1
|
Stein J, Ericsson M, Nofal M, Magni L, Aufmkolk S, McMillan RB, Breimann L, Herlihy CP, Lee SD, Willemin A, Wohlmann J, Arguedas-Jimenez L, Yin P, Pombo A, Church GM, Wu CK. Cryosectioning-enabled super-resolution microscopy for studying nuclear architecture at the single protein level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.576943. [PMID: 38370628 PMCID: PMC10871237 DOI: 10.1101/2024.02.05.576943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
DNA-PAINT combined with total Internal Reflection Fluorescence (TIRF) microscopy enables the highest localization precisions, down to single nanometers in thin biological samples, due to TIRF's unique method for optical sectioning and attaining high contrast. However, most cellular targets elude the accessible TIRF range close to the cover glass and thus require alternative imaging conditions, affecting resolution and image quality. Here, we address this limitation by applying ultrathin physical cryosectioning in combination with DNA-PAINT. With "tomographic & kinetically-enhanced" DNA-PAINT (tokPAINT), we demonstrate the imaging of nuclear proteins with sub-3 nanometer localization precision, advancing the quantitative study of nuclear organization within fixed cells and mouse tissues at the level of single antibodies. We believe that ultrathin sectioning combined with the versatility and multiplexing capabilities of DNA-PAINT will be a powerful addition to the toolbox of quantitative DNA-based super-resolution microscopy in intracellular structural analyses of proteins, RNA and DNA in situ.
Collapse
Affiliation(s)
- Johannes Stein
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Maria Ericsson
- Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Michel Nofal
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Lorenzo Magni
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Sarah Aufmkolk
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ryan B. McMillan
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Laura Breimann
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - S. Dean Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Andréa Willemin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - Jens Wohlmann
- Department of Biosciences, University of Oslo, Norway
| | - Laura Arguedas-Jimenez
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Peng Yin
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - George M. Church
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chao-Kng Wu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Bauer J, Reichl A, Tinnefeld P. Kinetic Referencing Allows Identification of Epigenetic Cytosine Modifications by Single-Molecule Hybridization Kinetics and Superresolution DNA-PAINT Microscopy. ACS NANO 2024; 18:1496-1503. [PMID: 38157484 DOI: 10.1021/acsnano.3c08451] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
We develop a DNA origami-based internal kinetic referencing system with a colocalized reference and target molecule to provide increased sensitivity and robustness for transient binding kinetics. To showcase this, we investigate the subtle changes in binding strength of DNA oligonucleotide hybrids induced by cytosine modifications. These cytosine modifications, especially 5-methylcytosine but also its oxidized derivatives, have been increasingly studied in the context of epigenetics. Recently revealed correlations of epigenetic modifications and disease also render them interesting biomarkers for early diagnosis. Internal kinetic referencing allows us to probe and compare the influence of the different epigenetic cytosine modifications on the strengths of 7-nucleotide long DNA hybrids with one or two modified nucleotides by single-molecule imaging of their transient binding, revealing subtle differences in binding times. Interestingly, the influence of epigenetic modifications depends on their position in the DNA strand, and in the case of two modifications, effects are additive. The sensitivity of the assay indicates its potential for the direct detection of epigenetic disease markers.
Collapse
Affiliation(s)
- Julian Bauer
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Andreas Reichl
- Department of Chemistry, Ludwig-Maximilians-Universität München, Würmtalstraße 201, 81377 München, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| |
Collapse
|
3
|
Sankaran J, Wohland T. Current capabilities and future perspectives of FCS: super-resolution microscopy, machine learning, and in vivo applications. Commun Biol 2023; 6:699. [PMID: 37419967 PMCID: PMC10328937 DOI: 10.1038/s42003-023-05069-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
Fluorescence correlation spectroscopy (FCS) is a single molecule sensitive tool for the quantitative measurement of biomolecular dynamics and interactions. Improvements in biology, computation, and detection technology enable real-time FCS experiments with multiplexed detection even in vivo. These new imaging modalities of FCS generate data at the rate of hundreds of MB/s requiring efficient data processing tools to extract information. Here, we briefly review FCS's capabilities and limitations before discussing recent directions that address these limitations with a focus on imaging modalities of FCS, their combinations with super-resolution microscopy, new evaluation strategies, especially machine learning, and applications in vivo.
Collapse
Affiliation(s)
- Jagadish Sankaran
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138632, Singapore.
