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
3
|
Vandaele E, Mališ M, Luber S. The ΔSCF method for non-adiabatic dynamics of systems in the liquid phase. J Chem Phys 2022; 156:130901. [PMID: 35395890 DOI: 10.1063/5.0083340] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Computational studies of ultrafast photoinduced processes give valuable insights into the photochemical mechanisms of a broad range of compounds. In order to accurately reproduce, interpret, and predict experimental results, which are typically obtained in a condensed phase, it is indispensable to include the condensed phase environment in the computational model. However, most studies are still performed in vacuum due to the high computational cost of state-of-the-art non-adiabatic molecular dynamics (NAMD) simulations. The quantum mechanical/molecular mechanical (QM/MM) solvation method has been a popular model to perform photodynamics in the liquid phase. Nevertheless, the currently used QM/MM embedding techniques cannot sufficiently capture all solute-solvent interactions. In this Perspective, we will discuss the efficient ΔSCF electronic structure method and its applications with respect to the NAMD of solvated compounds, with a particular focus on explicit quantum mechanical solvation. As more research is required for this method to reach its full potential, some challenges and possible directions for future research are presented as well.
Collapse
Affiliation(s)
- Eva Vandaele
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Momir Mališ
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
4
|
Han X, Liang X, He D, Jiao L, Wang Y, Zhao H. Photocarrier Dynamics in MoTe 2 Nanofilms with 2 H and Distorted 1 T Lattice Structures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44703-44710. [PMID: 34494811 DOI: 10.1021/acsami.1c09698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molybdenum telluride (MoTe2), an emerging layered two-dimensional (2D) material, possesses excellent phase-changing properties. Previous studies revealed its reversible transition between 2H and 1T' phases with a transition energy as small as 35 meV. Since 1T'-MoTe2 is metallic, it can serve as an electrical contact for semiconducting 2H-MoTe2-based optoelectronic devices. Here, the photocarrier dynamics in MoTe2 nanofilms synthesized by a one-step method and with coexisting multiple phases are investigated by transient absorption measurements. Both the energy relaxation time and the recombination lifetime of the excitons are shorter in the 1T'-MoTe2 compared to its 2H phase. These results provide information on the different photocarrier dynamical properties of these two phases, which is important for future 2D optoelectronic and phase-change electronic devices based on MoTe2.
Collapse
Affiliation(s)
- Xiuxiu Han
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Xingyao Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dawei He
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Liying Jiao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yongsheng Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Hui Zhao
- Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
5
|
Guan MX, Wang E, You PW, Sun JT, Meng S. Manipulating Weyl quasiparticles by orbital-selective photoexcitation in WTe 2. Nat Commun 2021; 12:1885. [PMID: 33767146 PMCID: PMC7994715 DOI: 10.1038/s41467-021-22056-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 02/18/2021] [Indexed: 11/30/2022] Open
Abstract
Optical control of structural and electronic properties of Weyl semimetals allows development of switchable and dissipationless topological devices at the ultrafast scale. An unexpected orbital-selective photoexcitation in type-II Weyl material WTe2 is reported under linearly polarized light (LPL), inducing striking transitions among several topologically-distinct phases mediated by effective electron-phonon couplings. The symmetry features of atomic orbitals comprising the Weyl bands result in asymmetric electronic transitions near the Weyl points, and in turn a switchable interlayer shear motion with respect to linear light polarization, when a near-infrared laser pulse is applied. Consequently, not only annihilation of Weyl quasiparticle pairs, but also increasing separation of Weyl points can be achieved, complementing existing experimental observations. In this work, we provide a new perspective on manipulating the Weyl node singularity and coherent control of electron and lattice quantum dynamics simultaneously.
