1
|
Su Y, Wang X, Ye Y, Xie Y, Xu Y, Jiang Y, Wang C. Automation and machine learning augmented by large language models in a catalysis study. Chem Sci 2024; 15:12200-12233. [PMID: 39118602 PMCID: PMC11304797 DOI: 10.1039/d3sc07012c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Recent advancements in artificial intelligence and automation are transforming catalyst discovery and design from traditional trial-and-error manual mode into intelligent, high-throughput digital methodologies. This transformation is driven by four key components, including high-throughput information extraction, automated robotic experimentation, real-time feedback for iterative optimization, and interpretable machine learning for generating new knowledge. These innovations have given rise to the development of self-driving labs and significantly accelerated materials research. Over the past two years, the emergence of large language models (LLMs) has added a new dimension to this field, providing unprecedented flexibility in information integration, decision-making, and interacting with human researchers. This review explores how LLMs are reshaping catalyst design, heralding a revolutionary change in the fields.
Collapse
Affiliation(s)
- Yuming Su
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 P. R. China
| | - Xue Wang
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Yuanxiang Ye
- Institute of Artificial Intelligence, Xiamen University Xiamen 361005 P. R. China
| | - Yibo Xie
- Institute of Artificial Intelligence, Xiamen University Xiamen 361005 P. R. China
| | - Yujing Xu
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Yibin Jiang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 P. R. China
| | - Cheng Wang
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 P. R. China
| |
Collapse
|
2
|
Ding Y, Cheng Q, Lyu J, Liu Z, Yuan R, Ma F, Zhang X. Visible Microfluidic Deprotonation for Aramid Nanofibers as Building Blocks of Cascade-Microfluidic-Processed Colloidal Aerogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400101. [PMID: 38502025 DOI: 10.1002/adma.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Microfluidic deprotonation approach is proposed to realize continuous, scalable, efficient, and uniform production of aramid nanofibers (ANFs) by virtue of large specific surface area, high mixing efficiency, strong heat transfer capacity, narrow residence time distribution, mild laminar-flow process, and amplification-free effect of the microchannel reactor. By means of monitoring capabilities endowed by the high transparency of the microchannel, the kinetic exfoliation process of original aramid particles is in situ observed and the corresponding exfoliation mechanism is established quantificationally. The deprotonated time can be reduced from the traditional several days to 7 min for the final colloidal dispersion due to the synergistic effect between enhanced local shearing/mixing and the rotational motion of aramid particles in microchannel revealed by numerical simulations. Furthermore, the cascade microfluidic processing approach is used to make various ANF colloidal aerogels including aerogel fibers, aerogel films, and 3D-printed aerogel articles. Comprehensive characterizations show that these cascade-microfluidic-processed colloidal aerogels have identical features as those prepared in batch-style mode, revealing the versatile use value of these ANFs. This work achieves significant progress toward continuous and efficient production of ANFs, bringing about appreciable prospects for the practical application of ANF-based materials and providing inspiration for exfoliating any other nano-building blocks.
Collapse
Affiliation(s)
- Yafei Ding
- Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Qingqing Cheng
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Jing Lyu
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Zengwei Liu
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Ruizhe Yuan
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Fengguo Ma
- Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xuetong Zhang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK
| |
Collapse
|
3
|
Fu X, Li K, Zhang C, Wang Q, Xu G, Rogachev AA, Yarmolenko MA, Cao H, Zhang H. Homogeneous and Nanogranular Prussian Blue to Enable Long-Term-Stable Electrochromic Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17745-17756. [PMID: 38523600 DOI: 10.1021/acsami.3c17551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The increasing demand for the state-of-the-art electrochromic devices has received great interest in synthesizing Prussian blue (PB) nanoparticles with a uniform diameter that exhibit excellent electrochromism, electrochemistry, and cyclability. Herein, we report the controllable synthesis of sub-100 nm PB nanoparticles via the coprecipitation method. The diameter of PB nanoparticles can be modulated by adjusting the reactant concentration, the selection of a chelator, and their purification. The self-assembled nanogranular thin films, homogeneously fabricated by using optimized PB nanoparticles with an average diameter of 50 nm as building blocks via the blade coating technique enable excellent performance with a large optical modulation of 80% and a high coloration efficiency of 417.79 cm2 C-1. It is also demonstrated by in situ and ex situ observations that the nanogranular PB thin films possess outstanding structural and electrochemical reversibility. Furthermore, such nanogranular PB thin films can enjoy the enhanced long-term cycling stability of the PB-WO3 complementary electrochromic devices having a 91.4% optical contrast retention after 16,000 consecutive cycles. This work provides a newly and industrially compatible approach to producing a complementary electrochromic device with extraordinary durability for various practical applications.
