1
|
Wang Q, Suo Y, Shi R, Wang Y. Studies related to the enhanced the effect of 5-aminolevulinic acid-based photodynamic therapy combined with tirapazamine. Photodiagnosis Photodyn Ther 2024; 49:104287. [PMID: 39059759 DOI: 10.1016/j.pdpdt.2024.104287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE 5-aminolevulinic acid (5-ALA) is a precursor of the photosensitizer Protoporphyrin IX (PpIX) and photodynamic therapy (PDT) with 5-ALA has been used in clinical practice. However, tumor cellular hypoxia severely affects the efficiency of photodynamic therapy. In this study, photodynamic therapy was combined with tirapazamine to investigate the effects of the combined intervention and the related mechanisms it may involve. METHODS Colony formation assays were used to demonstrate cell proliferation. Transwell assays were performed to observe the effect on cell invasion and metastasis after the corresponding intervention. DCFH-DA probe was used to detect the reactive oxygen species content. Flow cytometry was used to detect the effects of the interventions on apoptosis and cell cycle. The relevant pathways that may be involved are explored by examining the expression levels of the relevant proteins and genes. RESULTS Colony formation assays indicated that the combined intervention inhibited cell proliferation. Transwell assays demonstrated that PDT combined with TPZ effectively inhibited tumor cell invasion and metastasis. In addition, fluorescence intensity generated by DCFH-DA oxidation was detected indicating that the combined intervention increased the formation of reactive oxygen species. Flow cytometry clearly showed that the combination of PDT and TPZ further increased apoptosis and cell cycle arrest. The results of western blotting and qRT-PCR experiments confirmed that the combination therapy inhibited HIF-1α/VEGF axis and the PI3K/Akt/mTOR pathway activation. CONCLUSION 5-ALA-PDT combined with TPZ can inhibit cell proliferation, increase apoptosis, and inhibit the PI3K/Akt/mTOR pathway, thus inhibiting tumor growth and metastasis and improving anti-cancer effects.
Collapse
Affiliation(s)
- Qian Wang
- Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, Shanxi, China
| | - Yuping Suo
- Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, 030012, Shanxi, China; Department of Gynaecology and Obstetrics, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China.
| | - Rui Shi
- Department of Gynaecology and Obstetrics, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China
| | - Yulan Wang
- Department of Gynaecology and Obstetrics, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China
| |
Collapse
|
2
|
He Y, Xu Z, Yan Y, Zhang X, He Y, Luo Q, Wang D, Gao D. A universal nanoreactor triggering butterfly effect for encouraging Fenton/Fenton-like reactions and chemodynamic therapy. J Colloid Interface Sci 2024; 670:297-310. [PMID: 38763026 DOI: 10.1016/j.jcis.2024.05.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Fenton/Fenton-like reaction induced chemical dynamic therapy (CDT) has been widely recognized in tumor therapy. Due to the low efficiency of conversion from high-valent metal ions (M(n+1)+) to low-valent ions (Mn+) in the Fenton/Fenton-like catalytic process, enhancing the conversion efficiency safely and effectively would create a great opportunity for the clinical application of CDT. In the study, a universal nanoreactor (NR) consisting of liposome (Lip), tumor cell membrane (CM), and bis(2,4,5-trichloro-6-carboxyphenyl) oxalate (CPPO) is developed to tackle this challenge. The CPPO was first discovered to decompose under weak acidity and H2O2 conditions to generate carboxylic acids (R'COOH) and alcohols (R'OH) with reducibility, which will reduce M(n+1)+ to Mn+ and magnify the effect of CDT. Furthermore, glucose oxidase (GOx) was introduced to decompose glucose in tumor and generate H2O2 and glucose acid, which promote the degradation of CPPO, further strengthening the efficiency of CDT, leading to a butterfly effect. This demonstrated that the butterfly effect triggered by NR and GOx encourages Fenton/Fenton-like reactions of Fe3O4 and MoS2, thereby enhancing the tumor inhibition effect. The strategy of combining GOx and CPPO to strengthen the Fenton/Fenton-like reaction is a universal strategy, which provides a new and interesting perspective for CPPO in the application of CDT, reflecting the exquisite integration of Fenton chemistry and catalytic medicine.
Collapse
Affiliation(s)
- Yaqian He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Zichuang Xu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Yaqian Yan
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Xuwu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Qingzhi Luo
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Desong Wang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China.
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
3
|
Zhu X, Feng T, Chen Y, Xiao Y, Wen W, Wang S, Wang D, Zhang X, Liang J, Xiong H. Reactive Oxygen-Correlated Photothermal Imaging of Smart COF Nanoreactors for Monitoring Chemodynamic Sterilization and Promoting Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310247. [PMID: 38368267 DOI: 10.1002/smll.202310247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/27/2024] [Indexed: 02/19/2024]
Abstract
Chemodynamic therapy (CDT) has emerged as a promising approach for treating infected diabetic wounds, while reliable imaging technology for simultaneous monitoring of ROS and therapeutic processes is still a formidable challenge. Herein, smart covalent organic framework (COF) nanoreactors (COF NRs) are constructed by hyaluronic acid (HA) packaged glucose oxidase (GOx) covalently linked Fe-COF for diabetic wound healing. Upon the breakdown of the HA protective layer, GOx consumes glucose to produce gluconic acid and hydrogen peroxide (H2O2), resulting in decreased local pH and H2O2 supplementation. Density functional theory (DFT) calculations show that Fe-COF has high catalytic activity towards H2O2, leading to in situ generation of hydroxyl radicals (·OH) for sterilization, and the localized downregulation of glucose effectively improved the microenvironment of diabetic wounds. Meanwhile, based on the near-infrared photothermal imaging of oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB), the authors showed that TMB can be applied for the point-of-care testing of ·OH and glucose, and assessing the sterilization progress in vivo. More significantly, the facile photothermal signaling strategy can be extended to monitor various ROS-mediated therapeutic systems, enabling accurate prediction of treatment outcomes.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Tiantian Feng
- Institute of Chemistry, Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Yidan Chen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yan Xiao
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Wei Wen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Shengfu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Dong Wang
- Institute of Chemistry, Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Xiuhua Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Jichao Liang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Huayu Xiong
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
4
|
Pan Y, Cheng J, Zhu Y, Zhang J, Fan W, Chen X. Immunological nanomaterials to combat cancer metastasis. Chem Soc Rev 2024; 53:6399-6444. [PMID: 38745455 DOI: 10.1039/d2cs00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis. However, current clinical immunotherapies are not effective for all patients or all types of cancer metastases owing to insufficient immune responses. In recent years, immunological nanomaterials with intrinsic immunogenicity or immunomodulatory agents with efficient loading have been shown to enhance immune responses to eliminate metastasis. In this review, we would like to summarize various types of immunological nanomaterials against metastasis. Moreover, this review will summarize a series of immunological nanomaterial-mediated immunotherapy strategies to combat metastasis, including immunogenic cell death, regulation of chemokines and cytokines, improving the immunosuppressive tumour microenvironment, activation of the STING pathway, enhancing cytotoxic natural killer cell activity, enhancing antigen presentation of dendritic cells, and enhancing chimeric antigen receptor T cell therapy. Furthermore, the synergistic anti-metastasis strategies based on the combinational use of immunotherapy and other therapeutic modalities will also be introduced. In addition, the nanomaterial-mediated imaging techniques (e.g., optical imaging, magnetic resonance imaging, computed tomography, photoacoustic imaging, surface-enhanced Raman scattering, radionuclide imaging, etc.) for detecting metastasis and monitoring anti-metastasis efficacy are also summarized. Finally, the current challenges and future prospects of immunological nanomaterial-based anti-metastasis are also elucidated with the intention to accelerate its clinical translation.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Junjie Cheng
- Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| |
Collapse
|
5
|
Yao L, Zhu X, Shan Y, Zhang L, Yao J, Xiong H. Recent Progress in Anti-Tumor Nanodrugs Based on Tumor Microenvironment Redox Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310018. [PMID: 38269480 DOI: 10.1002/smll.202310018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Indexed: 01/26/2024]
Abstract
The growth state of tumor cells is strictly affected by the specific abnormal redox status of the tumor microenvironment (TME). Moreover, redox reactions at the biological level are also central and fundamental to essential energy metabolism reactions in tumors. Accordingly, anti-tumor nanodrugs targeting the disruption of this abnormal redox homeostasis have become one of the hot spots in the field of nanodrugs research due to the effectiveness of TME modulation and anti-tumor efficiency mediated by redox interference. This review discusses the latest research results of nanodrugs in anti-tumor therapy, which regulate the levels of oxidants or reductants in TME through a variety of therapeutic strategies, ultimately breaking the original "stable" redox state of the TME and promoting tumor cell death. With the gradual deepening of study on the redox state of TME and the vigorous development of nanomaterials, it is expected that more anti-tumor nano drugs based on tumor redox microenvironment regulation will be designed and even applied clinically.
Collapse
Affiliation(s)
- Lan Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Xiang Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Yunyi Shan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Liang Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Hui Xiong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| |
Collapse
|
6
|
Xu C, Cui K, Ye Z, Feng Y, Wang H, Liu HW. Recent Advances of Aminopeptidases-Responsive Small-Molecular Probes for Bioimaging. Chem Asian J 2024; 19:e202400052. [PMID: 38436107 DOI: 10.1002/asia.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
Aminopeptidases, enzymes with critical roles in human body, are emerging as vital biomarkers for metabolic processes and diseases. Aberrant aminopeptidase levels are often associated with diseases, particularly cancer. Small-molecule probes, such as fluorescent, fluorescent/photoacoustics, bioluminescent, and chemiluminescent probes, are essential tools in the study of aminopeptidases-related diseases. The fluorescent probes provide real-time insights into protein activities, offering high sensitivity in specific locations, and precise spatiotemporal results. Additionally, photoacoustic probes offer signals that are able to penetrate deeper tissues. Bioluminescent and chemiluminescent probes can enhance in vivo imaging abilities by reducing the background. This comprehensive review is focused on small-molecule probes that respond to four key aminopeptidases: aminopeptidase N, leucine aminopeptidase, Pyroglutamate aminopeptidase 1, and Prolyl Aminopeptidase, and their utilization in imaging tumors and afflicted regions. In this review, the design strategy of small-molecule probes, the variety of designs from previous studies, and the opportunities of future bioimaging applications are discussed, serving as a roadmap for future research, sparking innovations in aminopeptidase-responsive probe development, and enhancing our understanding of these enzymes in disease diagnostics and treatment.
