1
|
Mokhtar A, Akaishi Y, Tokudome K, Kim S, Kosumi D, Kida T, Fukaminato T. Investigation on luminescence photoswitching stability in diarylethene-perovskite quantum dot hybrids. Photochem Photobiol Sci 2024:10.1007/s43630-024-00647-x. [PMID: 39428422 DOI: 10.1007/s43630-024-00647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Perovskite quantum dots (pQDs) have gathered a lot of attention because of their outstanding optoelectronic properties. Photoswitchable pQDs have the potential for application in single particle optical memories and bio-imaging. Hybrids of photochromic diarylethenes (DAE) and pQDs show a luminescence photoswitching property, however, the cycle stability in such systems is low because of photoinduced electron transfer (PET) from pQDs to DAE. In this study, various hybrids of DAEs and pQDs with different spacer lengths between the pQD donors and DAE acceptors were synthesized and their stability towards multiple cycles of luminescence photoswitching was evaluated. It was found that the electron transfer pathway can be blocked and very stable switchable hybrids can be produced when the distance between the donors and acceptors was long enough. Furthermore, the effect of softness of the basic ligands and the synthesis method of the pQDs on the cycle stability of the hybrids were investigated. The findings of this study suggest that the photoswitching stability can be improved in hybrid systems by proper molecular design of the photochromic molecule.
Collapse
Affiliation(s)
- Ashkan Mokhtar
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yuji Akaishi
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Keisuke Tokudome
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Sunnam Kim
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Daisuke Kosumi
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Tetsuya Kida
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Tsuyoshi Fukaminato
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
2
|
Tang B, Wei Q, Wang S, Liu H, Mou N, Liu Q, Wu Y, Portniagin AS, Kershaw SV, Gao X, Li M, Rogach AL. Ultraviolet Circularly Polarized Luminescence in Chiral Perovskite Nanoplatelet-Molecular Hybrids: Direct Binding Versus Efficient Triplet Energy Transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311639. [PMID: 38204283 DOI: 10.1002/smll.202311639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 01/12/2024]
Abstract
The development of ultraviolet circularly polarized light (UVCPL) sources has the potential to benefit plenty of practical applications but remains a challenge due to limitations in available material systems and a limited understanding of the excited state chirality transfer. Herein, by constructing hybrid structures of the chiral perovskite CsPbBr3 nanoplatelets and organic molecules, excited state chirality transfer is achieved, either via direct binding or triplet energy transfer, leading to efficient UVCPL emission. The underlying photophysical mechanisms of these two scenarios are clarified by comprehensive optical studies. Intriguingly, UVCPL realized via the triple energy transfer, followed by the triplet-triplet annihilation upconversion processes, demonstrates a 50-fold enhanced dissymmetry factor glum. Furthermore, stereoselective photopolymerization of diacetylene monomer is demonstrated by using such efficient UVCPL. This study provides both novel insights and a practical approach for realizing UVCPL, which can also be extended to other material systems and spectral regions, such as visible and near-infrared.
Collapse
Affiliation(s)
- Bing Tang
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Qi Wei
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Shixun Wang
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Haochen Liu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Nanli Mou
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Qi Liu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Ye Wu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Arsenii S Portniagin
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Stephen V Kershaw
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| | - Xiaoqing Gao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
3
|
Liang X, Xia H, Xiang J, Wang F, Ma J, Zhou X, Wang H, Liu X, Zhu Q, Lin H, Pan J, Yuan M, Li G, Hu H. Facile Tailoring of Metal-Organic Frameworks for Förster Resonance Energy Transfer-Driven Enhancement in Perovskite Photovoltaics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307476. [PMID: 38445968 PMCID: PMC11095144 DOI: 10.1002/advs.202307476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/30/2024] [Indexed: 03/07/2024]
Abstract
Förster resonance energy transfer (FRET) has demonstrated its potential to enhance the light energy utilization ratio of perovskite solar cells by interacting with metal-organic frameworks (MOFs) and perovskite layers. However, comprehensive investigations into how MOF design and synthesis impact FRET in perovskite systems are scarce. In this work, nanoscale HIAM-type Zr-MOF (HIAM-4023, HIAM-4024, and HIAM-4025) is meticulously tailored to evaluate FRET's existence and its influence on the perovskite photoactive layer. Through precise adjustments of amino groups and acceptor units in the organic linker, HIAM-MOFs are synthesized with the same topology, but distinct photoluminescence (PL) emission properties. Significant FRET is observed between HIAM-4023/HIAM-4024 and the perovskite, confirmed by spectral overlap, fluorescence lifetime decay, and calculated distances between HIAM-4023/HIAM-4024 and the perovskite. Conversely, the spectral overlap between the PL emission of HIAM-4025 and the perovskite's absorption spectrum is relatively minimal, impeding the energy transfer from HIAM-4025 to the perovskite. Therefore, the HIAM-4023/HIAM-4024-assisted perovskite devices exhibit enhanced EQE via FRET processes, whereas the HIAM-4025 demonstrates comparable EQE to the pristine. Ultimately, the HIAM-4023-assisted perovskite device achieves an enhanced power conversion efficiency (PCE) of 24.22% compared with pristine devices (PCE of 22.06%) and remarkable long-term stability under ambient conditions and continuous light illumination.
