1
|
Drobnjakovic M, Hart R, Kulvatunyou BS, Ivezic N, Srinivasan V. Current challenges and recent advances on the path towards continuous biomanufacturing. Biotechnol Prog 2023; 39:e3378. [PMID: 37493037 DOI: 10.1002/btpr.3378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/13/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023]
Abstract
Continuous biopharmaceutical manufacturing is currently a field of intense research due to its potential to make the entire production process more optimal for the modern, ever-evolving biopharmaceutical market. Compared to traditional batch manufacturing, continuous bioprocessing is more efficient, adjustable, and sustainable and has reduced capital costs. However, despite its clear advantages, continuous bioprocessing is yet to be widely adopted in commercial manufacturing. This article provides an overview of the technological roadblocks for extensive adoptions and points out the recent advances that could help overcome them. In total, three key areas for improvement are identified: Quality by Design (QbD) implementation, integration of upstream and downstream technologies, and data and knowledge management. First, the challenges to QbD implementation are explored. Specifically, process control, process analytical technology (PAT), critical process parameter (CPP) identification, and mathematical models for bioprocess control and design are recognized as crucial for successful QbD realizations. Next, the difficulties of end-to-end process integration are examined, with a particular emphasis on downstream processing. Finally, the problem of data and knowledge management and its potential solutions are outlined where ontologies and data standards are pointed out as key drivers of progress.
Collapse
Affiliation(s)
- Milos Drobnjakovic
- Systems Integration Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Roger Hart
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, New Jersey, USA
| | - Boonserm Serm Kulvatunyou
- Systems Integration Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Nenad Ivezic
- Systems Integration Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Vijay Srinivasan
- Systems Integration Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
2
|
Varma Nallaparaju J, Nikonovich T, Jarg T, Merzhyievskyi D, Aav R, Kananovich DG. Mechanochemistry-Amended Barbier Reaction as an Expedient Alternative to Grignard Synthesis. Angew Chem Int Ed Engl 2023; 62:e202305775. [PMID: 37387203 DOI: 10.1002/anie.202305775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
Organomagnesium halides (Grignard reagents) are essential carbanionic building blocks widely used in carbon-carbon and carbon-heteroatom bond-forming reactions with various electrophiles. In the Barbier variant of the Grignard synthesis, the generation of air- and moisture-sensitive Grignard reagents occurs concurrently with their reaction with an electrophile. Although operationally simpler, the classic Barbier approach suffers from low yields due to multiple side reactions, thereby limiting the scope of its application. Here, we report a mechanochemical adaptation of the Mg-mediated Barbier reaction, which overcomes these limitations and facilitates the coupling of versatile organic halides (e.g., allylic, vinylic, aromatic, aliphatic) with a diverse range of electrophilic substrates (e.g., aromatic aldehydes, ketones, esters, amides, O-benzoyl hydroxylamine, chlorosilane, borate ester) to assemble C-C, C-N, C-Si, and C-B bonds. The mechanochemical approach has the advantage of being essentially solvent-free, operationally simple, immune to air, and surprisingly tolerant to water and some weak Brønsted acids. Notably, solid ammonium chloride was found to improve yields in the reactions of ketones. Mechanistic studies have clarified the role of mechanochemistry in the process, indicating the generation of transient organometallics facilitated by improved mass transfer and activation of the surface of magnesium metal.