Collapse
Affiliation(s)
- Xiaofang Fu
- Laboratory of Advanced Nano Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kun Li
- Vallight Optics Technology Ningbo Co., Ltd, Ningbo 315400, PR China
| | - Chengli Zhang
- Ningbo Wakan Electronic Science Technology Co., Ltd, Ningbo 315475, PR China
| | - Qiang Wang
- Ningbo Wakan Electronic Science Technology Co., Ltd, Ningbo 315475, PR China
| | - Guanglong Xu
- Ningbo Wakan Electronic Science Technology Co., Ltd, Ningbo 315475, PR China
| | - Alexander Alexandrovich Rogachev
- Optical Anisotropic Films Laboratory, Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, Minsk 220141, Belarus
| | | | - Hongtao Cao
- Laboratory of Advanced Nano Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongliang Zhang
- Laboratory of Advanced Nano Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
4
|
Chen Q, Zhai H, Beebe DJ, Li C, Wang B. Visualization-enhanced under-oil open microfluidic system for in situ characterization of multi-phase chemical reactions. Nat Commun 2024; 15:1155. [PMID: 38326343 PMCID: PMC10850056 DOI: 10.1038/s41467-024-45076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Under-oil open microfluidic system, utilizing liquid-liquid boundaries for confinements, offers inherent advantages including clogging-free flow channels, flexible access to samples, and adjustable gas permeation, making it well-suited for studying multi-phase chemical reactions that are challenging for closed microfluidics. However, reports on the novel system have primarily focused on device fabrication and functionality demonstrations within biology, leaving their application in broader chemical analysis underexplored. Here, we present a visualization-enhanced under-oil open microfluidic system for in situ characterization of multi-phase chemical reactions with Raman spectroscopy. The enhanced system utilizes a semi-transparent silicon (Si) nanolayer over the substrate to enhance visualization in both inverted and upright microscope setups while reducing Raman noise from the substrate. We validated the system's chemical stability and capability to monitor gas evolution and gas-liquid reactions in situ. The enhanced under-oil open microfluidic system, integrating Raman spectroscopy, offers a robust open-microfluidic platform for label-free molecular sensing and real-time chemical/biochemical process monitoring in multi-phase systems.
Collapse
Affiliation(s)
- Qiyuan Chen
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hang Zhai
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Bu Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
5
|
Yan X, Yue T, Winkler DA, Yin Y, Zhu H, Jiang G, Yan B. Converting Nanotoxicity Data to Information Using Artificial Intelligence and Simulation. Chem Rev 2023. [PMID: 37262026 DOI: 10.1021/acs.chemrev.3c00070] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Decades of nanotoxicology research have generated extensive and diverse data sets. However, data is not equal to information. The question is how to extract critical information buried in vast data streams. Here we show that artificial intelligence (AI) and molecular simulation play key roles in transforming nanotoxicity data into critical information, i.e., constructing the quantitative nanostructure (physicochemical properties)-toxicity relationships, and elucidating the toxicity-related molecular mechanisms. For AI and molecular simulation to realize their full impacts in this mission, several obstacles must be overcome. These include the paucity of high-quality nanomaterials (NMs) and standardized nanotoxicity data, the lack of model-friendly databases, the scarcity of specific and universal nanodescriptors, and the inability to simulate NMs at realistic spatial and temporal scales. This review provides a comprehensive and representative, but not exhaustive, summary of the current capability gaps and tools required to fill these formidable gaps. Specifically, we discuss the applications of AI and molecular simulation, which can address the large-scale data challenge for nanotoxicology research. The need for model-friendly nanotoxicity databases, powerful nanodescriptors, new modeling approaches, molecular mechanism analysis, and design of the next-generation NMs are also critically discussed. Finally, we provide a perspective on future trends and challenges.
Collapse
Affiliation(s)
- Xiliang Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tongtao Yue
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute of Coastal Environmental Pollution Control, Ocean University of China, Qingdao 266100, China
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- School of Pharmacy, University of Nottingham, Nottingham NG7 2QL, U.K
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hao Zhu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
6
|
Sung YH, Wu CL, Huang JH, Tsai DH. Real-Time Quantifying Microdroplet Synthesis of Metal-Organic Framework Colloids Using Gas-Phase Electrophoresis. Anal Chem 2023; 95:4513-4520. [PMID: 36787537 DOI: 10.1021/acs.analchem.2c05511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A hyphenated electrospray-differential mobility analysis (ES-DMA) was developed for providing a high-resolution, real-time quantitative analysis on the metal-organic framework (MOF) colloids produced via the concept of microfluidic flow chemistry. Zeolitic imidazolate framework-8 was chosen as the representative MOF of the study. The results show that the physical size and number concentration of the MOF colloid were successfully characterized by the hyphenated ES-DMA during the microdroplet synthetic process, with 3 nm and 4% of measurement uncertainties, respectively. The effects of the synthetic temperature and the molar ratio of the organic linker to metal precursor were investigated, providing an opportunity for accurate control on the particle size (100-200 nm) of the microdroplet-synthesized MOF. The work demonstrates a powerful approach for the real-time quality assurance and material optimization in microdroplet synthesis of colloidal MOFs.
