1
|
Wang M, Perez-Morelo DJ, Ramer G, Pavlidis G, Schwartz JJ, Yu L, Ilic R, Centrone A, Aksyuk VA. Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor. SCIENCE ADVANCES 2023; 9:eadf7595. [PMID: 36921059 PMCID: PMC10017032 DOI: 10.1126/sciadv.adf7595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Thermal fluctuations often impose both fundamental and practical measurement limits on high-performance sensors, motivating the development of techniques that bypass the limitations imposed by thermal noise outside cryogenic environments. Here, we theoretically propose and experimentally demonstrate a measurement method that reduces the effective transducer temperature and improves the measurement precision of a dynamic impulse response signal. Thermal noise-limited, integrated cavity optomechanical atomic force microscopy probes are used in a photothermal-induced resonance measurement to demonstrate an effective temperature reduction by a factor of ≈25, i.e., from room temperature down as low as ≈12 K, without cryogens. The method improves the experimental measurement precision and throughput by >2×, approaching the theoretical limit of ≈3.5× improvement for our experimental conditions. The general applicability of this method to dynamic measurements leveraging thermal noise-limited harmonic transducers will have a broad impact across a variety of measurement platforms and scientific fields.
Collapse
Affiliation(s)
- Mingkang Wang
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Diego J. Perez-Morelo
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Georg Ramer
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Georges Pavlidis
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Jeffrey J. Schwartz
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Liya Yu
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Robert Ilic
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Andrea Centrone
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Vladimir A. Aksyuk
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
2
|
Wei L, Kuai X, Bao Y, Wei J, Yang L, Song P, Zhang M, Yang F, Wang X. The Recent Progress of MEMS/NEMS Resonators. MICROMACHINES 2021; 12:724. [PMID: 34205469 PMCID: PMC8235191 DOI: 10.3390/mi12060724] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023]
Abstract
MEMS/NEMS resonators are widely studied in biological detection, physical sensing, and quantum coupling. This paper reviews the latest research progress of MEMS/NEMS resonators with different structures. The resonance performance, new test method, and manufacturing process of single or double-clamped resonators, and their applications in mass sensing, micromechanical thermal analysis, quantum detection, and oscillators are introduced in detail. The material properties, resonance mode, and application in different fields such as gyroscope of the hemispherical structure, microdisk structure, drum resonator are reviewed. Furthermore, the working principles and sensing methods of the surface acoustic wave and bulk acoustic wave resonators and their new applications such as humidity sensing and fast spin control are discussed. The structure and resonance performance of tuning forks are summarized. This article aims to classify resonators according to different structures and summarize the working principles, resonance performance, and applications.
Collapse
Affiliation(s)
- Lei Wei
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.W.); (X.K.); (Y.B.); (J.W.); (L.Y.); (P.S.); (M.Z.); (F.Y.)
- The School of Microelectronics & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuebao Kuai
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.W.); (X.K.); (Y.B.); (J.W.); (L.Y.); (P.S.); (M.Z.); (F.Y.)
- School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
| | - Yidi Bao
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.W.); (X.K.); (Y.B.); (J.W.); (L.Y.); (P.S.); (M.Z.); (F.Y.)
- The School of Microelectronics & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangtao Wei
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.W.); (X.K.); (Y.B.); (J.W.); (L.Y.); (P.S.); (M.Z.); (F.Y.)
| | - Liangliang Yang
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.W.); (X.K.); (Y.B.); (J.W.); (L.Y.); (P.S.); (M.Z.); (F.Y.)
- The School of Microelectronics & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peishuai Song
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.W.); (X.K.); (Y.B.); (J.W.); (L.Y.); (P.S.); (M.Z.); (F.Y.)
- The School of Microelectronics & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Zhang
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.W.); (X.K.); (Y.B.); (J.W.); (L.Y.); (P.S.); (M.Z.); (F.Y.)
- The School of Microelectronics & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhua Yang
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.W.); (X.K.); (Y.B.); (J.W.); (L.Y.); (P.S.); (M.Z.); (F.Y.)
