1
|
Zhang Q, Guo F, Yu L, Wang B, Ding J, Fan L, Wu Y, Yang B, Xu Q. Efficient Degradation of Toluene over MnO 2/TiO 2 Nanobelts under Vacuum Ultraviolet Irradiation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Qi Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng224051, P. R. China
| | - Fang Guo
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng224051, P. R. China
| | - Liangyun Yu
- School of Light Industry, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing100048, P. R. China
| | - Bailin Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng224051, P. R. China
| | - Jingya Ding
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng224051, P. R. China
| | - Lan Fan
- Yancheng Lanfeng Environmental Engineering Technology Co, Ltd, Yancheng224051, P. R. China
| | - Yifan Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng224051, P. R. China
| | - Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng224051, P. R. China
| | - Qi Xu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng224051, P. R. China
| |
Collapse
|
2
|
Xu P, Cui B, Bu Y, Wang H, Guo X, Wang P, Shen YR, Tong L. Elastic ice microfibers. Science 2021; 373:187-192. [DOI: 10.1126/science.abh3754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/02/2021] [Indexed: 01/10/2023]
Affiliation(s)
- Peizhen Xu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bowen Cui
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yeqiang Bu
- Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Hongtao Wang
- Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Xin Guo
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pan Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Y. Ron Shen
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Limin Tong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Liu Q, Nie Y, Shang J, Kou L, Zhan H, Sun Z, Bo A, Gu Y. Exceptional Deformability of Wurtzite Zinc Oxide Nanowires with Growth Axial Stacking Faults. NANO LETTERS 2021; 21:4327-4334. [PMID: 33989003 DOI: 10.1021/acs.nanolett.1c00883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To ensure reliability and facilitate the strain engineering of zinc oxide (ZnO) nanowires (NWs), it is significant to understand their flexibility thoroughly. In this study, single-crystalline ZnO NWs with rich axial pyramidal I (π1) and prismatic stacking faults (SFs) are synthesized by a metal oxidation method. Bending properties of the as-synthesized ZnO NWs are investigated at the atomic scale using an in situ high-resolution transmission electron microscopy (HRTEM) technique. It is revealed that the SF-rich structures can foster multiple inelastic deformation mechanisms near room temperature, including active axial SFs' migration, deformation twinning and detwinning process in the NWs with growth π1 SFs, and prevalent nucleation and slip of perfect dislocations with a continuous increased bending strain, leading to tremendous bending strains up to 20% of the NWs. Our results record ultralarge bending deformations and provide insights into the deformation mechanisms of single-crystalline ZnO NWs with rich axial SFs.
Collapse
Affiliation(s)
- Qiong Liu
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Yihan Nie
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Jing Shang
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Liangzhi Kou
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Haifei Zhan
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
- Center for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Arixin Bo
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
- INM-Leibniz Institute for New Materials, Saarbrücken 66123, Germany
| | - Yuantong Gu
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
- Center for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| |
Collapse
|
4
|
Wang C, Zhang X. Anatase/Bronze TiO2 Heterojunction: Enhanced Photocatalysis and Prospect in Photothermal Catalysis. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0312-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Liu Q, Zhan H, Nie Y, Xu Y, Zhu H, Sun Z, Bell J, Bo A, Gu Y. Effect of Fe-doping on bending elastic properties of single-crystalline rutile TiO 2 nanowires. NANOSCALE ADVANCES 2020; 2:2800-2807. [PMID: 36132379 PMCID: PMC9417917 DOI: 10.1039/d0na00284d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/16/2020] [Indexed: 06/15/2023]
Abstract
Transition-metal-doping can improve some physical properties of titanium dioxide (TiO2) nanowires (NWs), which leads to important applications in miniature devices. Here, we investigated the elastic moduli of single-crystalline pristine and Fe-doped rutile TiO2 NWs using the three-point bending method, which is taken as a case study of impacts on the elastic properties of TiO2 NWs caused by transition-metal-doping. The Young's modulus of the pristine rutile TiO2 NWs decreases when the cross-sectional area increases (changing from 246 GPa to 93.2 GPa). However, the elastic modulus of the Fe-doped rutile NWs was found to increase with the cross-sectional area (changing from 91.8 GPa to 200 GPa). For NWs with similar geometrical size, the elastic modulus (156.8 GPa) for Fe-doped rutile NWs is 24% smaller than that (194.5 GPa) of the pristine rutile TiO2 NWs. The vacancies generated by Fe-doping are supposed to cause the reduction of elastic modulus of rutile TiO2 NWs. This work provides a fundamental understanding of the effects of transition-metal-doping on the elastic properties of TiO2 NWs.
Collapse
Affiliation(s)
- Qiong Liu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT) Brisbane Queensland 4001 Australia
| | - Haifei Zhan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT) Brisbane Queensland 4001 Australia
- Center for Materials Science, Queensland University of Technology (QUT) Brisbane Queensland 4001 Australia
| | - Yihan Nie
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT) Brisbane Queensland 4001 Australia
| | - Yanan Xu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT) Brisbane Queensland 4001 Australia
| | - Huaiyong Zhu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT) Brisbane Queensland 4001 Australia
| | - Ziqi Sun
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT) Brisbane Queensland 4001 Australia
| | - John Bell
- University of Southern Queensland Ipswich Queensland 4300 Australia
| | - Arinxin Bo
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT) Brisbane Queensland 4001 Australia
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT) Brisbane Queensland 4001 Australia
- Center for Materials Science, Queensland University of Technology (QUT) Brisbane Queensland 4001 Australia
| |
Collapse
|
6
|
Shi X, Ma J, Zheng L, Yue X, Liu L. On the interface crystallography of heat induced self-welded TiO 2 nanofibers grown by oriented attachment. CrystEngComm 2020. [DOI: 10.1039/d0ce00392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The TiO2 (B)–TiO2 (B), TiO2 (B)–anatase and anatase–anatase self-welded nanofibers have been investigated by TEM. The different exposed facets lead to the formation of different interface structures during the oriented attachment growth process.
Collapse
Affiliation(s)
- Xiaokai Shi
- College of Environmental Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Juanjuan Ma
- College of Water Resource Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Lijian Zheng
- College of Water Resource Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Xiuping Yue
- College of Environmental Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Lijun Liu
- Shanxi Academy of Environmental Research
- Taiyuan 030024
- China
| |
Collapse
|