Collapse
Affiliation(s)
- Chengyan Xu
- Department of Medicine, Shizhen College of Guizhou University of Traditional Chinese Medicine, Guiyang, 550200, China
| | - Kaixi Cui
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106, United States
| | - Zhifei Ye
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yurong Feng
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huabin Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hong-Wen Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
7
|
Li L, Zhang X, Ren Y, Yuan Q, Wang Y, Bao B, Li M, Tang Y. Chemiluminescent Conjugated Polymer Nanoparticles for Deep-Tissue Inflammation Imaging and Photodynamic Therapy of Cancer. J Am Chem Soc 2024; 146:5927-5939. [PMID: 38381576 DOI: 10.1021/jacs.3c12132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Deep-tissue optical imaging and photodynamic therapy (PDT) remain a big challenge for the diagnosis and treatment of cancer. Chemiluminescence (CL) has emerged as a promising tool for biological imaging and in vivo therapy. The development of covalent-binding chemiluminescence agents with high stability and high chemiluminescence resonance energy transfer (CRET) efficiency is urgent. Herein, we design and synthesize an unprecedented chemiluminescent conjugated polymer PFV-Luminol, which consists of conjugated polyfluorene vinylene (PFV) main chains and isoluminol-modified side chains. Notably, isoluminol groups with chemiluminescent ability are covalently linked to main chains by amide bonds, which dramatically narrow their distance, greatly improving the CRET efficiency. In the presence of pathologically high levels of various reactive oxygen species (ROS), especially singlet oxygen (1O2), PFV-Luminol emits strong fluorescence and produces more ROS. Furthermore, we construct the PFV-L@PEG-NPs and PFV-L@PEG-FA-NPs nanoparticles by self-assembly of PFV-Luminol and amphiphilic copolymer DSPE-PEG/DSPE-PEG-FA. The chemiluminescent PFV-L@PEG-NPs nanoparticles exhibit excellent capabilities for in vivo imaging in different inflammatory animal models with great tissue penetration and resolution. In addition, PFV-L@PEG-FA-NPs nanoparticles show both sensitive in vivo chemiluminescence imaging and efficient chemiluminescence-mediated PDT for antitumors. This study paves the way for the design of chemiluminescent probes and their applications in the diagnosis and therapy of diseases.
Collapse
Affiliation(s)
- Ling Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xinyi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yuxin Ren
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Qiong Yuan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yuze Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Benkai Bao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Meiqi Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
8
|
Yu M, Ye Z, Liu S, Zhu Y, Niu X, Wang J, Ao R, Huang H, Cai H, Liu Y, Chen X, Lin L. Redox-Active Ferrocene Quencher-Based Supramolecular Nanomedicine for NIR-II Fluorescence-Monitored Chemodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202318155. [PMID: 38109458 DOI: 10.1002/anie.202318155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/20/2023]
Abstract
Real-time monitoring of hydroxyl radical (⋅OH) generation is crucial for both the efficacy and safety of chemodynamic therapy (CDT). Although ⋅OH probe-integrated CDT agents can track ⋅OH production by themselves, they often require complicated synthetic procedures and suffer from self-consumption of ⋅OH. Here, we report the facile fabrication of a self-monitored chemodynamic agent (denoted as Fc-CD-AuNCs) by incorporating ferrocene (Fc) into β-cyclodextrin (CD)-functionalized gold nanoclusters (AuNCs) via host-guest molecular recognition. The water-soluble CD served not only as a capping agent to protect AuNCs but also as a macrocyclic host to encapsulate and solubilize hydrophobic Fc guest with high Fenton reactivity for in vivo CDT applications. Importantly, the encapsulated Fc inside CD possessed strong electron-donating ability to effectively quench the second near-infrared (NIR-II) fluorescence of AuNCs through photoinduced electron transfer. After internalization of Fc-CD-AuNCs by cancer cells, Fenton reaction between redox-active Fc quencher and endogenous hydrogen peroxide (H2 O2 ) caused Fc oxidation and subsequent NIR-II fluorescence recovery, which was accompanied by the formation of cytotoxic ⋅OH and therefore allowed Fc-CD-AuNCs to in situ self-report ⋅OH generation without undesired ⋅OH consumption. Such a NIR-II fluorescence-monitored CDT enabled the use of renal-clearable Fc-CD-AuNCs for efficient tumor growth inhibition with minimal side effects in vivo.
Collapse
Affiliation(s)
- Meili Yu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zhuangjie Ye
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Siqin Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yang Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Xuegang Niu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Rujiang Ao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hongwei Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huilan Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yina Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
9
|
Zhu XY, Wang TY, Jia HR, Wu SY, Gao CZ, Li YH, Zhang X, Shan BH, Wu FG. A ferroptosis-reinforced nanocatalyst enhances chemodynamic therapy through dual H 2O 2 production and oxidative stress amplification. J Control Release 2024; 367:892-904. [PMID: 38278369 DOI: 10.1016/j.jconrel.2024.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
The existence of a delicate redox balance in tumors usually leads to cancer treatment failure. Breaking redox homeostasis by amplifying oxidative stress and reducing glutathione (GSH) can accelerate cancer cell death. Herein, we construct a ferroptosis-reinforced nanocatalyst (denoted as HBGL) to amplify intracellular oxidative stress via dual H2O2 production-assisted chemodynamic therapy (CDT). Specifically, a long-circulating liposome is employed to deliver hemin (a natural iron-containing substrate for Fenton reaction and ferroptosis), β-lapachone (a DNA topoisomerase inhibitor with H2O2 generation capacity for chemotherapy), and glucose oxidase (which can consume glucose for starvation therapy and generate H2O2). HBGL can achieve rapid, continuous, and massive H2O2 and •OH production and GSH depletion in cancer cells, resulting in increased intracellular oxidative stress. Additionally, hemin can reinforce the ferroptosis-inducing ability of HBGL, which is reflected in the downregulation of glutathione peroxidase-4 and the accumulation of lipid peroxide. Notably, HBGL can disrupt endo/lysosomes and impair mitochondrial function in cancer cells. HBGL exhibits effective tumor-killing ability without eliciting obvious side effects, indicating its clinical translation potential for synergistic starvation therapy, chemotherapy, ferroptosis therapy, and CDT. Overall, this nanocatalytic liposome may be a promising candidate for achieving potentiated cancer treatment.
Collapse
Affiliation(s)
- Xiao-Yu Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Tian-Yu Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Hao-Ran Jia
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Shun-Yu Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Cheng-Zhe Gao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Yan-Hong Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Xinping Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China.
| |
Collapse
|
10
|
Zhang Y, Wang Y, Zhu A, Yu N, Xia J, Li J. Dual-Targeting Biomimetic Semiconducting Polymer Nanocomposites for Amplified Theranostics of Bone Metastasis. Angew Chem Int Ed Engl 2024; 63:e202310252. [PMID: 38010197 DOI: 10.1002/anie.202310252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Bone metastasis is a type of metastatic tumors that involves the spreads of malignant tumor cells into skeleton, and its diagnosis and treatment remain a big challenge due to the unique tumor microenvironment. We herein develop osteoclast and tumor cell dual-targeting biomimetic semiconducting polymer nanocomposites (SPFeNOC ) for amplified theranostics of bone metastasis. SPFeNOC contain semiconducting polymer and iron oxide (Fe3 O4 ) nanoparticles inside core and surface camouflaged hybrid membrane of cancer cells and osteoclasts. The hybrid membrane camouflage enables their targeting to both metastatic tumor cells and osteoclasts in bone metastasis through homologous targeting mechanism, thus achieving an enhanced nanoparticle accumulation in tumors. The semiconducting polymer mediates near-infrared (NIR) fluorescence imaging and sonodynamic therapy (SDT), and Fe3 O4 nanoparticles are used for magnetic resonance (MR) imaging and chemodynamic therapy (CDT). Because both cancer cells and osteoclasts are killed synchronously via the combinational action of SDT and CDT, the vicious cycle in bone metastasis is broken to realize high antitumor efficacy. Therefore, 4T1 breast cancer-based bone metastasis can be effectively detected and cured by using SPFeNOC as dual-targeting theranostic nanoagents. This study provides an unusual biomimetic nanoplatform that simultaneously targets osteoclasts and cancer cells for amplified theranostics of bone metastasis.
Collapse
Affiliation(s)
- Yijing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yue Wang
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, China
| | - Anni Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Ningyue Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
11
|
Liang L, Wang Y, Zhang C, Chang Y, Wang Y, Xue J, Wang L, Zhang F, Niu K. Oxygen self-supplied nanoparticle for enhanced chemiexcited photodynamic therapy. Biomed Mater 2023; 19:015013. [PMID: 38096591 DOI: 10.1088/1748-605x/ad15e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Photodynamic therapy (PDT) is a promising strategy for effective cancer treatment. However, it still faces severe challenges, including poor laser penetration and insufficient oxygen (O2) in solid tumors. Here, we constructed intelligent O2self-supplied nanoparticles (NPs) for tumor hypoxia relief as well as effective chemiexcited PDT. Oxygen-carrying NPs (BSA@TCPO NPs) were obtained via the self-assembly of bovine serum albumin (BSA), bis[3,4,6-trichloro2-(pentyloxycarbonyl)phenyl]oxalate (TCPO), perfluorohexane (PFH), and chlorin e6 (Ce6). In H2O2-overexpressed tumor cells, TCPO in the NPs reacted with H2O2, releasing energy to activate the photosensitizer Ce6 and generate cytotoxic singlet oxygen (1O2) to kill tumor cells in a laser irradiation-independent manner. Moreover, the O2carried by PFH not only reduced therapeutic resistance by alleviating tumor hypoxia but also increased1O2generation for enhanced chemiexcited PDT. The remarkable cytotoxicity to various cancer cell lines and A549 tumors demonstrated the advantage of BTPC in alleviating the hypoxic status and inhibiting tumor growth. Our results demonstrate that BTPC is a promising nanoplatform for cancer therapy.
