1
|
Leshchenko ED, Dubrovskii VG. An Overview of Modeling Approaches for Compositional Control in III-V Ternary Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101659. [PMID: 37242075 DOI: 10.3390/nano13101659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Modeling of the growth process is required for the synthesis of III-V ternary nanowires with controllable composition. Consequently, new theoretical approaches for the description of epitaxial growth and the related chemical composition of III-V ternary nanowires based on group III or group V intermix were recently developed. In this review, we present and discuss existing modeling strategies for the stationary compositions of III-V ternary nanowires and try to systematize and link them in a general perspective. In particular, we divide the existing approaches into models that focus on the liquid-solid incorporation mechanisms in vapor-liquid-solid nanowires (equilibrium, nucleation-limited, and kinetic models treating the growth of solid from liquid) and models that provide the vapor-solid distributions (empirical, transport-limited, reaction-limited, and kinetic models treating the growth of solid from vapor). We describe the basic ideas underlying the existing models and analyze the similarities and differences between them, as well as the limitations and key factors influencing the stationary compositions of III-V nanowires versus the growth method. Overall, this review provides a basis for choosing a modeling approach that is most appropriate for a particular material system and epitaxy technique and that underlines the achieved level of the compositional modeling of III-V ternary nanowires and the remaining gaps that require further studies.
Collapse
Affiliation(s)
- Egor D Leshchenko
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| | - Vladimir G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Tian Z, Yuan X, Zhang Z, Jia W, Zhou J, Huang H, Meng J, He J, Du Y. Thermodynamics Controlled Sharp Transformation from InP to GaP Nanowires via Introducing Trace Amount of Gallium. NANOSCALE RESEARCH LETTERS 2021; 16:49. [PMID: 33743092 PMCID: PMC7981363 DOI: 10.1186/s11671-021-03505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Growth of high-quality III-V nanowires at a low cost for optoelectronic and electronic applications is a long-term pursuit of research. Still, controlled synthesis of III-V nanowires using chemical vapor deposition method is challenge and lack theory guidance. Here, we show the growth of InP and GaP nanowires in a large area with a high density using a vacuum chemical vapor deposition method. It is revealed that high growth temperature is required to avoid oxide formation and increase the crystal purity of InP nanowires. Introduction of a small amount of Ga into the reactor leads to the formation of GaP nanowires instead of ternary InGaP nanowires. Thermodynamic calculation within the calculation of phase diagrams (CALPHAD) approach is applied to explain this novel growth phenomenon. Composition and driving force calculations of the solidification process demonstrate that only 1 at.% of Ga in the catalyst is enough to tune the nanowire formation from InP to GaP, since GaP nucleation shows a much larger driving force. The combined thermodynamic studies together with III-V nanowire growth studies provide an excellent example to guide the nanowire growth.
Collapse
Affiliation(s)
- Zhenzhen Tian
- Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Xiaoming Yuan
- Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Ziran Zhang
- Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Wuao Jia
- Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Jian Zhou
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Han Huang
- Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Jianqiao Meng
- Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Jun He
- Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Yong Du
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| |
Collapse
|
3
|
Ghasemi M, Leshchenko ED, Johansson J. Assembling your nanowire: an overview of composition tuning in ternary III-V nanowires. NANOTECHNOLOGY 2021; 32:072001. [PMID: 33091889 DOI: 10.1088/1361-6528/abc3e2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to grow defect-free nanowires in lattice-mismatched material systems and to design their properties has made them ideal candidates for applications in fields as diverse as nanophotonics, nanoelectronics and medicine. After studying nanostructures consisting of elemental and binary compound semiconductors, scientists turned their attention to more complex systems-ternary nanowires. Composition control is key in these nanostructures since it enables bandgap engineering. The use of different combinations of compounds and different growth methods has resulted in numerous investigations. The aim of this review is to present a survey of the material systems studied to date, and to give a brief overview of the issues tackled and the progress achieved in nanowire composition tuning. We focus on ternary III x III1-x V nanowires (AlGaAs, AlGaP, AlInP, InGaAs, GaInP and InGaSb) and IIIV x V1-x nanowires (InAsP, InAsSb, InPSb, GaAsP, GaAsSb and GaSbP).