Collapse
Affiliation(s)
- Yi-Hsuan Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Ching-Ling Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Jen-Huang Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - De-Hao Tsai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| |
Collapse
|
7
|
Continuous, green, and room-temperature synthesis of silver nanowires in a helically-coiled millifluidic reactor. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Basnayake Pussepitiyalage V, Hemmati S. Sustainable, Green, and Continuous Synthesis of Fivefold Palladium Nanorods Using l-Ascorbic Acid in a Segmented Millifluidic Flow Reactor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4200-4212. [PMID: 35352559 DOI: 10.1021/acs.langmuir.1c03133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pd nanorods (PdNRs) have recently come to attention due to their wide array of applications. The green synthesis of PdNR with a relatively high yield and high aspect ratio is challenging. A continuous millifluidic flow reactor (CMFR) has been explored to precisely control mass and heat transfer as well as mixing in the PdNR synthesis processes. CMFRs demonstrate a few drawbacks, such as the presence of parabolic velocity profile in the laminar flow of the reaction solution, causing uneven axial residence time distribution. The CMFRs are likely to show irreversible fouling, which may cause the product quality to deteriorate or result in the channel being clogged. These shortcomings can be avoided or minimized using a segmented millifluidic flow reactor (SMFR) that consists of the solution forming a train of individual segments in another inert medium. This study explores the use of a sustainable reducing agent (l-ascorbic acid) in the presence of potassium bromide (KBr) as the capping agent and poly(vinyl pyrrolidone) (PVP) as the stabilizing agent for PdNR synthesis in an SMFR employing compartmentalized flow of a reaction solution, in which liquid segments consisting of a reaction solution will be immersed in the steam generated by boiling of the solvent water. The effect of reaction parameters such as reagent concentration has been studied on the size and morphology of synthesized Pd nanostructures. A kinetic study has been conducted to calculate the rate of reduction that can be used as a quantitative measure for manipulation of the type and relative concentration of initially formed seeds. It has been shown that the initial reduction rate during the first 45 min of residence time of the millifluidic reactor is about 66% faster compared to the rest of the reaction. A filtration procedure has been utilized to separate Pd nanostructures other than nanorods synthesized in the SMFR.
Collapse
Affiliation(s)
| | - Shohreh Hemmati
- Department of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
9
|
Gkogkos G, Besenhard MO, Storozhuk L, Thi Kim Thanh N, Gavriilidis A. Fouling-proof triple stream 3D flow focusing based reactor: Design and demonstration for iron oxide nanoparticle co-precipitation synthesis. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Sebastian V. Toward continuous production of high-quality nanomaterials using microfluidics: nanoengineering the shape, structure and chemical composition. NANOSCALE 2022; 14:4411-4447. [PMID: 35274121 DOI: 10.1039/d1nr06342a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last decade, a multitude of synthesis strategies has been reported for the production of high-quality nanoparticles. Wet-chemical methods are generally the most efficient synthesis procedures since high control of crystallinity and physicochemical properties can be achieved. However, a number of challenges remain from inadequate reaction control during the nanocrystallization process; specifically variability, selectivity, scalability and safety. These shortcomings complicate the synthesis, make it difficult to obtain a uniform product with desired properties, and present serious limitations for scaling the production of colloidal nanocrystals from academic studies to industrial applications. Continuous flow reactors based on microfluidic principles offer potential solutions and advantages. The reproducibility of reaction conditions in microfluidics and therefore product quality have proved to exceed those obtained by batch processing. Considering that in nanoparticles' production not only is it crucial to control the particle size distribution, but also the shape and chemical composition, this review presents an overview of the current state-of-the-art in synthesis of anisotropic and faceted nanostructures by using microfluidics techniques. The review surveys the available tools that enable shape and chemical control, including secondary growth methods, active segmented flow, and photoinduced shape conversion. In addition, emphasis is placed on the available approaches developed to tune the structure and chemical composition of nanomaterials in order to produce complex heterostructures in a continuous and reproducible fashion.