Collapse
Affiliation(s)
- Jagadeesh Varma Nallaparaju
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Tatsiana Nikonovich
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Tatsiana Jarg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Danylo Merzhyievskyi
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
- Department of Chemistry of Bioactive Nitrogen-containing Heterocyclic Bases, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Academician Kukhar Str. 1, 02094, Kyiv, Ukraine
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Dzmitry G Kananovich
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| |
Collapse
|
3
|
Casas-Orozco D, Laky D, Wang V, Abdi M, Feng X, Wood E, Reklaitis GV, Nagy ZK. Techno-economic analysis of dynamic, end-to-end optimal pharmaceutical campaign manufacturing using PharmaPy. AIChE J 2023; 69:e18142. [PMID: 38179085 PMCID: PMC10765457 DOI: 10.1002/aic.18142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 04/16/2023] [Indexed: 01/06/2024]
Abstract
Increased interest in the pharmaceutical industry to transition from batch to continuouos manufacturing motivates the use of digital frameworks that allow systematic comparison of candidate process configurations. This paper evaluates the technical and economic feasibility of different end-to-end optimal process configurations, viz. batch, hybrid and continuous, for small-scale manufacturing of an active pharmaceutical ingredient. Production campaigns were analyzed for those configurations containing continuous equipment, where significant start-up effects are expected given the relatively short campaign times considered. Hybrid operating mode was found to be the most attractive process configuration at intermediate and large annual production targets, which stems from combining continuous reactors and semi-batch vaporization equipment. Continuous operation was found to be more costly, due to long stabilization times of continuous crystallization, and thermodynamic limitations of flash vaporization. Our work reveals the benefits of systematic digital evaluation of process configurations that operate under feasible conditions and compliant product quality attributes.
Collapse
Affiliation(s)
- Daniel Casas-Orozco
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Daniel Laky
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Vivian Wang
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food & Drug Administration, Silver Spring, MD, USA
| | - Mesfin Abdi
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food & Drug Administration, Silver Spring, MD, USA
| | - X Feng
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food & Drug Administration, Silver Spring, MD, USA
| | - E Wood
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food & Drug Administration, Silver Spring, MD, USA
| | - Gintaras V Reklaitis
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Zoltan K Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
4
|
Sagmeister P, Prieschl M, Kaldre D, Gadiyar C, Moessner C, Sedelmeier J, Williams JD, Kappe CO. Continuous Flow-Facilitated CB2 Agonist Synthesis, Part 1: Azidation and [3 + 2] Cycloaddition. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.3c00035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Leveraging first-principles and empirical models for disturbance detection in continuous pharmaceutical syntheses. J Flow Chem 2023. [DOI: 10.1007/s41981-023-00266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Mackey J, Grover D, Pruneda G, Zenk E, Nagy ZK. Continuous Extraction of 2-Chloroethyl isocyanate for 1-(2-chloroethyl)-3-cyclohexylurea Purification. CHEMICAL ENGINEERING AND PROCESSING = GENIE DES PROCEDES = VERFAHRENSTECHNIK 2023; 183:109225. [PMID: 38179340 PMCID: PMC10765575 DOI: 10.1016/j.cep.2022.109225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
This study details the development of simulation-aided design, development, and successful operation of a continuous liquid-liquid extraction platform made with 1.5 mm tubing for the extraction of 2-chloroethyl isocyanate, an important reagent in the synthesis of cancer drugs. Preliminary solvent screening was carried out with partition coefficient calculations to determine solvents of interest. Next, batch and flow extraction experiments of 2-chloroethyl isocyanate in 2-methyl tetrahydrofuran and water were conducted to estimate extraction parameters. Following parameter estimation, experimental and model values for KLa were determined in the range of 1.13×10-3 to 36.0×10-3 s-1. Simulations of the extraction of 2-chloroethyl isocyanate were found to agree with experimental data resulting in a maximum efficiency of 77% and percent extraction of 69% for the continuous platform. Finally, model selection and discrimination was implemented for design space generation with experimental and model determined KLa values to guide lab-scale operation.