Collapse
Affiliation(s)
- Xiao Liang
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian BoulevardShenzhen518055China
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingSchool of Materials Science and EngineeringWuhan University of TechnologyWuhan430070China
| | - Hai‐lun Xia
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian BoulevardShenzhen518055China
| | - Jin Xiang
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian BoulevardShenzhen518055China
| | - Fei Wang
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian BoulevardShenzhen518055China
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingSchool of Materials Science and EngineeringWuhan University of TechnologyWuhan430070China
| | - Jing Ma
- Medical Intelligence and Innovation AcademySouthern University of Science and Technology HospitalShenzhen518055China
| | - Xianfang Zhou
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian BoulevardShenzhen518055China
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingSchool of Materials Science and EngineeringWuhan University of TechnologyWuhan430070China
| | - Hao Wang
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian BoulevardShenzhen518055China
| | - Xiao‐Yuan Liu
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian BoulevardShenzhen518055China
| | - Quanyao Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingSchool of Materials Science and EngineeringWuhan University of TechnologyWuhan430070China
| | - Haoran Lin
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian BoulevardShenzhen518055China
| | - Jun Pan
- College of Materials Science and EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Mingjian Yuan
- Renewable Energy Conversion and Storage Center (RECAST) College of ChemistryNankai UniversityTianjin300071China
| | - Gang Li
- Department of Electronic and Information EngineeringResearch Institute for Smart Energy (RISE)The Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077China
| | - Hanlin Hu
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic7098 Liuxian BoulevardShenzhen518055China
| |
Collapse
|
4
|
Feld LG, Boehme SC, Morad V, Sahin Y, Kaul CJ, Dirin DN, Rainò G, Kovalenko MV. Quantifying Förster Resonance Energy Transfer from Single Perovskite Quantum Dots to Organic Dyes. ACS NANO 2024; 18:9997-10007. [PMID: 38547379 PMCID: PMC11008358 DOI: 10.1021/acsnano.3c11359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Colloidal quantum dots (QDs) are promising regenerable photoredox catalysts offering broadly tunable redox potentials along with high absorption coefficients. QDs have thus far been examined for various organic transformations, water splitting, and CO2 reduction. Vast opportunities emerge from coupling QDs with other homogeneous catalysts, such as transition metal complexes or organic dyes, into hybrid nanoassemblies exploiting energy transfer (ET), leveraging a large absorption cross-section of QDs and long-lived triplet states of cocatalysts. However, a thorough understanding and further engineering of the complex operational mechanisms of hybrid nanoassemblies require simultaneously controlling the surface chemistry of the QDs and probing dynamics at sufficient spatiotemporal resolution. Here, we probe the ET from single lead halide perovskite QDs, capped by alkylphospholipid ligands, to organic dye molecules employing single-particle photoluminescence spectroscopy with single-photon resolution. We identify a Förster-type ET by spatial, temporal, and photon-photon correlations in the QD and dye emission. Discrete quenching steps in the acceptor emission reveal stochastic photobleaching events of individual organic dyes, allowing a precise quantification of the transfer efficiency, which is >70% for QD-dye complexes with strong donor-acceptor spectral overlap. Our work explores the processes occurring at the QD/molecule interface and demonstrates the feasibility of sensitizing organic photocatalysts with QDs.
Collapse
Affiliation(s)
- Leon G. Feld
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Simon C. Boehme
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Viktoriia Morad
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Yesim Sahin
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Christoph J. Kaul
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Dmitry N. Dirin
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
5
|
Yoshioka M, Yamauchi M, Tamai N, Masuo S. Single-Photon Emission from Organic Dye Molecules Adsorbed on a Quantum Dot via Energy Transfer. NANO LETTERS 2023; 23:11548-11554. [PMID: 38063468 DOI: 10.1021/acs.nanolett.3c03279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Single-photon emissions from individual emitters are crucial in fundamental science and quantum information technologies. Multichromophoric systems, comprising multiple dyes, can exhibit single-photon emissions through efficient annihilation between the excited states; however, exploring this phenomenon in complex systems remains a challenge. In this study, we investigated the photon statistics of emissions from multiple perylene bisimide (PBI) dyes adsorbed onto the surface of CdSe/ZnS quantum dots (QDs). When multiple PBIs were simultaneously excited by both direct excitation and energy transfer from the QD, multiphoton emissions from the PBIs were observed. Conversely, when the QDs were selectively excited, multiple PBIs exhibiting single-photon emission through energy transfer from the QDs to the PBIs were found. These results highlight the intriguing interplay between multichromophoric systems and QDs, offering valuable insights into the development of efficient single-photon sources in quantum information technologies.