Collapse
Affiliation(s)
- Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Department of Chemical Engineering and Environmental Technologies, University de Zaragoza, 50018, Zaragoza, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos, 3-5 Pabellón 11, 28029 Madrid, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
11
|
Scalable Production of High-Quality Silver Nanowires via Continuous-Flow Droplet Synthesis. NANOMATERIALS 2022; 12:nano12061018. [PMID: 35335831 PMCID: PMC8949512 DOI: 10.3390/nano12061018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Silver nanowires (Ag NWs) have shown great potential in next-generation flexible displays, due to their superior electronic, optical, and mechanical properties. However, as with most nanomaterials, a limited production capacity and poor reproduction quality, based on the batch reaction, largely hinder their application. Here, we applied continuous-flow synthesis for the scalable and high-quality production of Ag NWs, and built a pilot-scale line for kilogram-level per day production. In addition, we found that trace quantities of water could generate sufficient vapor as a spacer under high temperature to efficiently prevent the back-flow or mixed-flow of the reaction solution. With an optimized synthetic formula, a mass production of pure Ag NWs of 36.5 g/h was achieved by a multiple-channel, continuous-flow reactor.
Collapse
|
12
|
Panneerselvam R, Sadat H, Höhn EM, Das A, Noothalapati H, Belder D. Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination? LAB ON A CHIP 2022; 22:665-682. [PMID: 35107464 DOI: 10.1039/d1lc01097b] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the continuous development in nanoscience and nanotechnology, analytical techniques like surface-enhanced Raman spectroscopy (SERS) render structural and chemical information of a variety of analyte molecules in ultra-low concentration. Although this technique is making significant progress in various fields, the reproducibility of SERS measurements and sensitivity towards small molecules are still daunting challenges. In this regard, microfluidic surface-enhanced Raman spectroscopy (MF-SERS) is well on its way to join the toolbox of analytical chemists. This review article explains how MF-SERS is becoming a powerful tool in analytical chemistry. We critically present the developments in SERS substrates for microfluidic devices and how these substrates in microfluidic channels can improve the SERS sensitivity, reproducibility, and detection limit. We then introduce the building materials for microfluidic platforms and their types such as droplet, centrifugal, and digital microfluidics. Finally, we enumerate some challenges and future directions in microfluidic SERS. Overall, this article showcases the potential and versatility of microfluidic SERS in overcoming the inherent issues in the SERS technique and also discusses the advantage of adding SERS to the arsenal of microfluidics.
Collapse
Affiliation(s)
- Rajapandiyan Panneerselvam
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
- Department of Chemistry, SRM University AP, Amaravati, Andhra Pradesh 522502, India.
| | - Hasan Sadat
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Eva-Maria Höhn
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Anish Das
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Hemanth Noothalapati
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
- Raman Project Center for Medical and Biological Applications, Shimane University, Matsue, Japan
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
13
|
Fang L, Bahlawane N, Sun W, Pan H, Xu BB, Yan M, Jiang Y. Conversion-Alloying Anode Materials for Sodium Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101137. [PMID: 34331406 DOI: 10.1002/smll.202101137] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Indexed: 06/13/2023]
Abstract
The past decade has witnessed a rapidly growing interest toward sodium ion battery (SIB) for large-scale energy storage in view of the abundance and easy accessibility of sodium resources. Key to addressing the remaining challenges and setbacks and to translate lab science into commercializable products is the development of high-performance anode materials. Anode materials featuring combined conversion and alloying mechanisms are one of the most attractive candidates, due to their high theoretical capacities and relatively low working voltages. The current understanding of sodium-storage mechanisms in conversion-alloying anode materials is presented here. The challenges faced by these materials in SIBs, and the corresponding improvement strategies, are comprehensively discussed in correlation with the resulting electrochemical behavior. Finally, with the guidance and perspectives, a roadmap toward the development of advanced conversion-alloying materials for commercializable SIBs is created.