Collapse
Affiliation(s)
- Jaron Mackey
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Devna Grover
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Gabriella Pruneda
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Eva Zenk
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Zoltan K. Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
7
|
Ottoboni S, Brown CJ, Mehta B, Jimeno G, Mitchell NA, Sefcik J, Price CJ. Digital Design of Filtration and Washing of Active Pharmaceutical Ingredients via Mechanistic Modeling. Org Process Res Dev 2022; 26:3236-3253. [PMID: 36569418 PMCID: PMC9764418 DOI: 10.1021/acs.oprd.2c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 12/12/2022]
Abstract
To facilitate integrated end-to-end pharmaceutical manufacturing using digital design, a model capable of transferring material property information between operations to predict product attributes in integrated purification processes has been developed. The focus of the work reported here combines filtration and washing operations used in active pharmaceutical ingredient (API) purification and isolation to predict isolation performance without the need of extensive experimental work. A fixed Carman-Kozeny filtration model is integrated with several washing mechanisms (displacement, dilution, and axial dispersion). Two limiting cases are considered: case 1 where there is no change in the solid phase during isolation (no particle dissolution and/or growth), and case 2 where the liquid and solid phases are equilibrated over the course of isolation. In reality, all actual manufacturing conditions would be bracketed by these two limiting cases, so consideration of these two scenarios provides rigorous theoretical bounds for assessing isolation performance. This modeling approach aims to facilitate the selection of most appropriate models suitable for different isolation scenarios, without the requirement to use overly complex models for straightforward isolation processes. Mefenamic acid and paracetamol were selected as representative model compounds to assess a range of isolation scenarios. In each case, the objective of the models was to identify the purity of the product reached with a fixed wash ratio and minimize the changes to the crystalline particle attributes that occur during the isolation process. This was undertaken with the aim of identifying suitable criteria for the selection of appropriate filtration and washing models corresponding to relevant processing conditions, and ultimately developing guidelines for the digital design of filtration and washing processes.
Collapse
Affiliation(s)
- Sara Ottoboni
- EPSRC
Future Manufacturing Hub in Continuous Manufacturing and Advanced
Crystallisation, University of Strathclyde, GlasgowG1 1RD, U.K.
- Department
of Chemical and Process Engineering, University
of Strathclyde, GlasgowG1 1XJ, U.K.
| | - Cameron J. Brown
- EPSRC
Future Manufacturing Hub in Continuous Manufacturing and Advanced
Crystallisation, University of Strathclyde, GlasgowG1 1RD, U.K.
- Strathclyde
Institute of Pharmacy & Biomedical Science (SIPBS), University of Strathclyde, GlasgowG4 0RE, U.K.
| | - Bhavik Mehta
- Siemens
Process Systems Engineering Ltd., LondonW6 7HA, U.K.
| | | | | | - Jan Sefcik
- EPSRC
Future Manufacturing Hub in Continuous Manufacturing and Advanced
Crystallisation, University of Strathclyde, GlasgowG1 1RD, U.K.
- Department
of Chemical and Process Engineering, University
of Strathclyde, GlasgowG1 1XJ, U.K.
| | - Chris J. Price
- EPSRC
Future Manufacturing Hub in Continuous Manufacturing and Advanced
Crystallisation, University of Strathclyde, GlasgowG1 1RD, U.K.
- Department
of Chemical and Process Engineering, University
of Strathclyde, GlasgowG1 1XJ, U.K.
| |
Collapse
|
8
|
Ureta MM, Salvadori VO. A review of commercial process simulators applied to food processing. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- M. Micaela Ureta
- Center for Research and Development in Food Cryotechnology (CIDCA) ‐ CCT CONICET La Plata – UNLP – CICPBA ‐ La Plata Argentina
- Facultad de Ciencias Veterinarias UNLP La Plata Argentina
| | - Viviana O. Salvadori
- Center for Research and Development in Food Cryotechnology (CIDCA) ‐ CCT CONICET La Plata – UNLP – CICPBA ‐ La Plata Argentina
- Facultad de Ingeniería UNLP La Plata Argentina
| |
Collapse
|
9
|
Quasdorf K, Murray JI, Nguyen H, Silva Elipe MV, Ericson A, Kircher E, Guan L, Caille S. Development of a Continuous Photochemical Bromination/Alkylation Sequence En Route to AMG 423. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyle Quasdorf
- Pivotal and Commercial Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - James I. Murray
- Pivotal and Commercial Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Hanh Nguyen
- Pivotal and Commercial Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Maria V. Silva Elipe
- Attribute Sciences Department, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Ari Ericson
- Pivotal and Commercial Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Eric Kircher
- Attribute Sciences Department, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Lianxiu Guan
- Attribute Sciences Department, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Seb Caille
- Pivotal and Commercial Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
10
|
Capellades G, Bonsu JO, Myerson AS. Impurity incorporation in solution crystallization: diagnosis, prevention, and control. CrystEngComm 2022. [DOI: 10.1039/d1ce01721g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This work highlights recent advances in the diagnosis, prevention, and control of impurity incorporation during solution crystallization.