Collapse
Affiliation(s)
- Liman Liang
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, People's Republic of China
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, People's Republic of China
| | - Yueying Wang
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, People's Republic of China
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, People's Republic of China
| | - Chensa Zhang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, People's Republic of China
| | - Yulu Chang
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, People's Republic of China
| | - Yuzi Wang
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, People's Republic of China
| | - Jinyan Xue
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, People's Republic of China
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, People's Republic of China
| | - Lu Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Fan Zhang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, People's Republic of China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Kui Niu
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, People's Republic of China
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, People's Republic of China
| |
Collapse
|
12
|
Guo Q, Feng Y, Song H, Sun M, Zhan Z, Lv Y. New Perylene-Based Chemiluminescent Polymer Nanoparticles for Highly Selective Detection of the Superoxide Anion In Vivo. Anal Chem 2023; 95:15102-15109. [PMID: 37779257 DOI: 10.1021/acs.analchem.3c03233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The superoxide anion (O2•-) is one of the primary reactive oxygen species in biological systems. Developing a determination system for O2•- in vivo has attracted much attention thanks to its complex biological function. Herein, we proposed a new perylene-based chemiluminescence (CL) probe, the SH-PDI polymer, which was capable of generating strong CL signals with O2•- in comparison with other ROS. The CL mechanism involved was proposed to be a kind of oxidation reaction induced by the breakage of the S-S and S-H bonds into sulfoxide bonds by O2•-. Subsequently, a nanoprecipitation method was introduced, using cumene-terminated poly(styrene-co-maleic anhydride) as the amphiphilic agent, to obtain water-soluble nanoparticles, SPPS NPs, which exhibited not only stronger CL intensity but also higher selectivity toward O2•- than the SH-PDI polymer. Moreover, the CL wavelength of the SPPS-O2•- system was found to be located at 580 and 710 nm, which was conducive to CL imaging. By virtue of these advantages, SPPS NPs were utilized to evaluate the O2•- level in vitro in the range of 0.25-60 μM at pH 7.0, with a detection limit of 8.2 × 10-8 M (S/N = 3). Moreover, SPPS NPs were also capable of imaging O2•- in an LPS-induced acute inflammation mice model and drug-induced acute kidney injury (AKI).
Collapse
Affiliation(s)
- Qi Guo
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yang Feng
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Mingxia Sun
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zixuan Zhan
- Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
13
|
Ma X, Mao M, He J, Liang C, Xie HY. Nanoprobe-based molecular imaging for tumor stratification. Chem Soc Rev 2023; 52:6447-6496. [PMID: 37615588 DOI: 10.1039/d3cs00063j] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The responses of patients to tumor therapies vary due to tumor heterogeneity. Tumor stratification has been attracting increasing attention for accurately distinguishing between responders to treatment and non-responders. Nanoprobes with unique physical and chemical properties have great potential for patient stratification. This review begins by describing the features and design principles of nanoprobes that can visualize specific cell types and biomarkers and release inflammatory factors during or before tumor treatment. Then, we focus on the recent advancements in using nanoprobes to stratify various therapeutic modalities, including chemotherapy, radiotherapy (RT), photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), ferroptosis, and immunotherapy. The main challenges and perspectives of nanoprobes in cancer stratification are also discussed to facilitate probe development and clinical applications.
Collapse
Affiliation(s)
- Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mingchuan Mao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jiaqi He
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, P. R. China.
| |
Collapse
|
14
|
Ding R, Liu D, Feng Y, Liu H, Ji H, He L, Liu S. Unexcited Light Source Imaging for Biomedical Applications. Chemistry 2023; 29:e202301689. [PMID: 37401914 DOI: 10.1002/chem.202301689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Optical imaging has a wide range of applications in the biomedical field, allowing the visualization of physiological processes and helping in the diagnosis and treatment of diseases. Unexcited light source imaging technologies, such as chemiluminescence imaging, bioluminescence imaging and afterglow imaging have attracted great attention in recent years because of the absence of excitation light interference in their application and the advantages of high sensitivity and high signal-to-noise ratio. In this review, the latest advances in unexcited light source imaging technology for biomedical applications are highlighted. The design strategies of unexcited light source luminescent probes in improving luminescence brightness, penetration depth, quantum yield and targeting, and their applications in inflammation imaging, tumor imaging, liver and kidney injury imaging and bacterial infection imaging are introduced in detail. The research progress and future prospects of unexcited light source imaging for medical applications are further discussed.
Collapse
Affiliation(s)
- Ruihao Ding
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 150040, Harbin, China
| | - Danqing Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 150040, Harbin, China
| | - Yu Feng
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 150040, Harbin, China
| | - Haoxin Liu
- Augustana Faculty, University of Alberta, T4V2R3, Camrose, Canada
| | - Hongrui Ji
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 150040, Harbin, China
| | - Liangcan He
- Key Laboratory of Micro-systems and, Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, 150001, Harbin, China
| | - Shaoqin Liu
- Key Laboratory of Micro-systems and, Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, 150001, Harbin, China
| |
Collapse
|
15
|
Xu H, Guo L, Duan W, Liu Y, Shuang S, Dong C. Engineering a gold nanoparticles-carbon dots nanocomposite with pH-flexibility for monitoring hydrogen peroxide released from living cells. Analyst 2023; 148:4012-4019. [PMID: 37486011 DOI: 10.1039/d3an00936j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Constructing nanozymes with satisfactory catalytic efficiency under physiological conditions is still in great demand for facilitating the advancement of biocatalysts. We herein present a gold nanoparticles-carbon dots nanocomposite (Au-CDs) as an efficient photo-activated nanozyme for monitoring H2O2 released from living cells. The integration of CDs with AuNPs remarkably accelerates the catalytic activity at neutral pH via engaging Mn3+ ions as the mediators. Meanwhile, the reserved cyclodextrin cavities also enhance the adsorption capacity towards chromogenic substrates through host-guest interactions. Moreover, taking advantage of the inhibitory effect of H2O2 on the photo-oxidation ability of the Au-CDs nanocomposite, the Au-CDs based colorimetric method was able to realize in situ assessment of the hydrogen peroxide (H2O2) released from living cells. This method paves a new way to establish a promising biosensing platform for unraveling biological events.
Collapse
Affiliation(s)
- Hongmei Xu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China.
| | - Lili Guo
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China.
| | - Weijiang Duan
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China.
| | - Yang Liu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China.
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China.
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China.
| |
Collapse
|
16
|
Liao S, Zhou M, Wang Y, Lu C, Yin B, Zhang Y, Liu H, Yin X, Song G. Emerging biomedical imaging-based companion diagnostics for precision medicine. iScience 2023; 26:107277. [PMID: 37520706 PMCID: PMC10371849 DOI: 10.1016/j.isci.2023.107277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
The tumor heterogeneity, which leads to individual variations in tumor microenvironments, causes poor prognoses and limits therapeutic response. Emerging technology such as companion diagnostics (CDx) detects biomarkers and monitors therapeutic responses, allowing identification of patients who would benefit most from treatment. However, currently, most US Food and Drug Administration-approved CDx tests are designed to detect biomarkers in vitro and ex vivo, making it difficult to dynamically report variations of targets in vivo. Various medical imaging techniques offer dynamic measurement of tumor heterogeneity and treatment response, complementing CDx tests. Imaging-based companion diagnostics allow for patient stratification for targeted medicines and identification of patient populations benefiting from alternative therapeutic methods. This review summarizes recent developments in molecular imaging for predicting and assessing responses to cancer therapies, as well as the various biomarkers used in imaging-based CDx tests. We hope this review provides informative insights into imaging-based companion diagnostics and advances precision medicine.
Collapse
Affiliation(s)
- Shiyi Liao
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Mengjie Zhou
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Youjuan Wang
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Chang Lu
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Baoli Yin
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Ying Zhang
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Huiyi Liu
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Xia Yin
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Guosheng Song
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
17
|
Li X, Yue R, Guan G, Zhang C, Zhou Y, Song G. Recent development of pH-responsive theranostic nanoplatforms for magnetic resonance imaging-guided cancer therapy. EXPLORATION (BEIJING, CHINA) 2023; 3:20220002. [PMID: 37933379 PMCID: PMC10624388 DOI: 10.1002/exp.20220002] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2023]
Abstract
The acidic characteristic of the tumor site is one of the most well-known features and provides a series of opportunities for cancer-specific theranostic strategies. In this regard, pH-responsive theranostic nanoplatforms that integrate diagnostic and therapeutic capabilities are highly developed. The fluidity of the tumor microenvironment (TME), with its temporal and spatial heterogeneities, makes noninvasive molecular magnetic resonance imaging (MRI) technology very desirable for imaging TME constituents and developing MRI-guided theranostic nanoplatforms for tumor-specific treatments. Therefore, various MRI-based theranostic strategies which employ assorted therapeutic modes have been drawn up for more efficient cancer therapy through the raised local concentration of therapeutic agents in pathological tissues. In this review, we summarize the pH-responsive mechanisms of organic components (including polymers, biological molecules, and organosilicas) as well as inorganic components (including metal coordination compounds, metal oxides, and metal salts) of theranostic nanoplatforms. Furthermore, we review the designs and applications of pH-responsive theranostic nanoplatforms for the diagnosis and treatment of cancer. In addition, the challenges and prospects in developing theranostic nanoplatforms with pH-responsiveness for cancer diagnosis and therapy are discussed.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Guoqiang Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Cheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Ying Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| |
Collapse
|
18
|
Li Y, Yin B, Song Y, Chen K, Chen X, Zhang Y, Yu N, Peng C, Zhang X, Song G, Liu S. A novel ROS-Related chemiluminescent semiconducting polymer nanoplatform for acute pancreatitis early diagnosis and severity assessment. J Nanobiotechnology 2023; 21:173. [PMID: 37254105 DOI: 10.1186/s12951-023-01937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/23/2023] [Indexed: 06/01/2023] Open
Abstract
Acute pancreatitis (AP) is a common and potentially life-threatening inflammatory disease of the pancreas. Reactive oxygen species (ROS) play a key role in the occurrence and development of AP. With increasing ROS levels, the degree of oxidative stress and the severity of AP increase. However, diagnosing AP still has many drawbacks, including difficulties with early diagnosis and undesirable sensitivity and accuracy. Herein, we synthesized a semiconducting polymer nanoplatform (SPN) that can emit ROS-correlated chemiluminescence (CL) signals. The CL intensity increased in solution after optimization of the SPN. The biosafety of the SPN was verified in vitro and in vivo. The mechanism and sensitivity of the SPN for AP early diagnosis and severity assessment were evaluated in three groups of mice using CL intensity, serum marker evaluations and hematoxylin and eosin staining assessments. The synthetic SPN can be sensitively combined with different concentrations of ROS to produce different degrees of high-intensity CL in vitro and in vivo. Notably, the SPN shows an excellent correlation between CL intensity and AP severity. This nanoplatform represents a superior method to assess the severity of AP accurately and sensitively according to ROS related chemiluminescence signals. This research overcomes the shortcomings of AP diagnosis in clinical practice and provides a novel method for the clinical diagnosis of pancreatitis in the future.