Collapse
Affiliation(s)
- Libin Fang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Naoufal Bahlawane
- Material Research and Technology Department, Luxembourg Institute of Science and Technology, 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Ben Bin Xu
- Smart Materials and Surfaces Lab, Mechanical Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Mi Yan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Yinzhu Jiang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
14
|
Asymmetric behaviors of interface-stabilized slug pairs in a T-junction microchannel reactor. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Intensified extraction and separation of zinc from cadmium and manganese by a slug flow capillary microreactor. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Breen CP, Nambiar AM, Jamison TF, Jensen KF. Ready, Set, Flow! Automated Continuous Synthesis and Optimization. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Volk AA, Epps RW, Abolhasani M. Accelerated Development of Colloidal Nanomaterials Enabled by Modular Microfluidic Reactors: Toward Autonomous Robotic Experimentation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004495. [PMID: 33289177 DOI: 10.1002/adma.202004495] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Indexed: 05/09/2023]
Abstract
In recent years, microfluidic technologies have emerged as a powerful approach for the advanced synthesis and rapid optimization of various solution-processed nanomaterials, including semiconductor quantum dots and nanoplatelets, and metal plasmonic and reticular framework nanoparticles. These fluidic systems offer access to previously unattainable measurements and synthesis conditions at unparalleled efficiencies and sampling rates. Despite these advantages, microfluidic systems have yet to be extensively adopted by the colloidal nanomaterial community. To help bridge the gap, this progress report details the basic principles of microfluidic reactor design and performance, as well as the current state of online diagnostics and autonomous robotic experimentation strategies, toward the size, shape, and composition-controlled synthesis of various colloidal nanomaterials. By discussing the application of fluidic platforms in recent high-priority colloidal nanomaterial studies and their potential for integration with rapidly emerging artificial intelligence-based decision-making strategies, this report seeks to encourage interdisciplinary collaborations between microfluidic reactor engineers and colloidal nanomaterial chemists. Full convergence of these two research efforts offers significantly expedited and enhanced nanomaterial discovery, optimization, and manufacturing.
Collapse
Affiliation(s)
- Amanda A Volk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Robert W Epps
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| |
Collapse
|
18
|
Wei Z, Xi Z, Vlasov S, Ayala J, Xia X. Nanocrystals of platinum-group metals as peroxidase mimics for in vitro diagnostics. Chem Commun (Camb) 2020; 56:14962-14975. [PMID: 33188672 DOI: 10.1039/d0cc06575g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peroxidase mimics of nanoscale materials as alternatives to natural peroxidases have found widespread uses in biomedicine. Among various types of peroxidase mimics, platinum-group metal (PGM) nanocrystals have drawn considerable attention in recent years due to their superior properties. Particularly, PGM nanocrystals display high catalytic efficiencies, allow for facile surface modifications, and possess excellent stabilities. This feature article summarizes our recent work on development of PGM nanocrystals as peroxidase mimics and exploration of their applications in in vitro diagnostics. We begin with a brief introduction to controlled synthesis of PGM nanocrystals in solution phase. We then elaborate on a variety of physicochemical parameters that can be carefully tuned to optimize the peroxidase-like properties of PGM nanocrystals. Then, we highlight the applications of PGM nanocrystals in different in vitro diagnostic platforms. We conclude this article with personal perspectives on future research directions in this emerging field, where challenges and opportunities are remarked.
Collapse
Affiliation(s)
- Zhiyuan Wei
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA.
| | | | | | | | | |
Collapse
|
19
|
Lu H, Tang SY, Yun G, Li H, Zhang Y, Qiao R, Li W. Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis-A Review. BIOSENSORS 2020; 10:E165. [PMID: 33153122 PMCID: PMC7693962 DOI: 10.3390/bios10110165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/22/2023]
Abstract
Nanoparticles (NPs) and microparticles (MPs) have been widely used in different areas of research such as materials science, energy, and biotechnology. On-demand synthesis of NPs and MPs with desired chemical and physical properties is essential for different applications. However, most of the conventional methods for producing NPs/MPs require bulky and expensive equipment, which occupies large space and generally need complex operation with dedicated expertise and labour. These limitations hinder inexperienced researchers to harness the advantages of NPs and MPs in their fields of research. When problems individual researchers accumulate, the overall interdisciplinary innovations for unleashing a wider range of directions are undermined. In recent years, modular and integrated systems are developed for resolving the ongoing dilemma. In this review, we focus on the development of modular and integrated systems that assist the production of NPs and MPs. We categorise these systems into two major groups: systems for the synthesis of (1) NPs and (2) MPs; systems for producing NPs are further divided into two sections based on top-down and bottom-up approaches. The mechanisms of each synthesis method are explained, and the properties of produced NPs/MPs are compared. Finally, we discuss existing challenges and outline the potentials for the development of modular and integrated systems.
Collapse
Affiliation(s)
- Hongda Lu
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.L.); (G.Y.)
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Guolin Yun
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.L.); (G.Y.)
