1
|
Braga FC, da Silva FLN, de O Ramos T, Rosa JGH, de A Araujo É, Junior NFC, Wendler EP, Beatriz A, de Souza ROMA, Brocksom TJ, de Oliveira KT. Batch and Continuous Flow Total Synthesis of Cannabidiol. Chem Asian J 2024; 19:e202400689. [PMID: 39039021 DOI: 10.1002/asia.202400689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Herein, we present a comprehensive total synthesis of cannabidiol integrating both batch and continuous flow conditions. Our approach is planned to streamline the synthesis of olivetolic acid derivatives and utilize an enantiomerically pure monoterpene moiety obtained from naturally occurring (R)-(+)-limonene by photocatalysis. Key reactions, including the synthesis of olivetolic ester and a Friedel-Crafts alkylation, are successfully adapted to continuous flow, resulting in improved yields and selectivities. This study not only offers a scalable and efficient route for cannabidiol synthesis but also contributes to the synthetic approaches to access cannabinoids (diversity synthesis), with potential applications in medicinal and industrial contexts.
Collapse
Affiliation(s)
- Felipe C Braga
- Department of Chemistry, Federal University of São Carlos, São Carlos, 13565-905, Brazil
| | - Felipe L N da Silva
- Biocatalysis and Organic Synthesis Group - Institute of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, 21941-909, Brazil
| | - Tiago de O Ramos
- Department of Chemistry, Federal University of São Carlos, São Carlos, 13565-905, Brazil
| | - João G H Rosa
- Biocatalysis and Organic Synthesis Group - Institute of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, 21941-909, Brazil
| | - Érica de A Araujo
- Biocatalysis and Organic Synthesis Group - Institute of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, 21941-909, Brazil
| | - Nelson F C Junior
- API Manufacturing Process Development Laboratory, Prati, Donaduzzi & Cia. LTDA, Toledo, Paraná, Brazil
| | - Edison P Wendler
- API Manufacturing Process Development Laboratory, Prati, Donaduzzi & Cia. LTDA, Toledo, Paraná, Brazil
| | - Adilson Beatriz
- Research and Innovation Center for Bioprospecting and Synthesis of Products for Human and Animal Health (CIBSINT) - Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rodrigo O M A de Souza
- Biocatalysis and Organic Synthesis Group - Institute of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, 21941-909, Brazil
| | - Timothy J Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos, 13565-905, Brazil
| | - Kleber T de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, 13565-905, Brazil
| |
Collapse
|
2
|
de Sousa DP, de Assis Oliveira F, Arcanjo DDR, da Fonsêca DV, Duarte ABS, de Oliveira Barbosa C, Ong TP, Brocksom TJ. Essential Oils: Chemistry and Pharmacological Activities-Part II. Biomedicines 2024; 12:1185. [PMID: 38927394 PMCID: PMC11200837 DOI: 10.3390/biomedicines12061185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The importance of essential oils and their components in the industrial sector is attributed to their chemical characteristics and their application in the development of products in the areas of cosmetology, food, and pharmaceuticals. However, the pharmacological properties of this class of natural products have been extensively investigated and indicate their applicability for obtaining new drugs. Therefore, this review discusses the use of these oils as starting materials to synthesize more complex molecules and products with greater commercial value and clinic potential. Furthermore, the antiulcer, cardiovascular, and antidiabetic mechanisms of action are discussed. The main mechanistic aspects of the chemopreventive properties of oils against cancer are also presented. The data highlight essential oils and their derivatives as a strategic chemical group in the search for effective therapeutic agents against various diseases.
Collapse
Affiliation(s)
| | | | - Daniel Dias Rufino Arcanjo
- LAFMOL—Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, Brazil; (D.D.R.A.); (C.d.O.B.)
| | - Diogo Vilar da Fonsêca
- Collegiate of Medicine, Federal University of São Francisco Valley, Bahia 48607-190, Brazil;
| | - Allana Brunna S. Duarte
- Laboratory of Pharmaceutical Chemistry, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Celma de Oliveira Barbosa
- LAFMOL—Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, Brazil; (D.D.R.A.); (C.d.O.B.)
| | - Thomas Prates Ong
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil;
- Food Research Center (FoRC), University of São Paulo, São Paulo 05508-000, Brazil
| | - Timothy John Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil;
| |
Collapse
|
3
|
Martins GM, Braga FC, de Castro PP, Brocksom TJ, de Oliveira KT. Continuous flow reactions in the preparation of active pharmaceutical ingredients and fine chemicals. Chem Commun (Camb) 2024; 60:3226-3239. [PMID: 38441166 DOI: 10.1039/d4cc00418c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Herein, we present an overview of continuous flow chemistry, including photoflow and electroflow technologies in the preparation of active pharmaceutical ingredients (APIs) and fine chemical intermediates. Examples highlighting the benefits and challenges associated with continuous flow processes, mainly involving continuous thermal, photo- and electrochemical transformations, are drawn from the relevant literature, especially our experience and collaborations in this area, with emphasis on the synthesis and prospective scale-up.