Collapse
Affiliation(s)
- Yuhang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, 61 Jiefang Road, Changsha, 410005, Hunan, China
- Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410015, China
| | - Baoli Yin
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yinghui Song
- Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410015, China
| | - Kang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, 61 Jiefang Road, Changsha, 410005, Hunan, China
| | - Xu Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, 61 Jiefang Road, Changsha, 410005, Hunan, China
| | - Yujing Zhang
- Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410015, China
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Nanhui Yu
- Department of Gastrointestinal Surgery, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, 61 Jiefang Road, Changsha, 410005, Hunan, China
| | - XiaoBing Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Guosheng Song
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, 61 Jiefang Road, Changsha, 410005, Hunan, China.
- Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410015, China.
| |
Collapse
|
19
|
Cardoso MA, Gonçalves HMR, Davis F. Reactive oxygen species in biological media are they friend or foe? Major In vivo and In vitro sensing challenges. Talanta 2023; 260:124648. [PMID: 37167678 DOI: 10.1016/j.talanta.2023.124648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/07/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
The role of Reactive Oxygen Species (ROS) on biological media has been shifting over the years, as the knowledge on the complex mechanism that lies in underneath their production and overall results has been growing. It has been known for some time that these species are associated with a number of health conditions. However, they also participate in the immunoactivation cascade process, and can have an active role in theranostics. Macrophages, for example, react to the presence of pathogens through ROS production, potentially allowing the development of new therapeutic strategies. However, their short lifetime and limited spatial distribution of ROS have been limiting factors to the development and understanding of this phenomenon. Even though, ROS have shown successful theranostic applications, e.g., photodynamic therapy, their wide applicability has been hampered by the lack of effective tools for monitoring these processes in real time. Thus the development of innovative sensing strategies for in vivo monitoring of the balance between ROS concentration and the resultant immune response is of the utmost relevance. Such knowledge could lead to major breakthroughs towards the development of more effective treatments for neurodegenerative diseases. Within this review we will present the current understanding on the interaction mechanisms of ROS with biological systems and their overall effect. Additionally, the most promising sensing tools developed so far, for both in vivo and in vitro tracking will be presented along with their main limitations and advantages. This review focuses on the four main ROS that have been studied these are: singlet oxygen species, hydrogen peroxide, hydroxyl radical and superoxide anion.
Collapse
Affiliation(s)
- Marita A Cardoso
- REQUIMTE, Instituto Superior de Engenharia Do Porto, 4200-072, Porto, Portugal
| | - Helena M R Gonçalves
- REQUIMTE, Instituto Superior de Engenharia Do Porto, 4200-072, Porto, Portugal; Biosensor NTech - Nanotechnology Services, Lda, Avenida da Liberdade, 249, 1° Andar, 1250-143, Lisboa, Portugal.
| | - Frank Davis
- Department of Engineering and Applied Design University of Chichester, Bognor Regis, West Sussex, PO21 1HR, UK
| |
Collapse
|
20
|
Xu X, Liu A, Liu S, Ma Y, Zhang X, Zhang M, Zhao J, Sun S, Sun X. Application of molecular dynamics simulation in self-assembled cancer nanomedicine. Biomater Res 2023; 27:39. [PMID: 37143168 PMCID: PMC10161522 DOI: 10.1186/s40824-023-00386-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Self-assembled nanomedicine holds great potential in cancer theragnostic. The structures and dynamics of nanomedicine can be affected by a variety of non-covalent interactions, so it is essential to ensure the self-assembly process at atomic level. Molecular dynamics (MD) simulation is a key technology to link microcosm and macroscale. Along with the rapid development of computational power and simulation methods, scientists could simulate the specific process of intermolecular interactions. Thus, some experimental observations could be explained at microscopic level and the nanomedicine synthesis process would have traces to follow. This review not only outlines the concept, basic principle, and the parameter setting of MD simulation, but also highlights the recent progress in MD simulation for self-assembled cancer nanomedicine. In addition, the physicochemical parameters of self-assembly structure and interaction between various assembled molecules under MD simulation are also discussed. Therefore, this review will help advanced and novice researchers to quickly zoom in on fundamental information and gather some thought-provoking ideas to advance this subfield of self-assembled cancer nanomedicine.
Collapse
Affiliation(s)
- Xueli Xu
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Ao Liu
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Shuangqing Liu
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yanling Ma
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Xinyu Zhang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Meng Zhang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Jinhua Zhao
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Shuo Sun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, 02115, USA
| | - Xiao Sun
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China.
| |
Collapse
|
21
|
Li M, Zhao M, Li J. Near-infrared absorbing semiconducting polymer nanomedicines for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1865. [PMID: 36284504 DOI: 10.1002/wnan.1865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 05/13/2023]
Abstract
As a new type of organic optical nanomaterials, semiconducting polymer nanoparticles (SPNs) have the advantages of good optical characteristics and photostability, low toxicity concerns, and relatively simple preparation processes. Particularly, near-infrared (NIR) absorbing SPNs have shown a great promise in biomedicine. In addition to acting as nanoprobes for molecular imaging, these SPNs can produce local heat and reactive oxygen species with the stimulation of NIR light, allowing photothermal therapy (PTT) and photodynamic therapy (PDT), respectively. Herein, we summarize the recent development of SPN-based nanomedicines for cancer therapy. The rational designs of SPNs for enhanced PTT, PDT, or combinational PTT/PDT to achieve effective ablation of tumor tissues are highlighted. Via loading/conjugating SPNs with other therapeutic elements (such as chemotherapeutic drugs and immunotherapeutic agents), phototherapy-combined chemotherapy or immunotherapy can be realized, which is then discussed. In especial, the constructions of SPN-based nanomedicines for NIR photoactivatable chemotherapy and immunotherapy are introduced with representative examples. Finally, we discuss the current challenges and key concerns of SPNs for their biomedical applications and give an outlook for their future clinical translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Ming Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| |
Collapse
|
22
|
Jin W, Fan B, Qin X, Liu Y, Qian C, Tang B, James TD, Chen G. Structure-activity of chlormethine fluorescent prodrugs: Witnessing the development of trackable drug delivery. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Li B, Ye X, Fu Y, Feng L, Xu J, Niu X, Ye H, You Z. Hollow MnO 2-Based Nanoprobes for Enhanced Photothermal/Photodynamic /Chemodynamic Co-Therapy of Hepatocellular Carcinoma. Pharm Res 2023; 40:1271-1282. [PMID: 36991228 DOI: 10.1007/s11095-023-03501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE The effect of monotherapy in cancer is frequently influenced by the tumor's unique hypoxic microenvironment, insufficient drug concentration at the treatment site, and tumour cells' increased drug tolerance. In this work, we expect to design a novel therapeutic nanoprobe with the ability to solve these problems and improve the efficacy of antitumor therapy. METHODS We have prepared a hollow manganese dioxide nanoprobes loaded with photosensitive drug IR780 for the photothermal/photodynamic/chemodynamic co-therapy of liver cancer. RESULTS The nanoprobe demonstrates efficient thermal transformation ability under a single laser irradiation, and under the synergistic influence of photo heat, accelerates the Fenton/ Fenton-like reaction efficiency based on Mn2+ ions to produce more ·OH under the synergistic effect of photo heat. Moreover, the oxygen released under the degradation of manganese dioxide further promotes the ability of photosensitive drugs to produce singlet oxygen (ROS). The nanoprobe has been found to efficiently destroy tumour cells in vivo and in vitro experiments when used in combination with photothermal/photodynamic/ chemodynamic modes of treatment under laser irradiation. CONCLUSION In all, this research shows that a therapeutic strategy based on this nanoprobe could be a viable alternative for cancer treatment in the near future.
Collapse
Affiliation(s)
- Bei Li
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiwen Ye
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lei Feng
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Jianrong Xu
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoya Niu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Hui Ye
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Zhen You
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610041, China.