| | - Haiyue Li
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA;
| | - Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Weihua Li
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| |
Collapse
|
20
|
Nguyen HV, Kim KY, Nam H, Lee SY, Yu T, Seo TS. Centrifugal microfluidic device for the high-throughput synthesis of Pd@AuPt core-shell nanoparticles to evaluate the performance of hydrogen peroxide generation. LAB ON A CHIP 2020; 20:3293-3301. [PMID: 32766653 DOI: 10.1039/d0lc00461h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We propose a novel high-throughput screening platform using a centrifugal microfluidic device for producing combinatorial tri-metallic catalysts. The centrifugal device was designed to perform 60 reactions under different conditions on a single device. As a model to search for an optimal tri-metallic catalyst, we synthesized a variety of Pd@AuPt nanoparticles (NPs), in which Pd nanocubes served as a core, and Au and Pt atoms formed a shell. The centrifugal microfluidic device was etched on the top and bottom sides, in which two zigzag-shaped microchannels were patterned on the top side, and 60 reaction chambers were fabricated on the bottom side. Through the sophisticated zigzag-shaped microchannels, Pt2+ ion and Pd nanocube solutions were injected into the channel in one shot, and the centrifugal force equally and automatically divided the injected solutions into 60 aliquots during the rotation. By controlling the sophisticated channel dimensions and designing the passive valve structure, the Pt2+ ion, Pd nanocube, and Au3+ solutions were loaded into the reaction chamber in sequential order depending on the programmed rotational direction and speed. Therefore, the ratio of Au to Pt to synthesize Pd@AuPt core-shell NPs was changed from 0.028 : 1 to 12 : 1, and accordingly, the resultant 60 types of Pd@AuPt catalysts presented with different ratios of metal atom compositions. Then, we screened the catalytic activity of the Pd@AuPt NPs for generating H2O2 according to the degree of coating of Au and Pt, and the Pd@AuPt catalyst with the Au/Pt ratio at 0.5 turned out to be the most effective.
Collapse
Affiliation(s)
- Hau Van Nguyen
- Department of Chemical Engineering, Kyung Hee University, Yongin, 17104, South Korea.
| | | | | | | | | | | |
Collapse
|
21
|
Recent progress on the manufacturing of nanoparticles in multi-phase and single-phase flow reactors. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Shi Y, Lyu Z, Zhao M, Chen R, Nguyen QN, Xia Y. Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chem Rev 2020; 121:649-735. [DOI: 10.1021/acs.chemrev.0c00454] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ming Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Quynh N. Nguyen
- Department of Chemistry, Agnes Scott College, Decatur, Georgia 30030, United States
| | - Younan Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
23
|
Zhou Y, Wang D, Kang X, Zhang D, Dou X, Wang X, Guo G. A scalable synthesis of ternary nanocatalysts for a high-efficiency electrooxidation catalysis by microfluidics. NANOSCALE 2020; 12:12647-12654. [PMID: 32515460 DOI: 10.1039/d0nr03466e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microfluidic synthesis has attracted extensive attention due to the ability for the multistep precise control of the synthesis parameters, continuous and reproducible preparation, and its ease of integration. However, its commercial application is still affected by its low production efficiency. In this case, we report a high-throughput continuous flow synthesis of highly dispersed PtFeCu/C nanocatalysts using a metal microchip setup with four parallel channels. The high flow rate and integrated channels enabled improving the throughput, whereby 1.33 g h-1 of catalysts could be achieved with the flow rate of 1200 mL h-1 under the experimental conditions. The as-prepared PtFeCu/C exhibited excellent performance, 1.94 times higher than Pt/C for methanol oxidation. More importantly, the yield of the PtFeCu/C nanocatalysts could be further increased through designing numerous parallel channels, which might provide a promising approach for large-scale commercialization of the catalysts. Such a high-throughput fabrication pathway is significant for the large-scale industrial production of nanomaterials.
Collapse
Affiliation(s)
- Yingyan Zhou
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Chiang WH, Mariotti D, Sankaran RM, Eden JG, Ostrikov KK. Microplasmas for Advanced Materials and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905508. [PMID: 31854023 DOI: 10.1002/adma.201905508] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/28/2019] [Indexed: 05/23/2023]
Abstract
Microplasmas are low-temperature plasmas that feature microscale dimensions and a unique high-energy-density and a nonequilibrium reactive environment, which makes them promising for the fabrication of advanced nanomaterials and devices for diverse applications. Here, recent microplasma applications are examined, spanning from high-throughput, printing-technology-compatible synthesis of nanocrystalline particles of common materials types, to water purification and optoelectronic devices. Microplasmas combined with gaseous and/or liquid media at low temperatures and atmospheric pressure open new ways to form advanced functional materials and devices. Specific examples include gas-phase, substrate-free, plasma-liquid, and surface-supported synthesis of metallic, semiconducting, metal oxide, and carbon-based nanomaterials. Representative applications of microplasmas of particular importance to materials science and technology include light sources for multipurpose, efficient VUV/UV light sources for photochemical materials processing and spectroscopic materials analysis, surface disinfection, water purification, active electromagnetic devices based on artificial microplasma optical materials, and other devices and systems including the plasma transistor. The current limitations and future opportunities for microplasma applications in materials related fields are highlighted.