Collapse
Affiliation(s)
- Guilherme M Martins
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Felipe C Braga
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Pedro P de Castro
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Timothy J Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Kleber T de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
4
|
Braga FC, Ramos TO, Brocksom TJ, de Oliveira KT. Synthesis of Fentanyl under Continuous Photoflow Conditions. Org Lett 2022; 24:8331-8336. [DOI: 10.1021/acs.orglett.2c03338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Felipe C. Braga
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Tiago O. Ramos
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Timothy J. Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Kleber T. de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
5
|
Benincá LA, França AS, Brêda GC, Leão RA, Almeida RV, Hollmann F, de Souza RO. Continuous-flow CvFAP photodecarboxylation of palmitic acid under environmentally friendly conditions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Martins GM, Magalhães MFA, Brocksom TJ, Bagnato VS, de Oliveira KT. Scaled up and telescoped synthesis of propofol under continuous-flow conditions. J Flow Chem 2022; 12:371-379. [PMID: 35873601 PMCID: PMC9295094 DOI: 10.1007/s41981-022-00234-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
Herein we report a machine-assisted and scaled-up synthesis of propofol, a short-acting drug used in procedural sedation, which is extensively in demand during this COVID-19 pandemic. The continuous-flow protocol proved to be efficient, with great potential for industrial translation, reaching a production up to 71.6 g per day with process intensification (24 h-continuous experiments). We have successfully telescoped a continuous flow approach obtaining 5.74 g of propofol with productivity of 23.0 g/day (6 h-continuous experiment), proving the robustness of the method in both separated and telescoped modes. Substantial progress was also achieved for the in-line workup, which provides greater safety and less waste, also relevant for industrial application. Overall, the synthetic strategy is based on the Friedel-Crafts di-isopropylation of low-cost p-hydroxybenzoic acid, followed by a decarboxylation reaction, giving propofol in up to 84% overall yield and very low by-product formation. The continuous flow synthesis of propofol 3 is presented as a two-step protocol. The isopropylated intermediate 2 was obtained from 4-hydroxybenzoic acid (1) in up 43.8 g, 85% yield and 30 min residence time. Propofol 3 was then obtained in 71.6 g, 87% yield, and 16 min residence time. A safe and cost-competitive machine-assisted protocol is described with a process intensification demonstration (24 h experiments) and a telescoped process intensification (6 h).
Collapse
Affiliation(s)
- Guilherme M. Martins
- Department of Chemistry, Federal University of Sao Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
- Sao Carlos Institute of Physics – University of Sao Paulo (USP), São Carlos, SP Brazil
| | - Maria F. A. Magalhães
- Department of Chemistry, Federal University of Sao Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Timothy J. Brocksom
- Department of Chemistry, Federal University of Sao Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Vanderlei S. Bagnato
- Sao Carlos Institute of Physics – University of Sao Paulo (USP), São Carlos, SP Brazil
| | - Kleber T. de Oliveira
- Department of Chemistry, Federal University of Sao Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| |
Collapse
|
7
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Wan L, Jiang M, Cheng D, Liu M, Chen F. Continuous flow technology-a tool for safer oxidation chemistry. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00520k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advantages and benefits of continuous flow technology for oxidation chemistry have been illustrated in tube reactors, micro-channel reactors, tube-in-tube reactors and micro-packed bed reactors in the presence of various oxidants.
Collapse
Affiliation(s)
- Li Wan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Dang Cheng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
9
|
Continuous flow synthesis of the lamivudine precursor L-Menthyl Glyoxylate. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Aguillón AR, Leão RAC, Miranda LSM, de Souza ROMA. Cannabidiol Discovery and Synthesis-a Target-Oriented Analysis in Drug Production Processes. Chemistry 2021; 27:5577-5600. [PMID: 32780909 DOI: 10.1002/chem.202002887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/07/2020] [Indexed: 01/13/2023]
Abstract
The current state of evidence and recommendations for cannabidiol (CBD) and its health effects change the legal landscape and aim to destigmatize its phytotherapeutic research. Recently, some countries have included CBD as an antiepileptic product for compassionate use in children with refractory epilepsy. The growing demand for CBD has led to the need for high-purity cannabinoids on the emerging market. The discovery and development of approaches toward CBD synthesis have arisen from the successful extraction of Cannabis plants for cannabinoid fermentation in brewer's yeast. To understand different contributions to the design and enhancement of the synthesis of CBD and its key intermediates, a detailed analysis of the history behind cannabinoid compounds and their optimization is provided herein.
Collapse
Affiliation(s)
- Anderson R Aguillón
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Raquel A C Leão
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, 21941-170, CEP, 21941-910, Brazil
| | - Leandro S M Miranda
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Rodrigo O M A de Souza
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, 21941-170, CEP, 21941-910, Brazil
| |
Collapse
|