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
24
|
Teng X, Ling Q, Liu T, Li L, Lu C. Nanomaterial-based chemiluminescence systems for tracing of reactive oxygen species in biosensors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
25
|
Arnett LP, Rana R, Chung WWY, Li X, Abtahi M, Majonis D, Bassan J, Nitz M, Winnik MA. Reagents for Mass Cytometry. Chem Rev 2023; 123:1166-1205. [PMID: 36696538 DOI: 10.1021/acs.chemrev.2c00350] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mass cytometry (cytometry by time-of-flight detection [CyTOF]) is a bioanalytical technique that enables the identification and quantification of diverse features of cellular systems with single-cell resolution. In suspension mass cytometry, cells are stained with stable heavy-atom isotope-tagged reagents, and then the cells are nebulized into an inductively coupled plasma time-of-flight mass spectrometry (ICP-TOF-MS) instrument. In imaging mass cytometry, a pulsed laser is used to ablate ca. 1 μm2 spots of a tissue section. The plume is then transferred to the CyTOF, generating an image of biomarker expression. Similar measurements are possible with multiplexed ion bean imaging (MIBI). The unit mass resolution of the ICP-TOF-MS detector allows for multiparametric analysis of (in principle) up to 130 different parameters. Currently available reagents, however, allow simultaneous measurement of up to 50 biomarkers. As new reagents are developed, the scope of information that can be obtained by mass cytometry continues to increase, particularly due to the development of new small molecule reagents which enable monitoring of active biochemistry at the cellular level. This review summarizes the history and current state of mass cytometry reagent development and elaborates on areas where there is a need for new reagents. Additionally, this review provides guidelines on how new reagents should be tested and how the data should be presented to make them most meaningful to the mass cytometry user community.
Collapse
Affiliation(s)
- Loryn P Arnett
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Rahul Rana
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Wilson Wai-Yip Chung
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Xiaochong Li
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mahtab Abtahi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Daniel Majonis
- Standard BioTools Canada Inc. (formerly Fluidigm Canada Inc.), 1380 Rodick Road, Suite 400, Markham, OntarioL3R 4G5, Canada
| | - Jay Bassan
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| |
Collapse
|
26
|
Wang X, Luo J, Wang J, Cao J, Hong Y, Wen Q, Zeng Y, Shi Z, Ma G, Zhang T, Huang P. Catalytically Active Metal-Organic Frameworks Elicit Robust Immune Response to Combination Chemodynamic and Checkpoint Blockade Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6442-6455. [PMID: 36700645 DOI: 10.1021/acsami.2c19476] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chemodynamic therapy (CDT) strategies rely on the generation of reactive oxygen species (ROS) to kill tumor cells, with hydroxyl radicals (•OH) serving as the key mediators of cytotoxicity in this setting. However, the efficacy of CDT approaches is often hampered by the properties of the tumor microenvironment (TME) and associated limitations to the Fenton reaction that constrains ROS generation. As such, there is a pressing need for the design of new nanoplatforms capable of improving CDT outcomes. In this study, an Fc-based metal-organic framework (MOF) vitamin k3 (Vk3)-loaded cascade catalytic nanoplatform (Vk3@Co-Fc) was developed. This platform was capable of undergoing TME-responsive degradation without impacting normal cells. After its release, Vk3 was processed by nicotinamide adenine dinucleotide hydrogen phosphate (NAD(P)H) quinone oxidoreductase-1 (NQO1), which is highly expressed in tumor cells, thereby yielding large quantities of H2O2 that in turn interact with Fe ions via the Fenton reaction to facilitate in situ cytotoxic •OH production. This process leads to immunogenic cell death (ICD) of the tumor, which then promotes dendritic cell maturation and ultimately increases T cell infiltration into the tumor site. When this nanoplatform was combined with programmed death 1 (PD-1) checkpoint blockade approaches, it was sufficient to enhance tumor-associated immune responses in breast cancer as evidenced by increases in the frequencies of CD45+ leukocytes and CD8+ cytotoxic T lymphocytes, thereby inhibiting tumor metastasis to the lungs and improving murine survival outcomes. Together, this Vk3@Co-Fc cascading catalytic nanoplatform enables potent cancer immunotherapy for breast cancer regression and metastasis prevention.
Collapse
Affiliation(s)
- Xue Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Jiali Luo
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Jing Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Jing Cao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Yurong Hong
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Qing Wen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Yiqing Zeng
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Zhan Shi
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Guangrong Ma
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou310009, P. R. China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou310009, P. R. China
| |
Collapse
|
27
|
Deng S, Li L, Zhang J, Wang Y, Huang Z, Chen H. Semiconducting Polymer Dots for Point-of-Care Biosensing and In Vivo Bioimaging: A Concise Review. BIOSENSORS 2023; 13:bios13010137. [PMID: 36671972 PMCID: PMC9855952 DOI: 10.3390/bios13010137] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 05/28/2023]
Abstract
In recent years, semiconducting polymer dots (Pdots) have attracted much attention due to their excellent photophysical properties and applicability, such as large absorption cross section, high brightness, tunable fluorescence emission, excellent photostability, good biocompatibility, facile modification and regulation. Therefore, Pdots have been widely used in various types of sensing and imaging in biological medicine. More importantly, the recent development of Pdots for point-of-care biosensing and in vivo imaging has emerged as a promising class of optical diagnostic technologies for clinical applications. In this review, we briefly outline strategies for the preparation and modification of Pdots and summarize the recent progress in the development of Pdots-based optical probes for analytical detection and biomedical imaging. Finally, challenges and future developments of Pdots for biomedical applications are given.
Collapse
|
28
|
Zhang X, Li C, Chen W, Wang G, Zou H, Liu H. Chemiluminescent polymeric nanoprobes for tumor diagnosis: A mini review. Front Chem 2023; 10:1106791. [PMID: 36700072 PMCID: PMC9870064 DOI: 10.3389/fchem.2022.1106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Chemiluminescence (CL), a distinct luminescent process by taking advantage of chemical reactions rather than external light source, has recently attracted considerable research interests due to its high sensitivity and low background signal. The sensitivity and specificity of chemiluminescent signals in complex tumor microenvironment provide a sound basis for accurate detection of tumors. Various chemiluminescent nanoprobes with superior performance have been obtained by structural modification of chemiluminescent units or introduction of fluorescent dyes. In this review, we focused on the recent progress of chemiluminescent polymeric systems based on various chromophore substrates, including luminol, peroxyoxalates, 1, 2-dioxetanes and their derivatives for tumor detecting. And we also emphasized the design strategies, mechanisms and diagnostic applications of representative chemiluminescent polymeric nanoprobes. Finally, the critical challenges and perspectives of chemiluminescent systems usage in tumor diagnosis were also discussed.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Central Laboratory, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China,*Correspondence: Xiaoyan Zhang, ; Hao Liu,
| | - Cong Li
- Central Laboratory, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Wenjuan Chen
- Central Laboratory, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Guanhua Wang
- Central Laboratory, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Huiru Zou
- Central Laboratory, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Hao Liu
- Central Laboratory, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China,*Correspondence: Xiaoyan Zhang, ; Hao Liu,
| |
Collapse
|
29
|
He X, Zhang S, Tian Y, Cheng W, Jing H. Research Progress of Nanomedicine-Based Mild Photothermal Therapy in Tumor. Int J Nanomedicine 2023; 18:1433-1468. [PMID: 36992822 PMCID: PMC10042261 DOI: 10.2147/ijn.s405020] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
With the booming development of nanomedicine, mild photothermal therapy (mPTT, 42-45°C) has exhibited promising potential in tumor therapy. Compared with traditional PTT (>50°C), mPTT has less side effects and better biological effects conducive to tumor treatment, such as loosening the dense structure in tumor tissues, enhancing blood perfusion, and improving the immunosuppressive microenvironment. However, such a relatively low temperature cannot allow mPTT to completely eradicate tumors, and therefore, substantial efforts have been conducted to optimize the application of mPTT in tumor therapy. This review extensively summarizes the latest advances of mPTT, including two sections: (1) taking mPTT as a leading role to maximize its effect by blocking the cell defense mechanisms, and (2) regarding mPTT as a supporting role to assist other therapies to achieve synergistic antitumor curative effect. Meanwhile, the special characteristics and imaging capabilities of nanoplatforms applied in various therapies are discussed. At last, this paper puts forward the bottlenecks and challenges in the current research path of mPTT, and possible solutions and research directions in future are proposed correspondingly.
Collapse
Affiliation(s)
- Xiang He
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Shentao Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Correspondence: Hui Jing; Wen Cheng, Department of Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People’s Republic of China, Tel +86 13304504935; +86 13313677182, Email ;
| |
Collapse
|
30
|
Liu C, Cheng S, Zhou X, Wang J, Mu P, Wang Z, Zhang L, Li L, Wang C. Selective Nanoblocker of Cellular Stress Response for Improved Drug-Free Tumor Therapy. Adv Healthc Mater 2022; 12:e2202893. [PMID: 36573808 DOI: 10.1002/adhm.202202893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/09/2022] [Indexed: 12/28/2022]
Abstract
Nanotechnology-based drug-free therapeutic systems using external stimuli can avoid the inherent side effects of drugs and become an attractive therapeutic strategy. However, the cellular stress responses (CSR) are activated encounter with external stimuli, which greatly weaken the efficacy of the drug-free antitumor. Thus, this work proposes a CSR regulation strategy and synthesizes the glucose oxidase (GOx)-modified Cu3 BiS3 nanosheets (CBSG NSs) encapsulated by calcium carbonate (CBSG@CaCO3 ) as the novel drug-free nanoagent. The CBSG@CaCO3 not only cause external stimuli such as energy consumption and oxidative stress damage, but also can destroy the CSR mechanism to guarantee optimal efficacy of starvation-chemodynamic therapy (ST-CDT). In tumor cells, the CaCO3 shell layer of CBSG@CaCO3 is rapidly degraded, releasing the slowly degradable CBSG NSs with NIR-II photothermal properties that accelerate the production of external stimuli under laser irradiation. Meanwhile, CaCO3 can block CSR to disrupt the adaptive viability of cancer cells by inhibiting expression of P27 and NRF2. Importantly, the CSR regulation achieves selective treatment on tumor cells based on the difference in physiological conditions between cancer cells and normal cells. This drug-free cancer therapy with selectivity improves the problem of poor efficacy under the action of CSR, which offers a new avenue in the cancer-related disease treatment.