Collapse
Affiliation(s)
- Gerard Capellades
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, Glassboro, New Jersey 08028, USA
| | - Jacob O. Bonsu
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, Glassboro, New Jersey 08028, USA
| | - Allan S. Myerson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
11
|
Capellades G, Neurohr C, Briggs N, Rapp K, Hammersmith G, Brancazio D, Derksen B, Myerson AS. On-Demand Continuous Manufacturing of Ciprofloxacin in Portable Plug-and-Play Factories: Implementation and In Situ Control of Downstream Production. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerard Capellades
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Clemence Neurohr
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Naomi Briggs
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Kersten Rapp
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Gregory Hammersmith
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - David Brancazio
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Bridget Derksen
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Allan S. Myerson
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
12
|
Hu C. Reactor design and selection for effective continuous manufacturing of pharmaceuticals. J Flow Chem 2021; 11:243-263. [PMID: 34026279 PMCID: PMC8130218 DOI: 10.1007/s41981-021-00164-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022]
Abstract
Pharmaceutical production remains one of the last industries that predominantly uses batch processes, which are inefficient and can cause drug shortages due to the long lead times or quality defects. Consequently, pharmaceutical companies are transitioning away from outdated batch lines, in large part motivated by the many advantages of continuous manufacturing (e.g., low cost, quality assurance, shortened lead time). As chemical reactions are fundamental to any drug production process, the selection of reactor and its design are critical to enhanced performance such as improved selectivity and yield. In this article, relevant theories, and models, as well as their required input data are summarized to assist the reader in these tasks, focusing on continuous reactions. Selected examples that describe the application of plug flow reactors (PFRs) and continuous-stirred tank reactors (CSTRs)-in-series within the pharmaceutical industry are provided. Process analytical technologies (PATs), which are important tools that provide real-time in-line continuous monitoring of reactions, are recommended to be considered during the reactor design process (e.g., port design for the PAT probe). Finally, other important points, such as density change caused by thermal expansion or solid precipitation, clogging/fouling, and scaling-up, are discussed. Graphical abstract
Collapse
Affiliation(s)
- Chuntian Hu
- CONTINUUS Pharmaceuticals, Woburn, MA 01801 USA
| |
Collapse
|
13
|
Maloney AJ, Içten E, Capellades G, Beaver MG, Zhu X, Graham LR, Brown DB, Griffin DJ, Sangodkar R, Allian A, Huggins S, Hart R, Rolandi P, Walker SD, Braatz RD. A Virtual Plant for Integrated Continuous Manufacturing of a Carfilzomib Drug Substance Intermediate, Part 3: Manganese-Catalyzed Asymmetric Epoxidation, Crystallization, and Filtration. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Andrew J. Maloney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Elçin Içten
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Gerard Capellades
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew G. Beaver
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Xiaoxiang Zhu
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Lauren R. Graham
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Derek B. Brown
- Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Daniel J. Griffin
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Rahul Sangodkar
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ayman Allian
- Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Seth Huggins
- Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Roger Hart
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Pablo Rolandi
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Shawn D. Walker
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Richard D. Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Içten E, Maloney AJ, Beaver MG, Shen DE, Zhu X, Graham LR, Robinson JA, Huggins S, Allian A, Hart R, Walker SD, Rolandi P, Braatz RD. A Virtual Plant for Integrated Continuous Manufacturing of a Carfilzomib Drug Substance Intermediate, Part 1: CDI-Promoted Amide Bond Formation. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Elçin Içten
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Andrew J. Maloney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew G. Beaver
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Dongying Erin Shen
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Xiaoxiang Zhu
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Lauren R. Graham
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jo Anna Robinson
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Seth Huggins
- Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Ayman Allian
- Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Roger Hart
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Shawn D. Walker
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Pablo Rolandi
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Richard D. Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|