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| |
Collapse
|
4
|
Danial JSH, Jenner A, Garcia-Saez AJ, Cosentino K. Real-Time Growth Kinetics Analysis of Macromolecular Assemblies in Cells with Single Molecule Resolution. J Phys Chem A 2023; 127:3490-3496. [PMID: 37023388 DOI: 10.1021/acs.jpca.3c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Single molecule fluorescence microscopy has the unique advantage to provide real-time information on the spatiotemporal assembly of individual protein complexes in cellular membranes. This includes the assembly of proteins into oligomer species of numerous copy numbers. However, there is a need for improved tracing analysis of the real-time growth kinetics of these assemblies in cells with single molecule resolution. Here, we present an automated analysis software to accurately measure the real-time kinetics of assembly of individual high-order oligomer complexes. Our software comes with a simple Graphical User Interface (GUI), is available as a source code and an executable, and can analyze a full data set of several hundred to thousand molecules in less than 2 minutes. Importantly, this software is suitable for the analysis of intracellular protein oligomers, whose stoichiometry is usually more difficult to quantify due to variability in signal detection in the different areas of the cell. We validated our method with simulated ground-truth data and time-lapse images of diffraction-limited oligomeric assemblies of BAX and BAK proteins on mitochondria of cells undergoing apoptosis. Our approach provides the broad community of biologists with a fast, user-friendly tool to trace the compositional evolution of macromolecular assemblies, and potentially model their growth for a deeper understanding of the structural and biophysical mechanisms underlying their functions.
Collapse
Affiliation(s)
- John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Andreas Jenner
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Ana J Garcia-Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Katia Cosentino
- Department of Biology/Chemistry and Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
5
|
Shrinking gate fluorescence correlation spectroscopy yields equilibrium constants and separates photophysics from structural dynamics. Proc Natl Acad Sci U S A 2023; 120:e2211896120. [PMID: 36652471 PMCID: PMC9942831 DOI: 10.1073/pnas.2211896120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Fluorescence correlation spectroscopy is a versatile tool for studying fast conformational changes of biomolecules especially when combined with Förster resonance energy transfer (FRET). Despite the many methods available for identifying structural dynamics in FRET experiments, the determination of the forward and backward transition rate constants and thereby also the equilibrium constant is difficult when two intensity levels are involved. Here, we combine intensity correlation analysis with fluorescence lifetime information by including only a subset of photons in the autocorrelation analysis based on their arrival time with respect to the excitation pulse (microtime). By fitting the correlation amplitude as a function of microtime gate, the transition rate constants from two fluorescence-intensity level systems and the corresponding equilibrium constants are obtained. This shrinking-gate fluorescence correlation spectroscopy (sg-FCS) approach is demonstrated using simulations and with a DNA origami-based model system in experiments on immobilized and freely diffusing molecules. We further show that sg-FCS can distinguish photophysics from dynamic intensity changes even if a dark quencher, in this case graphene, is involved. Finally, we unravel the mechanism of a FRET-based membrane charge sensor indicating the broad potential of the method. With sg-FCS, we present an algorithm that does not require prior knowledge and is therefore easily implemented when an autocorrelation analysis is carried out on time-correlated single-photon data.
Collapse
|
6
|
Mersmann SF, Johns E, Yong T, McEwan WA, James LC, Cohen EAK, Grove J. A novel and robust method for counting components within bio-molecular complexes using fluorescence microscopy and statistical modelling. Sci Rep 2022; 12:17286. [PMID: 36241663 PMCID: PMC9568568 DOI: 10.1038/s41598-022-20506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/14/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular biology occurs through myriad interactions between diverse molecular components, many of which assemble in to specific complexes. Various techniques can provide a qualitative survey of which components are found in a given complex. However, quantitative analysis of the absolute number of molecules within a complex (known as stoichiometry) remains challenging. Here we provide a novel method that combines fluorescence microscopy and statistical modelling to derive accurate molecular counts. We have devised a system in which batches of a given biomolecule are differentially labelled with spectrally distinct fluorescent dyes (label A or B), and mixed such that B-labelled molecules are vastly outnumbered by those with label A. Complexes, containing this component, are then simply scored as either being positive or negative for label B. The frequency of positive complexes is directly related to the stoichiometry of interaction and molecular counts can be inferred by statistical modelling. We demonstrate this method using complexes of Adenovirus particles and monoclonal antibodies, achieving counts that are in excellent agreement with previous estimates. Beyond virology, this approach is readily transferable to other experimental systems and, therefore, provides a powerful tool for quantitative molecular biology.