Collapse
Affiliation(s)
- Cuimei Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Sihang Cheng
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xue Zhou
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Jue Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ping Mu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Zhongyao Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Lingyu Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Lu Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Chungang Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
31
|
Organic persistent luminescence imaging for biomedical applications. Mater Today Bio 2022; 17:100481. [PMID: 36388456 PMCID: PMC9647223 DOI: 10.1016/j.mtbio.2022.100481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/08/2022] Open
Abstract
Persistent luminescence is a unique visual phenomenon that occurs after cessation of excitation light irradiation or following oxidization of luminescent molecules. The energy stored within the molecule is released in a delayed manner, resulting in luminescence that can be maintained for seconds, minutes, hours, or even days. Organic persistent luminescence materials (OPLMs) are highly robust and their facile modification and assembly into biocompatible nanostructures makes them attractive tools for in vivo bioimaging, whilst offering an alternative to conventional fluorescence imaging materials for biomedical applications. In this review, we give attention to the existing limitations of each class of OPLM-based molecular bioimaging probes based on their luminescence mechanisms, and how recent research progress has driven efforts to circumvent their shortcomings. We discuss the multifunctionality-focused design strategies, and the broad biological application prospects of these molecular probes. Furthermore, we provide insights into the next generation of OPLMs being developed for bioimaging techniques.
Collapse
|
32
|
Alahmadi AF, Zuo J, Jäkle F. B-N Lewis pair-fused dipyridylfluorene copolymers incorporating electron-deficient benzothiadiazole comonomers. Polym J 2022. [DOI: 10.1038/s41428-022-00723-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Li J, Tian H, Zhu F, Jiang S, He M, Li Y, Luo Q, Sun W, Liu X, Wang P. Amorphous Ultra-Small Fe-Based Nanocluster Engineered and ICG Loaded Organo-Mesoporous Silica for GSH Depletion and Photothermal-Chemodynamic Synergistic Therapy. Adv Healthc Mater 2022; 11:e2201986. [PMID: 36106722 DOI: 10.1002/adhm.202201986] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/10/2022] [Indexed: 01/28/2023]
Abstract
Intracellular oxidative amplification can effectively destroy tumor cells. Additionally, Fe-mediated Fenton reaction often converts cytoplasm H2 O2 to generate extensive hypertoxic hydroxyl radical (• OH), leading to irreversible mitochondrion damage for tumor celleradication, which is widely famous as tumor chemodynamic therapy (CDT). Unfortunately, intracellular overexpressed glutathione (GSH) always efficiently scavenges • OH, resulting in the significantly reduced CDT effect. To overcome this shortcoming and improve the oxidative stress in cytoplasm, Fe3 O4 ultrasmall nanoparticle encapsulated and ICG loaded organo-mesoporous silica nanovehicles (omSN@Fe-ICG) are constructed to perform both photothermal and GSH depletion to enhance the Fenton-like CDT, by realizing intracellular oxidative stress amplification. After this nanoagents are internalized, the tetrasulfide bonds in the dendritic mesoporous framework can be decomposed with GSH to amplify the toxic ROS neration by selectively converting H2 O2 to hydroxyl radicals through the released Fe-based nanogranules. Furthermore, the NIR laser-induced hyperthermia can further improve the Fenton reaction rate that simultaneously destroyed the mitochondria. As a result, the GSH depletion and photothermal assisted CDT can remarkably improve the tumor eradication efficacy.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Rare earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China.,Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Haina Tian
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen, 361005, P. R. China
| | - Fukai Zhu
- Collaborative Innovation Center of Mushroom Health Industry, Minnan Normal University, Zhangzhou, Fujian, 363000, P. R. China
| | - Suhua Jiang
- Collaborative Innovation Center of Mushroom Health Industry, Minnan Normal University, Zhangzhou, Fujian, 363000, P. R. China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, P. R. China
| | - Yang Li
- School of Rare earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China.,Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Qiang Luo
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, P. R. China
| | - Xiaolong Liu
- School of Rare earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China.,Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Peiyuan Wang
- School of Rare earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China.,Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
34
|
Emerging NIR-II luminescent bioprobes based on lanthanide-doped nanoparticles: From design towards diverse bioapplications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Zheng GS, Shen CL, Lou Q, Han JF, Ding ZZ, Deng Y, Wu MY, Liu KK, Zang JH, Dong L, Shan CX. Meter-scale chemiluminescent carbon nanodot films for temperature imaging. MATERIALS HORIZONS 2022; 9:2533-2541. [PMID: 35829660 DOI: 10.1039/d2mh00495j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemiluminescence (CL), as one class of luminescence driven by chemical reaction, exhibits obvious temperature-dependence in its light emission process. Herein, temperature-dependent CL emission of carbon nanodots (CDs) in the chemical reaction of peroxalate and hydrogen peroxide is demonstrated and temperature imaging based on the temperature-dependent CL has been established for the first time. In detail, the temperature-dependent CL emission of CDs in the chemical reaction of peroxalate and hydrogen peroxide is observed, and the linear relationship between the CL intensity and temperature is demonstrated in both the CL solution and film, enabling their applications in temperature sensing and imaging capabilities. The increase of the CL emission with temperature can be attributed to the accelerated electron exchange between the CDs and intermediate generated in the peroxalate system. Meter-scale chemiluminescent CD films have been constructed. The CL sensor based on the films presents a high spatial resolution of 0.4 mm and an outstanding sensitivity of 0.08 °C-1, which is amongst the best values for the thermographic luminophores. With the unique temperature response and flexible properties, non-planar, meter-scale and sensitive palm temperature imaging has been achieved. These findings present new opportunities for designing CL-based temperature probes and thermography.
Collapse
Affiliation(s)
- Guang-Song Zheng
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Cheng-Long Shen
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Jiang-Fan Han
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhong-Zheng Ding
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Yuan Deng
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Meng-Yuan Wu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Jin-Hao Zang
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
36
|
Ma X, Zhang MJ, Wang J, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Emerging Biomaterials Imaging Antitumor Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204034. [PMID: 35728795 DOI: 10.1002/adma.202204034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Immunotherapy is one of the most promising clinical modalities for the treatment of malignant tumors and has shown excellent therapeutic outcomes in clinical settings. However, it continues to face several challenges, including long treatment cycles, high costs, immune-related adverse events, and low response rates. Thus, it is critical to predict the response rate to immunotherapy by using imaging technology in the preoperative and intraoperative. Here, the latest advances in nanosystem-based biomaterials used for predicting responses to immunotherapy via the imaging of immune cells and signaling molecules in the immune microenvironment are comprehensively summarized. Several imaging methods, such as fluorescence imaging, magnetic resonance imaging, positron emission tomography imaging, ultrasound imaging, and photoacoustic imaging, used in immune predictive imaging, are discussed to show the potential of nanosystems for distinguishing immunotherapy responders from nonresponders. Nanosystem-based biomaterials aided by various imaging technologies are expected to enable the effective prediction and diagnosis in cases of tumors, inflammation, and other public diseases.
Collapse
Affiliation(s)
- Xianbin Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Jingting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Tian Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
37
|
Chen W, Du W, Zhang H, Cheng L, Song L, Ma X, Hu Y, Wang J. Hemin-loaded black phosphorus-based nanosystem for enhanced photodynamic therapy and a synergistic photothermally/photodynamically activated inflammatory immune response. BIOMATERIALS ADVANCES 2022; 140:213091. [PMID: 36041322 DOI: 10.1016/j.bioadv.2022.213091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The biocompatible nanosystem integrating hemin into black phosphorus nanosheets was ingeniously constructed through the easy modified strategy. Taking advantage of the enhanced permeability and retention (EPR) effect, the designed nanosystem could accumulate into the tumor location, leading to attractive cytotoxicity through the enhanced photodynamic therapy (PDT) ascribing to the catalytic oxygen supply and GSH depletion of hemin. Simultaneously, combining PDT and photothermal therapy (PTT) showed an apparent promotion in anti-tumor effect. Moreover, inflammatory response and immune activation amplified anti-tumor effect, which could compensate limitations of exogenous therapy (i.e., limited tissue depth and intensity-dependent curation effect) and potentiate the efficiency of the endogenous immune-activating behavior. Especially, the designed nanosystem degraded followed by being metabolized in the blood circulation. By and large, this constructed nanosystem provides the new insight into designing biocompatible nanomaterials and paves the ideal way for anti-tumor therapy. STATEMENT OF SIGNIFICANCE: Biocompatible nanomaterials-based synergistic tumor therapy offers the potential application prospect. Taking advantage of degradable black phosphorus, the nanosystem integrating hemin into black phosphorus for the enhanced photodynamic therapy and synergistic photothermal-photodynamic activating inflammation-immune response was developed and the results demonstrate that tumor growth was inhibited followed by activating inflammatory factors and leading to satisfactory immune response.