Collapse
Affiliation(s)
- Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Davide Mariotti
- Nanotechnology & Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, Newtownabbey, BT37 0QB, UK
| | - R Mohan Sankaran
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106-7217, USA
| | - J Gary Eden
- Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Kostya Ken Ostrikov
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
25
|
Ye H, Liu Y, Zhan L, Liu Y, Qin Z. Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials. Theranostics 2020; 10:4359-4373. [PMID: 32292500 PMCID: PMC7150487 DOI: 10.7150/thno.44298] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
Lateral flow assay (LFA) has become one of the most widely used point-of-care diagnostic methods due to its simplicity and low cost. While easy to use, LFA suffers from its low sensitivity and poor quantification, which largely limits its applications for early disease diagnosis and requires further testing to eliminate false-negative results. Over the past decade, signal enhancement strategies that took advantage of the laser excitation of plasmonic nanomaterials have pushed down the detection limit and enabled quantification of analytes. Significantly, these methods amplify the signal based on the current LFA design without modification. This review highlights these strategies of signal enhancement for LFA including surface enhanced Raman scattering (SERS), photothermal and photoacoustic methods. Perspectives on the rational design of the reader systems are provided. Future translation of the research toward clinical applications is also discussed.
Collapse
Affiliation(s)
- Haihang Ye
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Yaning Liu
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Li Zhan
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Yilin Liu
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, USA
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas 75080, USA
- Department of Surgery, The University of Texas Southwestern Medical Center, 5323 Harry Lines Blvd, Dallas, Texas 75390, USA
| |
Collapse
|
26
|
Qiu J, Xie M, Wu T, Qin D, Xia Y. Gold nanocages for effective photothermal conversion and related applications. Chem Sci 2020. [DOI: 10.1039/d0sc05146b] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Gold nanocages are highly effective in converting light to heat, making them versatile for an array of photothermal applications.
Collapse
Affiliation(s)
- Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
| | - Minghao Xie
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
| | - Dong Qin
- School of Materials Science and Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
- School of Chemistry and Biochemistry
| |
Collapse
|
27
|
Affiliation(s)
- Yun Ding
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Philip D. Howes
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| |
Collapse
|
28
|
Continuous high-flux synthesis of gold nanoparticles with controllable sizes: a simple microfluidic system. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01214-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Roberts EJ, Karadaghi LR, Wang L, Malmstadt N, Brutchey RL. Continuous Flow Methods of Fabricating Catalytically Active Metal Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27479-27502. [PMID: 31287651 DOI: 10.1021/acsami.9b07268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One of the obstacles preventing the commercialization of colloidal nanoparticle catalysts is the difficulty in fabricating these materials at scale while maintaining a high level of control over their resulting morphologies, and ultimately, their properties. Translation of batch-scale solution nanoparticle syntheses to continuous flow reactors has been identified as one method to address the scaling issue. The superior heat and mass transport afforded by the high surface-area-to-volume ratios of micro- and millifluidic channels allows for high control over reaction conditions and oftentimes results in decreased reaction times, higher yields, and/or more monodisperse size distributions compared to an analogous batch reaction. Furthermore, continuous flow reactors are automatable and have environmental health and safety benefits, making them practical for commercialization. Herein, a discussion of continuous flow methods, reactor design, and potential challenges is presented. A thorough account of the implementation of these technologies for the fabrication of catalytically active metal nanoparticles is reviewed for hydrogenation, electrocatalysis, and oxidation reactions.
Collapse
Affiliation(s)
- Emily J Roberts
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| | - Lanja R Karadaghi
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| | - Lu Wang
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 925 Bloom Walk , Los Angeles , California 90089-1211 , United States
| | - Noah Malmstadt
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 925 Bloom Walk , Los Angeles , California 90089-1211 , United States
| | - Richard L Brutchey
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| |
Collapse
|
30
|
Li X, He L, Lv S, Xu C, Qian P, Xie F, Liu M. Effects of wall velocity slip on droplet generation in microfluidic T-junctions. RSC Adv 2019; 9:23229-23240. [PMID: 35514511 PMCID: PMC9067282 DOI: 10.1039/c9ra03761f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/13/2019] [Indexed: 11/23/2022] Open
Abstract
The effect of the slip lengths of both continuous and dispersed phases on droplet formation in microfluidic T-junctions is investigated by a volume of fluid method. Results reveal that, in a dripping regime, the droplet size is mainly influenced by the slip length of the continuous phase and increases with it. In a squeezing regime, the droplet size decreases with the slip lengths of both phases. The effects of the slip lengths of both phases on droplet generation are systematically discussed and summarized. The elongation rate of the thread can be decreased with an increase of slip lengths in both dripping and squeezing regimes, which is beneficial to improve droplet monodispersity. The monodispersity of droplets can deteriorate when the slip length of either phase is small and can be improved by increasing the slip length of the other phase.