Collapse
Affiliation(s)
- Sophia F Mersmann
- Department of Mathematics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Emma Johns
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pond Street, London, NW3 2QG, UK
| | - Tracer Yong
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pond Street, London, NW3 2QG, UK
| | - Will A McEwan
- Department of Clinical Neurosciences, UK Dementia Research Institute at the University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH, UK
| | - Leo C James
- Laboratory of Molecular Biology, Medical Research Council, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Edward A K Cohen
- Department of Mathematics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Joe Grove
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pond Street, London, NW3 2QG, UK. .,Sir Michael Stoker Building, Garscube Campus, MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
7
|
Dai Z, Xie X, Gao Z, Li Q. DNA‐PAINT Super‐Resolution Imaging for Characterization of Nucleic Acid Nanostructures. Chempluschem 2022; 87:e202200127. [DOI: 10.1002/cplu.202200127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/12/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Zheze Dai
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Xiaodong Xie
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 200240 Shanghai CHINA
| | - Zhaoshuai Gao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 200240 Shanghai CHINA
| | - Qian Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering Dongchuan Road 800中国 200240 Shanghai CHINA
| |
Collapse
|
8
|
Sefkow-Werner J, Migliorini E, Picart C, Wahyuni D, Wang I, Delon A. Combining Fluorescence Fluctuations and Photobleaching to Quantify Surface Density. Anal Chem 2022; 94:6521-6528. [PMID: 35446542 DOI: 10.1021/acs.analchem.1c05513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have established a self-calibrated method, called pbFFS for photobleaching fluctuation fluorescence spectroscopy, which aims to characterize molecules or particles labeled with an unknown distribution of fluorophores. Using photobleaching as a control parameter, pbFFS provides information on the distribution of fluorescent labels and a reliable estimation of the absolute density or concentration of these molecules. We present a complete theoretical derivation of the pbFFS approach and experimentally apply it to measure the surface density of a monolayer of fluorescently tagged streptavidin molecules, which can be used as a base platform for biomimetic systems. The surface density measured by pbFFS is consistent with the results of spectroscopic ellipsometry, a standard surface technique. However, pbFFS has two main advantages: it enables in situ characterization (no dedicated substrates are required) and can be applied to low masses of adsorbed molecules, which we demonstrate here by quantifying the density of biotin-Atto molecules that bind to the streptavidin layer. In addition to molecules immobilized on a surface, we also applied pbFFS to molecules diffusing in solution, to confirm the distribution of fluorescent labels found on a surface. Hence, pbFFS provides a set of tools for investigating the molecules labeled with a variable number of fluorophores, with the aim of quantifying either the number of molecules or the distribution of fluorescent labels, the latter case being especially relevant for oligomerization studies.
Collapse
Affiliation(s)
- Julius Sefkow-Werner
- Univ. Grenoble Alpes, INSERM U1292, CEA, CNRS EMR 5000 BRM, IRIG Institute, CEA, 38054 Grenoble, France.,Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, 38016 Grenoble, France
| | - Elisa Migliorini
- Univ. Grenoble Alpes, INSERM U1292, CEA, CNRS EMR 5000 BRM, IRIG Institute, CEA, 38054 Grenoble, France.,Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, 38016 Grenoble, France
| | - Catherine Picart
- Univ. Grenoble Alpes, INSERM U1292, CEA, CNRS EMR 5000 BRM, IRIG Institute, CEA, 38054 Grenoble, France.,Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, 38016 Grenoble, France
| | - Dwiria Wahyuni
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Irène Wang
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Antoine Delon
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| |
Collapse
|
9
|
Fernandez-Cuesta I, Llobera A, Ramos-Payán M. Optofluidic systems enabling detection in real samples: A review. Anal Chim Acta 2022; 1192:339307. [DOI: 10.1016/j.aca.2021.339307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
|
10
|
Danial JSH, Quintana Y, Ros U, Shalaby R, Margheritis EG, Chumpen Ramirez S, Ungermann C, Garcia-Saez AJ, Cosentino K. Systematic Assessment of the Accuracy of Subunit Counting in Biomolecular Complexes Using Automated Single-Molecule Brightness Analysis. J Phys Chem Lett 2022; 13:822-829. [PMID: 35044771 PMCID: PMC8802318 DOI: 10.1021/acs.jpclett.1c03835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Analysis of single-molecule brightness allows subunit counting of high-order oligomeric biomolecular complexes. Although the theory behind the method has been extensively assessed, systematic analysis of the experimental conditions required to accurately quantify the stoichiometry of biological complexes remains challenging. In this work, we develop a high-throughput, automated computational pipeline for single-molecule brightness analysis that requires minimal human input. We use this strategy to systematically quantify the accuracy of counting under a wide range of experimental conditions in simulated ground-truth data and then validate its use on experimentally obtained data. Our approach defines a set of conditions under which subunit counting by brightness analysis is designed to work optimally and helps in establishing the experimental limits in quantifying the number of subunits in a complex of interest. Finally, we combine these features into a powerful, yet simple, software that can be easily used for the analysis of the stoichiometry of such complexes.