Collapse
Affiliation(s)
- Weijian Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China; Department of thyroid and breast Surgery, The First Affiliated Hospital of USTC, Tian'ehu Road 1, Hefei, Anhui, PR China; State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China
| | - Wenxiang Du
- School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China; Department of thyroid and breast Surgery, The First Affiliated Hospital of USTC, Tian'ehu Road 1, Hefei, Anhui, PR China; State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China
| | - Hongjie Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China; Department of thyroid and breast Surgery, The First Affiliated Hospital of USTC, Tian'ehu Road 1, Hefei, Anhui, PR China; State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China
| | - Liang Cheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China
| | - Xiaopeng Ma
- Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China; Department of thyroid and breast Surgery, The First Affiliated Hospital of USTC, Tian'ehu Road 1, Hefei, Anhui, PR China
| | - Yuan Hu
- School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, PR China; State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China.
| | - Jing Wang
- Department of thyroid and breast Surgery, The First Affiliated Hospital of USTC, Tian'ehu Road 1, Hefei, Anhui, PR China; State Key Laboratory of Fire Science, University of Science and Technology of China, Huangshan Road 443, Hefei, Anhui, PR China.
| |
Collapse
|
38
|
Li Q, Wang F, Shi L, Tang Q, Li B, Wang X, Jin Y. Nanotrains of DNA Copper Nanoclusters That Triggered a Cascade Fenton-Like Reaction and Glutathione Depletion to Doubly Enhance Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37280-37290. [PMID: 35968633 DOI: 10.1021/acsami.2c05944] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many current chemodynamic therapy (CDT) strategies suffer from either low therapeutic efficiency or the deficiency of poor targeting. The low therapeutic efficiency is mainly ascribed to the intracellular antioxidant system and the inefficient Fenton reaction in the weakly acidic tumor microenvironment (TME). Herein, by exploitation of the diverse function and programmability of functional nucleic acid, aptamer-tethered nanotrains of DNA copper nanoclusters (aptNTDNA-CuNCs) were assembled to simultaneously achieve targeted recognition, loading, and delivery of CDT reagents into tumor cells without an external carrier. The intracellular hydrogen peroxide (H2O2) oxidized nanotrains of DNA-CuNCs to produce a lot of Cu2+ and Cu+ ions, which can generate reactive oxygen species (ROS) in the weakly acidic TME based on the pH-independent Fenton-like reaction of Cu+/H2O2. Meanwhile, the redox reaction between intracellular glutathione (GSH) and Cu2+ depleted GSH and generated Cu+ ions, which weakened the antioxidant ability of cancer cells and further enhanced the Fenton-like reaction of Cu+/H2O2, respectively. Thus, the cascade Fenton-like reaction and GSH depletion doubly improved the efficacy of CDT. The in vivo and in vitro study solidly confirmed that aptNTDNA-CuNCs have excellent antitumor efficacy and no cytotoxicity to healthy cells. Therefore, aptNTDNA-CuNCs can act as CDT reagents to achieve highly efficient, biocompatible, and targeted CDT.
Collapse
Affiliation(s)
- Qianqian Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fei Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| |
Collapse
|
39
|
Bai Y, Shang Q, Wu J, Zhang H, Liu C, Liu K. Supramolecular Self-Assemblies with Self-Supplying H 2O 2 and Self-Consuming GSH Property for Amplified Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37424-37435. [PMID: 35947436 DOI: 10.1021/acsami.2c09912] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fe-based chemodynamic therapy (CDT) has become one potential method for cancer therapy due to its lower side effect and tumor-specific property. During the process of CDT, the lack of active targeting and biodegradable ability, insufficient endogenous H2O2, and overexpressed GSH in the tumor were responsible for the unsatisfactory therapeutic performance. Hence, we report host-guest interaction-based supramolecular polymers (HGSPs) that were constructed with the biomacromolecule β-cyclodextrin-grafted hyaluronic acid (HA-CD) as the active targeting host unit and hydrophobic ROS-responsive ferrocene-(phenylboronic acid pinacol ester) (Fc-BE) as the guest unit. HGSPs can further self-assemble into self-assemblies (HGSAs) and encapsulate PA as the prooxidant. After CD44-receptor-mediated cellular internalization, HGSAs could disassemble and release PA to elevate the H2O2 level for the production of higher cytotoxic hydroxyl radicals (•OH) through the Fc-induced Fenton reaction. Moreover, quinone methide (QM) was generated to downregulate antioxidant GSH. The enhancement of H2O2 and consumption of GSH were favorable for CDT due to the amplified oxidative stress. In vivo experimental results indicated that HGSAs@PA might be used as an active targeting amplified CDT agent.
Collapse
Affiliation(s)
- Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingqing Shang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jing Wu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haitao Zhang
- School of Light Industry Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Caiping Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Kun Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
40
|
Xian J, Luo S, Xue J, Zhang L, Fu Z, Ouyang H. Synergetic Dual-Site Atomic Catalysts for Sensitive Chemiluminescent Immunochromatographic Test Strips. Anal Chem 2022; 94:11449-11456. [PMID: 35938606 DOI: 10.1021/acs.analchem.2c02914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In view of the outstanding catalytic efficiency, single-atom catalysts (SACs) have shown great promise for the construction of sensitive chemiluminescent (CL) platforms. However, the low loading amount of active sites dramatically obstructs the improved catalytic activity of these metal SACs. Benefiting from the exceedingly unique catalytic properties of the metal-metal bonds, atomic clusters may give rise to enhancing the catalytic properties of SACs based on the synergistic effects of dual atomic-scale sites. Inspired by this, atomic Co3N clusters-assisted Co SACs (Co3N@Co SACs) were synthesized through a facile doping method. Through X-ray absorption spectroscopy, the active metal sites in the synergetic dual-site atomic catalysts of Co3N@Co SACs were confirmed to be Co-O4 and Co3-N moieties. Co3N@Co SACs served as a superior co-reactant to remarkably enhance the luminol CL signal by 2155.0 times, which was prominently superior to the boosting effect of the pure Co SACs (98.4 times). The synergetic dual-site atomic catalysts contributed to accelerating the decomposition of H2O2 into singlet oxygen as well as superoxide radical anions to display superb catalytic performances. For a concept employment, Co3N@Co SACs were attempted to utilize as CL probes for establishing a sensitive immunochromatographic assay to quantitate pesticide residues, in which imidacloprid was adopted as the model analyte. The quantitative range of imidacloprid was 0.05-10 ng mL-1 with a detection limit of 1.7 pg mL-1 (3σ). Furthermore, the satisfactory recovery values in mock herbal medicine samples demonstrated the effectiveness of the proposed Co3N@Co SAC-based CL platform. In the proof-of-concept work, synergetic dual-site atomic catalysts show great perspectives on trace analysis and luminescent biosensing.
Collapse
Affiliation(s)
- Jiaxin Xian
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shuai Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jinxia Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lvxia Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hui Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
41
|
Wang Q, Qiu W, Li M, Li N, Li X, Qin X, Wang X, Yu J, Li F, Huang L, Wu D. Mussel-inspired multifunctional hydrogel dressing with hemostasis, hypoglycemic, photothermal antibacterial properties on diabetic wounds. Biomater Sci 2022; 10:4796-4814. [PMID: 35852356 DOI: 10.1039/d2bm00433j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To meticulously establish an efficient photothermal multifunctional hydrogel dressing is a prospective strategy for the treatment of diabetic chronic wounds. Herein, glucose oxidase (GOx) was added to polydopamine/acrylamide (PDA/AM) hydrogels to reduce hyperglycemia to a normal level (3.9-6.1 mmol L-1) and enhance compressive properties (55 kPa) and adhesive properties (32.69 kPa), which are capable of hemostasis in the wound. Then, MnO2 nanoparticles were encapsulated into a polydopamine/acrylamide (PDA/AM) hydrogel, endowing it with excellent antibacterial properties (E. coli and S. aureus were 97.87% and 99.99%) under the irradiation of 808 nm NIR; meanwhile, the biofilm was eliminated completely. Besides, O2 was generated (18 mg mL-1) by the decomposition of H2O2 under the catalysis of MnO2, which could accelerate the formation of angiogenesis and promote the crawling and proliferation of cells. Furthermore, the diabetic wound in vivo treated with the PDA/AM/GOx/MnO2 hydrogel had a less inflammatory response and faster healing speed, which was completely healed in 14 days. Therefore, the multifunctional hydrogels with the capability of high compressible, hemostasis, antibacterial, hyperglycemia manipulation, and O2 generation, demonstrate promise in diabetic chronic wound dressing.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Weiwang Qiu
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Mengna Li
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Na Li
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Xiaohong Qin
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Xueli Wang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Faxue Li
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China. .,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Liqian Huang
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China. .,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Dequn Wu
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China. .,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
42
|
Yang X, Shao G, Zhang Y, Wang W, Qi Y, Han S, Li H. Applications of Magnetic Particle Imaging in Biomedicine: Advancements and Prospects. Front Physiol 2022; 13:898426. [PMID: 35846005 PMCID: PMC9285659 DOI: 10.3389/fphys.2022.898426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
Magnetic particle imaging (MPI) is a novel emerging noninvasive and radiation-free imaging modality that can quantify superparamagnetic iron oxide nanoparticles tracers. The zero endogenous tissue background signal and short image scanning times ensure high spatial and temporal resolution of MPI. In the context of precision medicine, the advantages of MPI provide a new strategy for the integration of the diagnosis and treatment of diseases. In this review, after a brief explanation of the simplified theory and imaging system, we focus on recent advances in the biomedical application of MPI, including vascular structure and perfusion imaging, cancer imaging, the MPI guidance of magnetic fluid hyperthermia, the visual monitoring of cell and drug treatments, and intraoperative navigation. We finally optimize MPI in terms of the system and tracers, and present future potential biomedical applications of MPI.
Collapse
Affiliation(s)
- Xue Yang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | | | - Yanyan Zhang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Yu Qi
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Shuai Han
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Hongjun Li
- Beijing You’an Hospital, Capital Medical University, Beijing, China,*Correspondence: Hongjun Li,
| |
Collapse
|
43
|
Tian B, Wang C, Du Y, Dong S, Feng L, Liu B, Liu S, Ding H, Gai S, He F, Yang P. Near Infrared-Triggered Theranostic Nanoplatform with Controlled Release of HSP90 Inhibitor for Synergistic Mild Photothermal and Enhanced Nanocatalytic Therapy with Hypoxia Relief. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200786. [PMID: 35661402 DOI: 10.1002/smll.202200786] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Mild photothermal therapy (PTT, <45 °C) can prevent tumor metastasis and heat damage to normal tissue, compared with traditional PTT (>50 °C). However, its therapeutic efficacy is limited owing to the hypoxic tumor environment and tumor thermoresistance owing to the overproduction of heat shock proteins (HSPs). Herein, a near-infrared (NIR)-triggered theranostic nanoplatform (GA-PB@MONs@LA) is designed for synergistic mild PTT and enhanced Fenton nanocatalytic therapy against hypoxic tumors. The nanoplatform is fabricated by the confined formation of Prussian blue (PB) nanoparticles in mesoporous organosilica nanoparticles (MONs), followed by the loading of gambogic acid (GA), an HSP90 inhibitor, and coating with thermo-sensitive lauric acid (LA). Upon NIR irradiation, the photothermal effect (44 °C) of PB not only induces apoptosis of tumor cells but also triggers the on-demand release of GA, inhibiting the production of HSP90. Moreover, the delivered heat simultaneously enhances the catalase-like and Fenton activity of PB@MONs@LA in an acidic tumor microenvironment, relieving the tumor hypoxia and promoting the generation of highly toxic •OH. In addition, the nanoplatform enables magnetic resonance/photoacoustic dual-modal imaging. Thus, this study describes a distinctive paradigm for the development of NIR-triggered theranostic nanoplatforms for enhanced cancer therapy.