Collapse
Affiliation(s)
| | - Egor D Leshchenko
- Solid State Physics and NanoLund, Lund University, P O Box 118, SE-221 00 Lund, Sweden
| | - Jonas Johansson
- Solid State Physics and NanoLund, Lund University, P O Box 118, SE-221 00 Lund, Sweden
| |
Collapse
|
4
|
Staudinger P, Mauthe S, Triviño NV, Reidt S, Moselund KE, Schmid H. Wurtzite InP microdisks: from epitaxy to room-temperature lasing. NANOTECHNOLOGY 2021; 32:075605. [PMID: 33252055 DOI: 10.1088/1361-6528/abbb4e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metastable wurtzite crystal phases of conventional semiconductors comprise enormous potential for high-performance electro-optical devices, owed to their extended tunable direct band gap range. However, synthesizing these materials in good quality and beyond nanowire size constraints has remained elusive. In this work, the epitaxy of wurtzite InP microdisks and related geometries on insulator for advanced optical applications is explored. This is achieved by an elaborate combination of selective area growth of fins and a zipper-induced epitaxial lateral overgrowth, which enables co-integration of diversely shaped crystals at precise position. The grown material possesses high phase purity and excellent optical quality characterized by STEM and µ-PL. Optically pumped lasing at room temperature is achieved in microdisks with a lasing threshold of 365 µJ cm-2. Our platform could provide novel geometries for photonic applications.
Collapse
Affiliation(s)
| | - Svenja Mauthe
- IBM Research Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland
| | | | - Steffen Reidt
- IBM Research Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland
| | | | - Heinz Schmid
- IBM Research Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland
| |
Collapse
|
5
|
Staudinger P, Moselund KE, Schmid H. Exploring the Size Limitations of Wurtzite III-V Film Growth. NANO LETTERS 2020; 20:686-693. [PMID: 31834808 DOI: 10.1021/acs.nanolett.9b04507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Metastable crystal phases of abundant semiconductors such as III-Vs, Si, or Ge comprise enormous potential to address current limitations in green light-emitting electrical diodes (LEDs) and group IV photonics. At the same time, these nonconventional polytypes benefit from the chemical similarity to their stable counterparts, which enables the reuse of established processing technology. One of the main challenges is the very limited availability and the small crystal sizes that have been obtained so far. In this work, we explore the limitations of wurtzite (WZ) film epitaxy on the example of InP. We develop a novel method to switch and maintain a metastable phase during a metal-organic vapor phase epitaxy process based on epitaxial lateral overgrowth and compare it with standard selective area epitaxy techniques. We achieve unprecedented large WZ layer dimensions exceeding 100 μm2 and prove their phase purity both by optical as well as structural characterization. On the basis of our observations, we further develop a nucleation-based model and argue on a fundamental size limitation of WZ film growth. Our findings may pave the way toward crystal phase engineered LEDs for highly efficient lighting and display applications.