Collapse
Affiliation(s)
- John S. H. Danial
- Interfaculty
Institute of Biochemistry, University of
Tübingen, Tübingen 72076, Germany
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
- UK Dementia
Research Institute, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Yuri Quintana
- Interfaculty
Institute of Biochemistry, University of
Tübingen, Tübingen 72076, Germany
| | - Uris Ros
- Interfaculty
Institute of Biochemistry, University of
Tübingen, Tübingen 72076, Germany
- Institute
for Genetics and Cologne Excellence Cluster on Cellular Stress Responses
in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Raed Shalaby
- Interfaculty
Institute of Biochemistry, University of
Tübingen, Tübingen 72076, Germany
- Institute
for Genetics and Cologne Excellence Cluster on Cellular Stress Responses
in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Eleonora G. Margheritis
- Department
of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück 49076, Germany
| | - Sabrina Chumpen Ramirez
- Department
of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück 49076, Germany
| | - Christian Ungermann
- Department
of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück 49076, Germany
| | - Ana J. Garcia-Saez
- Interfaculty
Institute of Biochemistry, University of
Tübingen, Tübingen 72076, Germany
- Institute
for Genetics and Cologne Excellence Cluster on Cellular Stress Responses
in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Katia Cosentino
- Interfaculty
Institute of Biochemistry, University of
Tübingen, Tübingen 72076, Germany
- Department
of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück 49076, Germany
| |
Collapse
|
11
|
Qutbuddin Y, Krohn JH, Brüggenthies GA, Stein J, Gavrilovic S, Stehr F, Schwille P. Design Features to Accelerate the Higher-Order Assembly of DNA Origami on Membranes. J Phys Chem B 2021; 125:13181-13191. [PMID: 34818013 PMCID: PMC8667037 DOI: 10.1021/acs.jpcb.1c07694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanotechnology often exploits DNA origami nanostructures assembled into even larger superstructures up to micrometer sizes with nanometer shape precision. However, large-scale assembly of such structures is very time-consuming. Here, we investigated the efficiency of superstructure assembly on surfaces using indirect cross-linking through low-complexity connector strands binding staple strand extensions, instead of connector strands binding to scaffold loops. Using single-molecule imaging techniques, including fluorescence microscopy and atomic force microscopy, we show that low sequence complexity connector strands allow formation of DNA origami superstructures on lipid membranes, with an order-of-magnitude enhancement in the assembly speed of superstructures. A number of effects, including suppression of DNA hairpin formation, high local effective binding site concentration, and multivalency are proposed to contribute to the acceleration. Thus, the use of low-complexity sequences for DNA origami higher-order assembly offers a very simple but efficient way of improving throughput in DNA origami design.
Collapse
Affiliation(s)
- Yusuf Qutbuddin
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Jan-Hagen Krohn
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.,Exzellenzcluster ORIGINS, Boltzmannstrasse 2, D-85748 Garching, Germany
| | - Gereon A Brüggenthies
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Johannes Stein
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Svetozar Gavrilovic
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Florian Stehr
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
12
|
Stein J, Stehr F, Jungmann R, Schwille P. Calibration-free counting of low molecular copy numbers in single DNA-PAINT localization clusters. BIOPHYSICAL REPORTS 2021; 1:100032. [PMID: 36425461 PMCID: PMC9680712 DOI: 10.1016/j.bpr.2021.100032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 06/16/2023]
Abstract
Single-molecule localization microscopy (SMLM) has revolutionized light microscopy by enabling optical resolution down to a few nanometer. Yet, localization precision commonly does not suffice to visually resolve single subunits in molecular assemblies or multimeric complexes. Because each targeted molecule contributes localizations during image acquisition, molecular counting approaches to reveal the target copy numbers within localization clusters have been persistently proposed since the early days of SMLM, most of which rely on preliminary knowledge of the dye photophysics or on a calibration to a reference. Previously, we developed localization-based fluorescence correlation spectroscopy (lbFCS) as an absolute ensemble counting approach for the SMLM-variant DNA-PAINT (points accumulation for imaging in nanoscale topography), for the first time, to our knowledge, circumventing the necessity for reference calibrations. Here, we present an extended concept termed lbFCS+, which allows absolute counting of copy numbers for individual localization clusters in a single DNA-PAINT image. In lbFCS+, absolute counting of fluorescent loci contained in individual nanoscopic volumes is achieved via precise measurement of the local hybridization rates of the fluorescently labeled oligonucleotides ("imagers") employed in DNA-PAINT imaging. In proof-of-principle experiments on DNA origami nanostructures, we demonstrate the ability of lbFCS+ to truthfully determine molecular copy numbers and imager association and dissociation rates in well-separated localization clusters containing up to 10 docking strands. For N ≤ 4 target molecules, lbFCS+ is even able to resolve integers, providing the potential to study the composition of up to tetrameric molecular complexes. Furthermore, we show that lbFCS+ allows resolving heterogeneous binding dynamics, enabling the distinction of stochastically generated and a priori indistinguishable DNA assemblies. Beyond advancing quantitative DNA-PAINT imaging, we believe that lbFCS+ could find promising applications ranging from biosensing to DNA computing.