Collapse
Affiliation(s)
- Meng-Xue Guan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - En Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Pei-Wei You
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jia-Tao Sun
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Information and Electronics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
6
|
Mališ M, Luber S. ΔSCF with Subsystem Density Embedding for Efficient Nonadiabatic Molecular Dynamics in Condensed-Phase Systems. J Chem Theory Comput 2021; 17:1653-1661. [DOI: 10.1021/acs.jctc.0c01200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Momir Mališ
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
7
|
Linker T, Tiwari S, Fukushima S, Kalia RK, Krishnamoorthy A, Nakano A, Nomura KI, Shimamura K, Shimojo F, Vashishta P. Optically Induced Three-Stage Picosecond Amorphization in Low-Temperature SrTiO 3. J Phys Chem Lett 2020; 11:9605-9612. [PMID: 33124829 DOI: 10.1021/acs.jpclett.0c02873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photoexcitation can drastically modify potential energy surfaces of materials, allowing access to hidden phases. SrTiO3 (STO) is an ideal material for photoexcitation studies due to its prevalent use in nanostructured devices and its rich range of functionality-changing lattice motions. Recently, a hidden ferroelectric phase in STO was accessed through weak terahertz excitation of polarization-inducing phonon modes. In contrast, whereas strong laser excitation was shown to induce nanostructures on STO surfaces and control nanopolarization patterns in STO-based heterostructures, the dynamic pathways underlying these optically induced structural changes remain unknown. Here nonadiabatic quantum molecular dynamics reveals picosecond amorphization in photoexcited STO at temperatures as low as 10 K. The three-stage pathway involves photoinduced charge transfer and optical phonon activation followed by nonlinear charge and lattice dynamics that ultimately lead to amorphization. This atomistic understanding could guide not only rational laser nanostructuring of STO but also broader "quantum materials on demand" technologies.
Collapse
Affiliation(s)
- Thomas Linker
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089-0242, United States
| | - Subodh Tiwari
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089-0242, United States
| | - Shogo Fukushima
- Department of Physics, Kumamoto University, Kumamoto 860-8555, Japan
| | - Rajiv K Kalia
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089-0242, United States
| | - Aravind Krishnamoorthy
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089-0242, United States
| | - Aiichiro Nakano
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089-0242, United States
| | - Ken-Ichi Nomura
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089-0242, United States
| | - Kohei Shimamura
- Department of Physics, Kumamoto University, Kumamoto 860-8555, Japan
| | - Fuyuki Shimojo
- Department of Physics, Kumamoto University, Kumamoto 860-8555, Japan
| | - Priya Vashishta
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089-0242, United States
| |
Collapse
|
8
|
Mališ M, Luber S. Trajectory Surface Hopping Nonadiabatic Molecular Dynamics with Kohn–Sham ΔSCF for Condensed-Phase Systems. J Chem Theory Comput 2020; 16:4071-4086. [DOI: 10.1021/acs.jctc.0c00372] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Momir Mališ
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Sandra Luber
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
9
|
Kumazoe H, Fukushima S, Tiwari S, Kim C, Huan TD, Kalia RK, Nakano A, Ramprasad R, Shimojo F, Vashishta P. Hot-Carrier Dynamics and Chemistry in Dielectric Polymers. J Phys Chem Lett 2019; 10:3937-3943. [PMID: 31264426 DOI: 10.1021/acs.jpclett.9b01344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dielectric polymers are widely used in electronics and energy technologies, but their performance is severely limited by the electrical breakdown under a high electric field. Dielectric breakdown is commonly understood as an avalanche of processes such as carrier multiplication and defect generation that are triggered by field-accelerated hot electrons and holes. However, how these processes are initiated remains elusive. Here, nonadiabatic quantum molecular dynamics simulations reveal microscopic processes induced by hot electrons and holes in a slab of an archetypal dielectric polymer, polyethylene, under an electric field of 600 MV/m. We found that electronic-excitation energy is rapidly dissipated within tens of femtoseconds because of strong electron-phonon scattering, which is consistent with quantum-mechanical perturbation calculations. This in turn excites other electron-hole pairs to cause carrier multiplication. We also found that the key to chemical damage is localization of holes that travel to a slab surface and weaken carbon-carbon bonds on the surface. Such quantitative information can be incorporated into first-principles-informed, predictive modeling of dielectric breakdown.
Collapse
Affiliation(s)
- Hiroyuki Kumazoe
- Department of Physics , Kumamoto University , Kumamoto 860-8555 , Japan
| | - Shogo Fukushima
- Department of Physics , Kumamoto University , Kumamoto 860-8555 , Japan
| | - Subodh Tiwari
- Collaboratory for Advanced Computing and Simulations , University of Southern California , Los Angeles , California 90089-0242 , United States
| | - Chiho Kim
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Tran Doan Huan
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Rajiv K Kalia
- Collaboratory for Advanced Computing and Simulations , University of Southern California , Los Angeles , California 90089-0242 , United States
| | - Aiichiro Nakano
- Collaboratory for Advanced Computing and Simulations , University of Southern California , Los Angeles , California 90089-0242 , United States
| | - Rampi Ramprasad
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Fuyuki Shimojo
- Department of Physics , Kumamoto University , Kumamoto 860-8555 , Japan
| | - Priya Vashishta
- Collaboratory for Advanced Computing and Simulations , University of Southern California , Los Angeles , California 90089-0242 , United States
| |
Collapse
|