- The School of Microelectronics & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Academy of Quantum Information Science, Beijing 100193, China
- Beijing Engineering Research Center of Semiconductor Micro-Nano Integrated Technology, Beijing 100083, China
| | - Xiaodong Wang
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.W.); (X.K.); (Y.B.); (J.W.); (L.Y.); (P.S.); (M.Z.); (F.Y.)
- The School of Microelectronics & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Academy of Quantum Information Science, Beijing 100193, China
- Beijing Engineering Research Center of Semiconductor Micro-Nano Integrated Technology, Beijing 100083, China
| |
Collapse
|
3
|
Ren Y, Li M, Ray S, Bozeat BJ, Liu Y. Highly accessible low-loss fiber tapering by the ceramic housed electric furnace (CHEF) and frequency-domain real-time monitoring. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:035109. [PMID: 33820099 DOI: 10.1063/5.0023832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Tapered optical fibers are versatile tools with a wide spectrum of applications, ranging from sensing to atomic physics. In this work, we developed a highly accessible and controllable fiber tapering system to fabricate tapered optical fibers with a routine optical transmission of 95% and above. With an optimal design, optical transmissions higher than 99% have been experimentally demonstrated. We achieved such results by developing two unique components in a traditional heat-and-pull system: a custom-made miniature heater named as the ceramic housed electric furnace (CHEF) and a real-time, frequency-domain monitoring method. The CHEF enables a well-controlled, uniform, and stable heating zone for an adiabatic tapering process, while the frequency-domain monitoring empowers one to reliably terminate the tapering right after the single-mode trigger. We designed and fabricated the CHEF using low-cost and readily accessible materials and equipment, in order to benefit a broader audience. We carried out a parametric study to systematically characterize the CHEF performance and provided guidelines for the CHEF design, fabrication, and operation. The frequency-domain monitoring method was developed based on our understanding of the dynamic evolution of optical modes in the tapered fiber. Such a method allows real-time visualization of the number of optical models and characterization of the taper adiabaticity during the tapering process, both of which are not available with the commonly used time-domain monitoring. The developed CHEF-based fiber tapering system will meet the urgent need of high-quality tapered optical fibers as well as opening doors to new applications of tapered optical fibers.
Collapse
Affiliation(s)
- Yundong Ren
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Mucheng Li
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Subhrodeep Ray
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Brandon Johann Bozeat
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Yuxiang Liu
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| |
Collapse
|
4
|
Wang M, Zhang R, Ilic R, Liu Y, Aksyuk VA. Fundamental limits and optimal estimation of the resonance frequency of a linear harmonic oscillator. COMMUNICATIONS PHYSICS 2021; 4:10.1038/s42005-021-00700-6. [PMID: 38680632 PMCID: PMC11047169 DOI: 10.1038/s42005-021-00700-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/30/2021] [Indexed: 05/01/2024]
Abstract
All physical oscillators are subject to thermodynamic and quantum perturbations, fundamentally limiting measurement of their resonance frequency. Analyses assuming specific ways of estimating frequency can underestimate the available precision and overlook unconventional measurement regimes. Here we derive a general, estimation-method-independent Cramer Rao lower bound for a linear harmonic oscillator resonance frequency measurement uncertainty, seamlessly accounting for the quantum, thermodynamic and instrumental limitations, including Fisher information from quantum backaction- and thermodynamically-driven fluctuations. We provide a universal and practical maximum-likelihood frequency estimator reaching the predicted limits in all regimes, and experimentally validate it on a thermodynamically-limited nanomechanical oscillator. Low relative frequency uncertainty is obtained for both very high bandwidth measurements (≈ 10-5 for τ = 30 μs ) and measurements using thermal fluctuations alone (<10-6). Beyond nanomechanics, these results advance frequency-based metrology across physical domains.
Collapse
Affiliation(s)
- Mingkang Wang
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Rui Zhang
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 011609 USA
| | - Robert Ilic
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 USA
| | - Yuxiang Liu
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 011609 USA
| | - Vladimir A. Aksyuk
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 USA
| |
Collapse
|