Collapse
Affiliation(s)
- Johannes Stein
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Stehr
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Faculty of Physics, Ludwig Maximilian University, Munich, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
13
|
Swenson CS, Lackey HH, Reece EJ, Harris JM, Heemstra JM, Peterson EM. Evaluating the effect of ionic strength on PNA:DNA duplex formation kinetics. RSC Chem Biol 2021; 2:1249-1256. [PMID: 34458838 PMCID: PMC8341200 DOI: 10.1039/d1cb00025j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022] Open
Abstract
Peptide nucleic acid (PNA) is a unique synthetic nucleic acid analog that has been adopted for use in many biological applications. These applications rely upon the robust Franklin-Watson-Crick base pairing provided by PNA, particularly at lower ionic strengths. However, our understanding of the relationship between the kinetics of PNA:DNA hybridization and ionic strength is incomplete. Here we measured the kinetics of association and dissociation of PNA with DNA across a range of ionic strengths and temperatures at single-molecule resolution using total internal reflection fluorescence imaging. Unlike DNA:DNA duplexes, PNA:DNA duplexes are more stable at lower ionic strength, and we demonstrate that this is due to a higher association rate. While the dissociation rate of PNA:DNA duplexes is largely insensitive to ionic strength, it is significantly lower than that of DNA:DNA duplexes having the same number and sequence of base pairing interactions. The temperature dependence of PNA:DNA kinetic rate constants indicate a significant enthalpy barrier to duplex dissociation, and to a lesser extent, duplex formation. This investigation into the kinetics of PNA:DNA hybridization provides a framework towards better understanding and design of PNA sequences for future applications.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Hershel H Lackey
- Department of Chemistry, University of Utah Salt Lake City UT 84112 USA
| | - Eric J Reece
- Department of Chemistry, University of Utah Salt Lake City UT 84112 USA
| | - Joel M Harris
- Department of Chemistry, University of Utah Salt Lake City UT 84112 USA
| | | | - Eric M Peterson
- Department of Chemistry, University of Utah Salt Lake City UT 84112 USA
| |
Collapse
|
14
|
Tracking single particles for hours via continuous DNA-mediated fluorophore exchange. Nat Commun 2021; 12:4432. [PMID: 34290254 PMCID: PMC8295357 DOI: 10.1038/s41467-021-24223-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/07/2021] [Indexed: 01/13/2023] Open
Abstract
Monitoring biomolecules in single-particle tracking experiments is typically achieved by employing fixed organic dyes or fluorescent fusion proteins linked to a target of interest. However, photobleaching typically limits observation times to merely a few seconds, restricting downstream statistical analysis and observation of rare biological events. Here, we overcome this inherent limitation via continuous fluorophore exchange using DNA-PAINT, where fluorescently-labeled oligonucleotides reversibly bind to a single-stranded DNA handle attached to the target molecule. Such versatile and facile labeling allows uninterrupted monitoring of single molecules for extended durations. We demonstrate the power of our approach by observing DNA origami on membranes for tens of minutes, providing perspectives for investigating cellular processes on physiologically relevant timescales. The length of single-particle tracking experiments are limited due to photobleaching. Here the authors achieve long-term single-particle tracking with continuous fluorophore exchange in DNA-PAINT and use this to observe DNA origami on lipid bilayers for tens of minutes.
Collapse
|
15
|
van Wee R, Filius M, Joo C. Completing the canvas: advances and challenges for DNA-PAINT super-resolution imaging. Trends Biochem Sci 2021; 46:918-930. [PMID: 34247944 DOI: 10.1016/j.tibs.2021.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/16/2021] [Accepted: 05/31/2021] [Indexed: 01/02/2023]
Abstract
Single-molecule localization microscopy (SMLM) is a potent tool to examine biological systems with unprecedented resolution, enabling the investigation of increasingly smaller structures. At the forefront of these developments is DNA-based point accumulation for imaging in nanoscale topography (DNA-PAINT), which exploits the stochastic and transient binding of fluorescently labeled DNA probes. In its early stages the implementation of DNA-PAINT was burdened by low-throughput, excessive acquisition time, and difficult integration with live-cell imaging. However, recent advances are addressing these challenges and expanding the range of applications of DNA-PAINT. We review the current state of the art of DNA-PAINT in light of these advances and contemplate what further developments remain indispensable to realize live-cell imaging.