Collapse
Affiliation(s)
- Boshi Tian
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou, 466001, P. R. China
| | - Chen Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, P. R. China
| | - Yaqian Du
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shikai Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, P. R. China
| |
Collapse
|
44
|
Wang X, Song K, Fan Y, Du J, Liu J, Xu J, Zheng L, Ouyang R, Li Y, Miao Y, Zhang D. Ultrasound-triggered reactive oxygen species effector nanoamplifier for enhanced combination therapy of mutant p53 tumors. Colloids Surf B Biointerfaces 2022; 215:112489. [PMID: 35395477 DOI: 10.1016/j.colsurfb.2022.112489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
Reactive oxygen species (ROS) damage is a crucial method with which to inhibit tumor cell proliferation; however, tumor cells can reduce ROS damage by modulating multiple repair mechanisms, thus, reducing the efficacy of ROS damage in tumor therapy. In this study, we built an ultrasound-triggered ROS damage nanoamplifier using a synergistic strategy consisting of ROS damage and decreased tumor self-protection capability to enhance the treatment efficacy of mutant p53 tumors. A ROS damage nanoamplifier (PT@PTGA) was fabricated using amphiphilic polyglutamic acid (PTGA) to load with a sonosensitizer (protoporphyrin IX, PpIX) and an MTH1 inhibitor (TH287). Under ultrasonic excitation, PpIX catalyzes oxygen to produce singlet oxygen and release TH287 to inhibit MTH1 activity, thereby causing the accumulation of 8-oxo-dGTP, which enhances DNA damage and further induces cell apoptosis. In addition, TH287 allies with ROS to eliminate the mutated p53 protein in tumor cells, thus reducing the self-protective capacity of tumor cells. As a result, the "internal and external" aspects were combined to enhance sensitization for mutant p53 tumor therapy. The construction of a ROS nanoamplifier not only provides an effective strategy for the treatment of mutant p53 tumors but also supplies an integrated platform for tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Xiang Wang
- Institute of Bismuth and Rhenium Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kang Song
- Institute of Bismuth and Rhenium Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Fan
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- Institute of Bismuth and Rhenium Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinliang Liu
- Institute of Bismuth and Rhenium Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiayu Xu
- Institute of Bismuth and Rhenium Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- Institute of Bismuth and Rhenium Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
45
|
Li Y, Zhu B, Han W, Tang W, Duan X. A bright chemiluminescence conjugated polymer-mesoporous silica nanoprobe for imaging of colonic tumors in vivo. Analyst 2022; 147:2060-2067. [PMID: 35437532 DOI: 10.1039/d2an00294a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypochlorite acid (ClO-) is one of the major reactive oxygen species (ROS) in colon cancer, providing an effective target for colonic tumor in vivo imaging. For detection of ClO- and tumor imaging, poly[(9,9-di(2-ethylhexyl)-9H-fluorene-2,7-vinylene)-co-(1-methoxy-4-(2-ethylhexyloxy)-2,5-phenylenevinylene)] (PFV-co-MEHPV, namely CP1) was encapsulated in mesoporous silica nanoparticles (MSNs) that were pre-modified with polyphenylenevinylene (PPV) via in situ polymerization to construct bright PPV@MSN-CP1 nanoparticles. The synthesized nanoparticles were size-stable and not cytotoxic as confirmed by FE-TEM, FE-SEM, and MTT assay. Hypochlorite oxidizes the vinylidene bond of CP1 through π2-π2 cycloaddition to form PPV-dioxetane intermediates to generate photons. The CL quantum yield of PPV@MSN-CP1 was 16.7 times higher than that of Pluronic F-127 wrapped CP1. CL nanoparticles PPV@MSN-CP1 have good selectivity for hypochlorite detection among biological oxidants (mainly ROS). The linear range and the LOD of PPV@MSN@CP1 for ClO- detection are 4-90 and 1.02 μM, respectively. Subsequently, we further coated PPV@MSN@CP1 with folic acid for tumor targeting by phospholipid wrapping. PPV@MSN-CP1@FA was successfully applied for in vivo imaging of endogenously produced ClO- of tumor tissue in living animals.
Collapse
Affiliation(s)
- Yukun Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Beibei Zhu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Wanying Han
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Wei Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| |
Collapse
|
46
|
Qiao L, Yang H, Shao XX, Yin Q, Fu XJ, Wei Q. Research Progress on Nanoplatforms and Nanotherapeutic Strategies in Treating Glioma. Mol Pharm 2022; 19:1927-1951. [DOI: 10.1021/acs.molpharmaceut.1c00856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li Qiao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Huishu Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin-xin Shao
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Qiuyan Yin
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xian-Jun Fu
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
- Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingcong Wei
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
47
|
Discovering ester and ether derivatives of luminol as advanced chemiluminescence probes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Ling B, Wang Y, Mi R, Wang D, Chen H, Li X, Zhang Y, Wang L. Multimodal Imaging and Synergetic Chemodynamic/Photodynamic Therapy Achieved Using an NaGdF4,Yb,Er@ NaGdF4,Yb,Tm@NaYF4@Fe-MOFs Nanocomposite. Chem Asian J 2022; 17:e202200161. [PMID: 35485259 DOI: 10.1002/asia.202200161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/13/2022] [Indexed: 11/08/2022]
Abstract
Here, NaGdF 4 ,Yb,Er@NaGdF 4 ,Yb,Tm@NaYF 4 core@shell@shell three-layer structure of upconversion nanoparticles (UCNPs) coated with Fe-Tetrakis (4-carboxyphenyl) porphine (TCPP) metal-organic frameworks (Fe-MOFs) nanocomposite (UCNPs@MOFs) was designed and constructed for multimodal imaging and synergetic chemodynamic therapy (CDT)/photodynamic therapy (PDT) of tumors. The UCNPs@MOFs were successfully applied for tumor cells imaging in vitro and in vivo in near-infrared (NIR) region. The doped Gd was used as contrast agent for the magnetic resonance imaging (MRI) of mouse tumors. The luminescence in the UV-vis region was absorbed by the Fe-MOFs to produce singlet oxygen ( 1 O 2 ) for PDT. The Fe 3+ doped in the MOFs can catalyze H 2 O 2 to produce oxygen and hydroxyl radical (•OH). Hydroxyl radical is used in CDT and cooperates with the 1 O 2 of PDT. Based on the CDT/PDT synergistic effects, the UCNPs@MOFs nanocomposite had obviously enhanced tumor inhibitory efficiency in vivo. These results described that the asprared UCNPs@MOFs nanocomposite have great potential in the effective multimodal imaging and treatment of tumors.
Collapse
Affiliation(s)
- Bo Ling
- Anhui Normal University, College of Chemistry and Materials Science, CHINA
| | - Yaguang Wang
- Anhui Medical University, Department of Anesthesia and perioperative Medicine, CHINA
| | - Ruo Mi
- Anhui Normal University, College of Chemistry and Materials Science, CHINA
| | - Di Wang
- Anhui Medical University, Department of Anesthesia and perioperative Medicine, CHINA
| | - Hongqi Chen
- Anhui Normal University, college of chemistry and materials science, wuhu, 241002, wuhu, CHINA
| | - Xiaohu Li
- Anhui Medical University, Department of Radiology, CHINA
| | - Ye Zhang
- Anhui Medical University, Department of Anesthesia and perioperative Medicine, CHINA
| | - Lun Wang
- Anhui Normal University, College of Chemistry and Materials Science, CHINA
| |
Collapse
|
49
|
Iizuka D, Gon M, Tanaka K, Chujo Y. Acceleration of Chemiluminescence Reactions with Coumarin-modified Polyhedral Oligomeric Silsesquioxane. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daisuke Iizuka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
50
|
Zhang X, Zeng Z, Liu H, Xu L, Sun X, Xu J, Song G. Recent development of a magneto-optical nanoplatform for multimodality imaging of pancreatic ductal adenocarcinoma. NANOSCALE 2022; 14:3306-3323. [PMID: 35170601 DOI: 10.1039/d1nr08394e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. Given its inconspicuous and atypical early symptoms and hidden location, most patients have already reached the terminal stage before diagnosis. At present, the diagnosis of PDAC mainly depends on serological and imaging examinations. However, serum tests cannot identify specific tumor locations and each imaging technology has its own defects, bringing great challenges to the early diagnosis of PDAC. Therefore, it is of great significance to find new strategies for the early and accurate diagnosis of PDAC. In recent years, a magneto-optical nanoplatform integrating near infrared fluorescence, photoacoustic, magnetic resonance imaging, etc. has attracted widespread attention, giving full play to the complementary advantages of each imaging modality. Herein, we summarize the recent advances of imaging modalities in the diagnosis of pancreatic cancer, and then discuss in detail the construction and modification of magneto or/and optical probes for multimodal imaging, and advances in early diagnosis using the combination of various imaging modalities, which can provide potential tools for the early diagnosis or even intraoperative navigation and post-treatment follow-up of PDAC patients.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
- Department of Ophthalmology and Otolaryngology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.
| | - Zhiming Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
- Department of Ophthalmology and Otolaryngology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.
| | - Huiyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Li Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Xin Sun
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jing Xu
- Department of Ophthalmology and Otolaryngology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|