1
|
A Review on Artificial Intelligence Enabled Design, Synthesis, and Process Optimization of Chemical Products for Industry 4.0. Processes (Basel) 2023. [DOI: 10.3390/pr11020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
With the development of Industry 4.0, artificial intelligence (AI) is gaining increasing attention for its performance in solving particularly complex problems in industrial chemistry and chemical engineering. Therefore, this review provides an overview of the application of AI techniques, in particular machine learning, in chemical design, synthesis, and process optimization over the past years. In this review, the focus is on the application of AI for structure-function relationship analysis, synthetic route planning, and automated synthesis. Finally, we discuss the challenges and future of AI in making chemical products.
Collapse
|
2
|
Zhu LT, Chen XZ, Ouyang B, Yan WC, Lei H, Chen Z, Luo ZH. Review of Machine Learning for Hydrodynamics, Transport, and Reactions in Multiphase Flows and Reactors. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li-Tao Zhu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xi-Zhong Chen
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, U.K
| | - Bo Ouyang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei-Cheng Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - He Lei
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhe Chen
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
3
|
Griffiths RR, A Aldrick A, Garcia-Ortegon M, Lalchand V, Lee AA. Achieving robustness to aleatoric uncertainty with heteroscedastic Bayesian optimisation. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1088/2632-2153/ac298c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Bayesian optimisation is a sample-efficient search methodology that holds great promise for accelerating drug and materials discovery programs. A frequently-overlooked modelling consideration in Bayesian optimisation strategies however, is the representation of heteroscedastic aleatoric uncertainty. In many practical applications it is desirable to identify inputs with low aleatoric noise, an example of which might be a material composition which displays robust properties in response to a noisy fabrication process. In this paper, we propose a heteroscedastic Bayesian optimisation scheme capable of representing and minimising aleatoric noise across the input space. Our scheme employs a heteroscedastic Gaussian process surrogate model in conjunction with two straightforward adaptations of existing acquisition functions. First, we extend the augmented expected improvement heuristic to the heteroscedastic setting and second, we introduce the aleatoric noise-penalised expected improvement (ANPEI) heuristic. Both methodologies are capable of penalising aleatoric noise in the suggestions. In particular, the ANPEI acquisition yields improved performance relative to homoscedastic Bayesian optimisation and random sampling on toy problems as well as on two real-world scientific datasets. Code is available at: https://github.com/Ryan-Rhys/Heteroscedastic-BO
Collapse
|
4
|
Hao Z, Zhang C, Lapkin AA. Efficient Surrogates Construction of Chemical Processes: Case studies on Pressure Swing Adsorption and
Gas‐to‐Liquids. AIChE J 2022. [DOI: 10.1002/aic.17616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhimian Hao
- Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge UK
| | - Chonghuan Zhang
- Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge UK
| | - Alexei A. Lapkin
- Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge UK
- Cambridge Centre for Advanced Research and Education in Singapore, CARES Ltd Singapore
| |
Collapse
|
5
|
Crandall Z, Basemann K, Qi L, Windus TL. Rxn Rover: automation of chemical reactions with user-friendly, modular software. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00265a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Automation of chemical reactions through tools such as Rxn Rover in research and development is an enabling technology to reduce cost and waste management in technology transformations towards renewable feedstocks and energy in the chemical industry.
Collapse
Affiliation(s)
- Zachery Crandall
- U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Kevin Basemann
- U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Long Qi
- U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Theresa L. Windus
- U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|