Collapse
Affiliation(s)
- Raman van Wee
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Mike Filius
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
16
|
Danial JSH, Klenerman D. Single molecule imaging of protein aggregation in Dementia: Methods, insights and prospects. Neurobiol Dis 2021; 153:105327. [PMID: 33705938 PMCID: PMC8039184 DOI: 10.1016/j.nbd.2021.105327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/21/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The aggregation of misfolded proteins is a fundamental pathology in neurodegeneration which remains poorly understood due to its exceptional complexity and lack of appropriate characterization tools that can probe the role of the low concentrations of heterogeneous protein aggregates formed during the progression of the disease. In this review, we explain the principles underlying the operation of single molecule microscopy, an imaging method that can resolve molecules one-by-one, its application to imaging and characterizing individual protein aggregates in human samples and in vitro as well as the important questions in neurobiology this has answered and can answer.
Collapse
Affiliation(s)
- John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
17
|
Cheng X, Yin W. Probing Biosensing Interfaces With Single Molecule Localization Microscopy (SMLM). Front Chem 2021; 9:655324. [PMID: 33996750 PMCID: PMC8117217 DOI: 10.3389/fchem.2021.655324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022] Open
Abstract
Far field single molecule localization microscopy (SMLM) has been established as a powerful tool to study biological structures with resolution far below the diffraction limit of conventional light microscopy. In recent years, the applications of SMLM have reached beyond traditional cellular imaging. Nanostructured interfaces are enriched with information that determines their function, playing key roles in applications such as chemical catalysis and biological sensing. SMLM enables detailed study of interfaces at an individual molecular level, allowing measurements of reaction kinetics, and detection of rare events not accessible to ensemble measurements. This paper provides an update to the progress made to the use of SMLM in characterizing nanostructured biointerfaces, focusing on practical aspects, recent advances, and emerging opportunities from an analytical chemistry perspective.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- State Key Laboratory for Modern Optical Instrumentations, National Engineering Research Center of Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Wei Yin
- Core Facilities, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Hummert J, Tashev SA, Herten DP. An update on molecular counting in fluorescence microscopy. Int J Biochem Cell Biol 2021; 135:105978. [PMID: 33865985 DOI: 10.1016/j.biocel.2021.105978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/14/2021] [Accepted: 04/08/2021] [Indexed: 01/18/2023]
Abstract
Quantitative assessment of protein complexes, such as receptor clusters in the context of cellular signalling, has become a pressing objective in cell biology. The advancements in the field of single molecule fluorescence microscopy have led to different approaches for counting protein copy numbers in various cellular structures. This has resulted in an increasing interest in robust calibration protocols addressing photophysical properties of fluorescent labels and the effect of labelling efficiencies. Here, we want to give an update on recent methods for protein counting with a focus on novel calibration protocols. In this context, we discuss different types of calibration samples and identify some of the challenges arising in molecular counting experiments. Some recently published applications offer potential approaches to tackle these challenges.
Collapse
Affiliation(s)
- Johan Hummert
- College of Medical and Dental Sciences & School of Chemistry, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, UK
| | - Stanimir Asenov Tashev
- College of Medical and Dental Sciences & School of Chemistry, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, UK
| | - Dirk-Peter Herten
- College of Medical and Dental Sciences & School of Chemistry, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, UK.
| |
Collapse
|
19
|
Fischer LS, Klingner C, Schlichthaerle T, Strauss MT, Böttcher R, Fässler R, Jungmann R, Grashoff C. Quantitative single-protein imaging reveals molecular complex formation of integrin, talin, and kindlin during cell adhesion. Nat Commun 2021; 12:919. [PMID: 33568673 PMCID: PMC7876120 DOI: 10.1038/s41467-021-21142-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Single-molecule localization microscopy (SMLM) enabling the investigation of individual proteins on molecular scales has revolutionized how biological processes are analysed in cells. However, a major limitation of imaging techniques reaching single-protein resolution is the incomplete and often unknown labeling and detection efficiency of the utilized molecular probes. As a result, fundamental processes such as complex formation of distinct molecular species cannot be reliably quantified. Here, we establish a super-resolution microscopy framework, called quantitative single-molecule colocalization analysis (qSMCL), which permits the identification of absolute molecular quantities and thus the investigation of molecular-scale processes inside cells. The method combines multiplexed single-protein resolution imaging, automated cluster detection, in silico data simulation procedures, and widely applicable experimental controls to determine absolute fractions and spatial coordinates of interacting species on a true molecular level, even in highly crowded subcellular structures. The first application of this framework allowed the identification of a long-sought ternary adhesion complex—consisting of talin, kindlin and active β1-integrin—that specifically forms in cell-matrix adhesion sites. Together, the experiments demonstrate that qSMCL allows an absolute quantification of multiplexed SMLM data and thus should be useful for investigating molecular mechanisms underlying numerous processes in cells. Single-molecule localisation microscopy is limited by low labeling and detection efficiencies of the molecular probes. Here the authors report a framework to obtain absolute molecular quantities on a true molecular scale; the data reveal a ternary adhesion complex underlying cell-matrix adhesion.