Collapse
Affiliation(s)
- Miyu Yoshioka
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Mitsuaki Yamauchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Naoto Tamai
- Department of Chemistry, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Sadahiro Masuo
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
6
|
Bhupathi P, Elhassan A-Elgadir TM, Mohammed Ali RH, Sanaan Jabbar H, Gulnoza D, Joshi SK, Kadhem Abid M, Ahmed Said E, Alawadi A, Alsaalamy A. Fluorescence Resonance Energy Transfer (FRET)-Based Sensor for Detection of Foodborne Pathogenic Bacteria: A Review. Crit Rev Anal Chem 2023:1-18. [PMID: 37917532 DOI: 10.1080/10408347.2023.2274050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Sensitive and rapid determination of foodborne pathogenic bacteria is of practical importance for the control and prevention of foodborne illnesses. Nowadays, with the prosperous development of fluorescence assays, fluorescence resonance energy transfer (FRET)-derived diagnostic strategies are extensively employed in quantitative analysis of different pathogenic bacteria in food-related matrices, which displays a rapid, simple, stable, reliable, cost-effective, selective, sensitive, and real-time way. Considering the extensive efforts that have been made in this field so far, we here discuss the up-to-date developments of FRET-based diagnostic approaches for the determination of key foodborne pathogens like Staphylococcus aureus, Escherichia coli, Vibrio parahaemolyticus, Salmonella spp., Campylobacter spp., and Bacillus cereus in complex food-related matrices. Moreover, the principle of this technology, the choosing standards of acceptor-donor pairs, and the fluorescence properties are also profiled. Finally, the current prospects and challenges in this field are also put forward.
Collapse
Affiliation(s)
- Priyadharshini Bhupathi
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | | | | | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Djakhangirova Gulnoza
- Department of Food Products Technology, Tashkent Institute of Chemical Technology, Navoi street 32, Tashkent 100011, Uzbekistan
| | - S K Joshi
- Department of Mechanical Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun-248007, India
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health and medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Esraa Ahmed Said
- Department of Dentistry, Al-Noor University College, Nineveh, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
7
|
|
8
|
Emission dynamics of conjugated oligomer (BECV-DHF)/quantum dot perovskite (CsPbBr3) composites in solutions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Wang H, Liu W, He X, Zhang P, Zhang X, Xie Y. An Excitonic Perspective on Low-Dimensional Semiconductors for Photocatalysis. J Am Chem Soc 2020; 142:14007-14022. [DOI: 10.1021/jacs.0c06966] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hui Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Wenxiu Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xin He
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Peng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaodong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| |
Collapse
|
10
|
Wang S, Du L, Jin Z, Xin Y, Mattoussi H. Enhanced Stabilization and Easy Phase Transfer of CsPbBr3 Perovskite Quantum Dots Promoted by High-Affinity Polyzwitterionic Ligands. J Am Chem Soc 2020; 142:12669-12680. [DOI: 10.1021/jacs.0c03682] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sisi Wang
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Liang Du
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Zhicheng Jin
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Yan Xin
- Florida State University, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Hedi Mattoussi
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
11
|
Loiudice A, Saris S, Buonsanti R. Tunable Metal Oxide Shell as a Spacer to Study Energy Transfer in Semiconductor Nanocrystals. J Phys Chem Lett 2020; 11:3430-3435. [PMID: 32290660 DOI: 10.1021/acs.jpclett.0c00820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colloidal semiconductor nanocrystals (NCs) are promising components in various optoelectronic and photocatalytic devices; however, the mechanism of energy transport in these materials remains to be further understood. Here, we investigate the distance dependence of the electronic interactions between CsPbBr3 nanocubes and CdSe nanoplateles using an alumina (AlOx) shell as a spacer. CsPbBr3@AlOx core@shell NCs are synthesized via colloidal atomic layer deposition (c-ALD), which allows us to fine-tune the oxide thickness and thus the distance d between the two NCs. This versatile material platform shows that the electronic interactions between the CsPbBr3 NCs and the CdSe nanoplatelets can be tuned from electron to energy transfer by increasing the shell thickness, whereas previous studies on the same system had been limited to the former. Considering the applicability of the c-ALD to different NCs, we suggest that metal oxide shell spacers synthesized by this approach can generally be used to study energy-transfer mechanisms at the nanoscale.
Collapse
Affiliation(s)
- Anna Loiudice
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Rue de l'Industrie 17, 1950 Sion, Valais, Switzerland
| | - Seryio Saris
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Rue de l'Industrie 17, 1950 Sion, Valais, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Rue de l'Industrie 17, 1950 Sion, Valais, Switzerland
| |
Collapse
|