1
|
Nguyen HK, Pittenger B, Nakajima K. Mapping the Nanoscale Heterogeneous Responses in the Dynamic Acceleration of Deformed Polymer Glasses. NANO LETTERS 2024; 24:9331-9336. [PMID: 39017745 PMCID: PMC11299223 DOI: 10.1021/acs.nanolett.4c02261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Understanding the evolution of local structure and mobility of disordered glassy materials induced by external stress is critical in modeling their mechanical deformation in the nonlinear regime. Several techniques have shown acceleration of molecular mobility of various amorphous glasses under macroscopic tensile deformation, but it remains a major challenge to visualize such a relationship at the nanoscale. Here, we employ a new approach based on atomic force microscopy in nanorheology mode for quantifying the local dynamic responses of a polymer glass induced by nanoscale compression. By increasing the compression level from linear elastic to plastic deformation, we observe an increase in the mechanical loss tangent (tan δ), evidencing the enhancement of polymer mobility induced by large stress. Notably, tan δ images directly reveal the preferential effect of the large compression on the dynamic acceleration of nanoscale heterogeneities with initially slow mobility, which is clearly different from that induced by increasing temperature.
Collapse
Affiliation(s)
- Hung K. Nguyen
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Bede Pittenger
- Bruker
Nano Surfaces, AFM Unit, Santa
Barbara, California 93117, United States
| | - Ken Nakajima
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| |
Collapse
|
2
|
Liu X, Lefever JA, Lee D, Zhang J, Carpick RW, Li J. Friction and Adhesion Govern Yielding of Disordered Nanoparticle Packings: A Multiscale Adhesive Discrete Element Method Study. NANO LETTERS 2021; 21:7989-7997. [PMID: 34569799 DOI: 10.1021/acs.nanolett.1c01952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent studies have demonstrated that amorphous materials, from granular packings to atomic glasses, share multiple striking similarities, including a universal onset strain level for yield. This is despite vast differences in length scales and in the constituent particles' interactions. However, the nature of localized particle rearrangements is not well understood, and how local interactions affect overall performance remains unknown. Here, we introduce a multiscale adhesive discrete element method to simulate recent novel experiments of disordered nanoparticle packings indented and imaged with single nanoparticle resolution. The simulations exhibit multiple behaviors matching the experiments. By directly monitoring spatial rearrangements and interparticle bonding/debonding under the packing's surface, we uncover the mechanisms of the yielding and hardening phenomena observed in experiments. Interparticle friction and adhesion synergistically toughen the packings and retard plastic deformation. Moreover, plasticity can result from bond switching without particle rearrangements. These results furnish insights for understanding yielding in amorphous materials generally.
Collapse
Affiliation(s)
- Xiaohui Liu
- Institute of Materials Modification and Modeling, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joel A Lefever
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jie Zhang
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Robert W Carpick
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Lin EY, Frischknecht AL, Riggleman RA. Origin of Mechanical Enhancement in Polymer Nanoparticle (NP) Composites with Ultrahigh NP Loading. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02733] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Emily Y. Lin
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amalie L. Frischknecht
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Robert A. Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|