Collapse
Affiliation(s)
- Lisa S Fischer
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster, Germany.,Group of Molecular Mechanotransduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christoph Klingner
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster, Germany.,Group of Molecular Mechanotransduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thomas Schlichthaerle
- Faculty of Physics and Center for Nanoscience, LMU Munich, Munich, Germany.,Research Group Molecular Imaging and Bionanotechnology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maximilian T Strauss
- Faculty of Physics and Center for Nanoscience, LMU Munich, Munich, Germany.,Research Group Molecular Imaging and Bionanotechnology, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ralph Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, LMU Munich, Munich, Germany. .,Research Group Molecular Imaging and Bionanotechnology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Carsten Grashoff
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster, Germany. .,Group of Molecular Mechanotransduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
20
|
Williams ND, Landajuela A, Kasula RK, Zhou W, Powell JT, Xi Z, Isaacs FJ, Berro J, Toomre D, Karatekin E, Lin C. DNA-Origami-Based Fluorescence Brightness Standards for Convenient and Fast Protein Counting in Live Cells. NANO LETTERS 2020; 20:8890-8896. [PMID: 33164530 PMCID: PMC7726105 DOI: 10.1021/acs.nanolett.0c03925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fluorescence microscopy has been one of the most discovery-rich methods in biology. In the digital age, the discipline is becoming increasingly quantitative. Virtually all biological laboratories have access to fluorescence microscopes, but abilities to quantify biomolecule copy numbers are limited by the complexity and sophistication associated with current quantification methods. Here, we present DNA-origami-based fluorescence brightness standards for counting 5-300 copies of proteins in bacterial and mammalian cells, tagged with fluorescent proteins or membrane-permeable organic dyes. Compared to conventional quantification techniques, our brightness standards are robust, straightforward to use, and compatible with nearly all fluorescence imaging applications, thereby providing a practical and versatile tool to quantify biomolecules via fluorescence microscopy.
Collapse
Affiliation(s)
- Nathan D. Williams
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
| | - Ane Landajuela
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
- Department of Cellular and Molecular Physiology, Yale
University School of Medicine, New Haven, CT 06520, USA
| | - Ravi Kiran Kasula
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
| | - Wenjiao Zhou
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
| | - John T. Powell
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
| | - Zhiqun Xi
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
| | - Farren J. Isaacs
- Department of Molecular, Cellular and Developmental
Biology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New
Haven, CT 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT
06516, USA
| | - Julien Berro
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
- Department of Molecular Biophysics and Biochemistry, New
Haven, CT 06520, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
| | - Erdem Karatekin
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
- Department of Cellular and Molecular Physiology, Yale
University School of Medicine, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, New
Haven, CT 06520, USA
- Université de Paris, SPPIN –
Saints-Pères Paris Institute for the Neurosciences, Centre National de la
Recherche Scientifique (CNRS), F-75006 Paris, France
| | - Chenxiang Lin
- Department of Cell Biology, Yale University School of
Medicine, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven CT
06516, USA
| |
Collapse
|
21
|
Raote I, Chabanon M, Walani N, Arroyo M, Garcia-Parajo MF, Malhotra V, Campelo F. A physical mechanism of TANGO1-mediated bulky cargo export. eLife 2020; 9:e59426. [PMID: 33169667 PMCID: PMC7704110 DOI: 10.7554/elife.59426] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023] Open
Abstract
The endoplasmic reticulum (ER)-resident protein TANGO1 assembles into a ring around ER exit sites (ERES), and links procollagens in the ER lumen to COPII machinery, tethers, and ER-Golgi intermediate compartment (ERGIC) in the cytoplasm (Raote et al., 2018). Here, we present a theoretical approach to investigate the physical mechanisms of TANGO1 ring assembly and how COPII polymerization, membrane tension, and force facilitate the formation of a transport intermediate for procollagen export. Our results indicate that a TANGO1 ring, by acting as a linactant, stabilizes the open neck of a nascent COPII bud. Elongation of such a bud into a transport intermediate commensurate with bulky procollagens is then facilitated by two complementary mechanisms: (i) by relieving membrane tension, possibly by TANGO1-mediated fusion of retrograde ERGIC membranes and (ii) by force application. Altogether, our theoretical approach identifies key biophysical events in TANGO1-driven procollagen export.