Collapse
Affiliation(s)
| | | | - Heinz Schmid
- IBM Research - Zürich , Säumerstrasse 4 , 8803 Rüschlikon , Switzerland
| |
Collapse
|
6
|
Barrigón E, Heurlin M, Bi Z, Monemar B, Samuelson L. Synthesis and Applications of III-V Nanowires. Chem Rev 2019; 119:9170-9220. [PMID: 31385696 DOI: 10.1021/acs.chemrev.9b00075] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Low-dimensional semiconductor materials structures, where nanowires are needle-like one-dimensional examples, have developed into one of the most intensely studied fields of science and technology. The subarea described in this review is compound semiconductor nanowires, with the materials covered limited to III-V materials (like GaAs, InAs, GaP, InP,...) and III-nitride materials (GaN, InGaN, AlGaN,...). We review the way in which several innovative synthesis methods constitute the basis for the realization of highly controlled nanowires, and we combine this perspective with one of how the different families of nanowires can contribute to applications. One reason for the very intense research in this field is motivated by what they can offer to main-stream semiconductors, by which ultrahigh performing electronic (e.g., transistors) and photonic (e.g., photovoltaics, photodetectors or LEDs) technologies can be merged with silicon and CMOS. Other important aspects, also covered in the review, deals with synthesis methods that can lead to dramatic reduction of cost of fabrication and opportunities for up-scaling to mass production methods.
Collapse
Affiliation(s)
- Enrique Barrigón
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden
| | - Magnus Heurlin
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden.,Sol Voltaics AB , Scheelevägen 63 , 223 63 Lund , Sweden
| | - Zhaoxia Bi
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden
| | - Bo Monemar
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden
| | - Lars Samuelson
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden
| |
Collapse
|
7
|
Motohisa J, Kameda H, Sasaki M, Tomioka K. Characterization of nanowire light-emitting diodes grown by selective-area metal-organic vapor-phase epitaxy. NANOTECHNOLOGY 2019; 30:134002. [PMID: 30625458 DOI: 10.1088/1361-6528/aafce5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a systematic study on the current injection and radiative carrier recombination in InP nanowire (NW) light-emitting diodes (LEDs). The InP NWs with axial p-n structures, grown by selective-area metal organic vapor-phase epitaxy, had mixed crystal structures between those of zincblende and wurtzite, mainly in the p-regions. The temperature dependence of the current-voltage (I-V), electroluminescence (EL), and current-light output (I-L) characteristics was investigated. The temperature dependence of the I-V characteristics revealed that tunneling was the main mechanism of carrier transport through the p-n junction in the present NW-LEDs. The temperature and bias voltage dependences of EL showed a complex but systematic behavior, where peaks exhibiting bias-dependent and independent energy positions coexisted and the relative intensity showed a transition with increasing temperature. The external quantum efficiency showed a droop at low temperatures, indicating a reduced injection efficiency at low temperatures. These observations were explained by the radiative and nonradiative tunneling, and suggested a strong effect of the nonradiative tunneling at low temperatures.
Collapse
Affiliation(s)
- Junichi Motohisa
- Graduate School of Information Science and Technology and Research Center for Integrated Quantum Electronics, Hokkaido University, North 14 West 9, Sapporo 060-0814, Japan
| | | | | | | |
Collapse
|
8
|
Staudinger P, Mauthe S, Moselund KE, Schmid H. Concurrent Zinc-Blende and Wurtzite Film Formation by Selection of Confined Growth Planes. NANO LETTERS 2018; 18:7856-7862. [PMID: 30427685 PMCID: PMC6296706 DOI: 10.1021/acs.nanolett.8b03632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Indexed: 06/01/2023]
Abstract
Recent research on nanowires (NWs) demonstrated the ability of III-V semiconductors to adopt a different crystallographic phase when they are grown as nanostructures, giving rise to a novel class of materials with unique properties. Controlling the crystal structure however remains difficult and the geometrical constraints of NWs cause integration challenges for advanced devices. Here, we report for the first time on the phase-controlled growth of micron-sized planar InP films by selecting confined growth planes during template-assisted selective epitaxy. We demonstrate this by varying the orientation of predefined templates, which results in concurrent formation of zinc-blende (ZB) and wurtzite (WZ) material exhibiting phase purities of 100% and 97%, respectively. Optical characterization revealed a 70 meV higher band gap and a 2.5× lower lifetime for WZ InP in comparison to its natural ZB phase. Further, a model for the transition of the crystal structure is presented based on the observed growth facets and the bonding configuration of InP surfaces.
Collapse
|