Collapse
Affiliation(s)
- Xinlong Li
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230027 China
| | - Liqun He
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230027 China
| | - Song Lv
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230027 China
| | - Chi Xu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230027 China
| | - Peng Qian
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230027 China
| | - Fubo Xie
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230027 China
| | - Minghou Liu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230027 China
| |
Collapse
|
31
|
Kerr CB, Epps RW, Abolhasani M. A low-cost, non-invasive phase velocity and length meter and controller for multiphase lab-in-a-tube devices. LAB ON A CHIP 2019; 19:2107-2113. [PMID: 31049546 DOI: 10.1039/c9lc00296k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Opportunities for accessible microfluidic device integration have sharply grown with the rise of readily available lab-in-a-tube strategies. Herein, we present a facile, non-invasive, plug-and-play phase velocity and length measuring strategy for rapid deployment onto tube-based microfluidic systems, enabling quick and accurate residence (reaction) time measurement and tuning. Our approach utilizes inexpensive off-the-shelf optical phase sensors and requires no prior knowledge of the fluid composition or physical properties. Compared to camera-based measurements in fluoropolymer tubing, the optical phase sensor-based technique shows mean absolute percentage errors of 1.3% for velocity and 3.3% for length. Utilizing the developed multiphase flow monitoring technique, we screen the accessible parameter space of gas-liquid segmented flows. To further demonstrate the functionality of this process monitoring strategy, we implement two feedback controllers to establish simultaneous setpoint control for phase velocity and length. Next, to showcase the effectiveness and versatility of the developed multiphase flow process controller, we apply it to systematic studies of the effect of liquid slug velocity (controlling precursor mixing timescale) on the colloidal synthesis of cesium lead tribromide nanocrystals. By varying the liquid slug velocity and maintaining constant precursor composition, liquid slug length, and residence time, we observe a bandgap tunability from 2.43 eV (510 nm) to 2.52 eV (494 nm).
Collapse
Affiliation(s)
- Corwin B Kerr
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, USA.
| | | | | |
Collapse
|
32
|
Zhang W, Liu Y, Guo Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. SCIENCE ADVANCES 2019; 5:eaav7412. [PMID: 31093528 PMCID: PMC6510555 DOI: 10.1126/sciadv.aav7412] [Citation(s) in RCA: 359] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/01/2019] [Indexed: 05/18/2023]
Abstract
Potassium-ion batteries (PIBs) have attracted tremendous attention due to their low cost, fast ionic conductivity in electrolyte, and high operating voltage. Research on PIBs is still in its infancy, however, and achieving a general understanding of the drawbacks of each component and proposing research strategies for overcoming these problems are crucial for the exploration of suitable electrode materials/electrolytes and the establishment of electrode/cell assembly technologies for further development of PIBs. In this review, we summarize our current understanding in this field, classify and highlight the design strategies for addressing the key issues in the research on PIBs, and propose possible pathways for the future development of PIBs toward practical applications. The strategies and perspectives summarized in this review aim to provide practical guidance for an increasing number of researchers to explore next-generation and high-performance PIBs, and the methodology may also be applicable to developing other energy storage systems.
Collapse
Affiliation(s)
- Wenchao Zhang
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, North Wollongong, NSW 2500, Australia
- School of Mechanical, Materials, Mechatronic, and Biomedical Engineering, Faculty of Engineering & Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yajie Liu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, North Wollongong, NSW 2500, Australia
| | - Zaiping Guo
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, North Wollongong, NSW 2500, Australia
- School of Mechanical, Materials, Mechatronic, and Biomedical Engineering, Faculty of Engineering & Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
- Corresponding author.
| |
Collapse
|
33
|
Huo D, Kim MJ, Lyu Z, Shi Y, Wiley BJ, Xia Y. One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications. Chem Rev 2019; 119:8972-9073. [DOI: 10.1021/acs.chemrev.8b00745] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Myung Jun Kim
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin J. Wiley
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
34
|
Akwi FM, Watts P. Continuous flow chemistry: where are we now? Recent applications, challenges and limitations. Chem Commun (Camb) 2018; 54:13894-13928. [PMID: 30483683 DOI: 10.1039/c8cc07427e] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A general outlook of the changing face of chemical synthesis is provided in this article through recent applications of continuous flow processing in both industry and academia. The benefits, major challenges and limitations associated with the use of this mode of processing are also given due attention as an attempt to put into perspective the current position of continuous flow processing, either as an alternative or potential combinatory technology for batch processing.
Collapse
Affiliation(s)
- Faith M Akwi
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa.
| | | |
Collapse
|
35
|
Graziano G. Go with the flow. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|