Collapse
Affiliation(s)
- Ishier Raote
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Morgan Chabanon
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Politècnica de Catalunya-BarcelonaTechBarcelonaSpain
| | - Nikhil Walani
- Universitat Politècnica de Catalunya-BarcelonaTechBarcelonaSpain
| | - Marino Arroyo
- Universitat Politècnica de Catalunya-BarcelonaTechBarcelonaSpain
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)BarcelonaSpain
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- ICREABarcelonaSpain
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- ICREABarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
22
|
Huang K, Demirci F, Batish M, Treible W, Meyers BC, Caplan JL. Quantitative, super-resolution localization of small RNAs with sRNA-PAINT. Nucleic Acids Res 2020; 48:e96. [PMID: 32716042 PMCID: PMC7498346 DOI: 10.1093/nar/gkaa623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022] Open
Abstract
Small RNAs are non-coding RNAs that play important roles in the lives of both animals and plants. They are 21- to 24-nt in length and ∼10 nm in size. Their small size and high diversity have made it challenging to develop detection methods that have sufficient resolution and specificity to multiplex and quantify. We created a method, sRNA-PAINT, for the detection of small RNAs with 20 nm resolution by combining the super-resolution method, DNA-based points accumulation in nanoscale topography (DNA-PAINT), and the specificity of locked nucleic acid (LNA) probes for the in situ detection of multiple small RNAs. The method relies on designing probes to target small RNAs that combine DNA oligonucleotides (oligos) for PAINT with LNA-containing oligos for hybridization; therefore, we developed an online tool called ‘Vetting & Analysis of RNA for in situ Hybridization probes’ (VARNISH) for probe design. Our method utilizes advances in DNA-PAINT methodologies, including qPAINT for quantification, and Exchange-PAINT for multiplexing. We demonstrated these capabilities of sRNA-PAINT by detecting and quantifying small RNAs in different cell layers of early developmental stage maize anthers that are important for male sexual reproduction.
Collapse
Affiliation(s)
- Kun Huang
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA.,Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Feray Demirci
- FiDoSoft Software Consulting, Redmond, WA 98052, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Wayne Treible
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA.,University of Missouri - Columbia, Division of Plant Sciences, 52 Agriculture Lab, Columbia, MO 65211, USA
| | - Jeffrey L Caplan
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA.,Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
23
|
Abstract
Recent advances in super-resolution (sub-diffraction limited) microscopy have yielded remarkable insights into the nanoscale architecture and behavior of cells. In addition to the capacity to provide sub 100 nm resolution, these technologies offer unique quantitative opportunities with particular relevance to platelet and megakaryocyte biology. In this review, we provide a short introduction to modern super-resolution microscopy, its applications in the field of platelet and megakaryocyte biology, and emerging quantitative approaches which will allow for unprecedented insights into the biology of these unique cell types.
Collapse
Affiliation(s)
- Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham , Birmingham, UK
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham , Birmingham, UK.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham , UK
| |
Collapse
|
24
|
Nieves DJ, Owen DM. Analysis methods for interrogating spatial organisation of single molecule localisation microscopy data. Int J Biochem Cell Biol 2020; 123:105749. [PMID: 32325279 DOI: 10.1016/j.biocel.2020.105749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 01/01/2023]
Abstract
Single-molecule localisation microscopy (SMLM) gives access to biological information below the diffraction limit, allowing nanoscale cellular structures to be probed. The data output is unlike that of conventional microscopy images, instead consisting of an array of molecular coordinates. These represent a spatial point pattern that attempts to approximate, as closely as possible, the underlying positions of the molecules of interest. Here, we review the analysis methods that can be used to extract biological insight from SMLM data, in particular for the application of quantifying nanoscale molecular clustering. We review how some of the common artefacts inherent in SMLM can corrupt the acquired data, and therefore, how the output of SMLM cluster analysis should be interpreted.
Collapse
Affiliation(s)
- Daniel J Nieves
- Institute of Immunology and Immunotherapy, School of Medical and Dental Sciences and Department of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Dylan M Owen
- Institute of Immunology and Immunotherapy, School of Medical and Dental Sciences and Department of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|