1
|
Roy TK, Qian Y, Karlsson E, Rabayah R, Sojdak CA, Kozlowski MC, Karsili TNV, Lester MI. Vibrational spectroscopy and dissociation dynamics of cyclohexyl hydroperoxide. Chem Sci 2024; 15:6160-6167. [PMID: 38665513 PMCID: PMC11040651 DOI: 10.1039/d4sc00151f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Organic hydroperoxides (ROOH) are ubiquitous in the atmospheric oxidation of volatile organic compounds (VOCs) as well as in low-temperature oxidation of hydrocarbon fuels. The present work focuses on a prototypical cyclic hydroperoxide, cyclohexyl hydroperoxide (CHHP). The overtone OH stretch (2νOH) spectrum of jet-cooled CHHP is recorded by IR multiphoton excitation with UV laser-induced fluorescence detection of the resulting OH products. A distinctive IR feature is observed at 7012.5 cm-1. Two conformers of CHHP are predicted to have similar stabilities (within 0.2 kcal mol-1) and overtone OH stretch transitions (2νOH), yet are separated by a significant interconversion barrier. The IR power dependence indicates that absorption of three or more IR photons is required for dissociation of CHHP to cyclohexoxy (RO) and OH radical products. Accompanying high-level single- and multi-reference electronic structure calculations quantitatively support the experimental results. Calculations are extended to a range of organic hydroperoxides to examine trends in bond dissociation energies associated with RO + OH formation and compared with prior theoretical results.
Collapse
Affiliation(s)
- Tarun Kumar Roy
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Yujie Qian
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Elizabeth Karlsson
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Rawan Rabayah
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Christopher A Sojdak
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Marisa C Kozlowski
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | | | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| |
Collapse
|
2
|
Mairhofer C, Waser M. Dibenzoylperoxide as a Versatile Oxidant for Oxidative Azidations of Phenols Using Quaternary Ammonium Iodides or Bromides. Adv Synth Catal 2023; 365:2757-2762. [DOI: 10.1002/adsc.202300405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 09/02/2023]
Abstract
AbstractDibenzoylperoxide emerged as a versatile oxidant for quaternary ammonium iodide or bromide‐catalyzed reactions of phenol derivatives with NaN3. While the use of iodides allowed for efficient benzylic azidations under these oxidative conditions, the use of bromides allowed for dearomative azidations instead. Both approaches have been successfully applied to different phenol derivatives and a first proof‐of‐concept for an enantioselective variant using chiral quat. ammonium bromides has been obtained as well.
Collapse
Affiliation(s)
- Christopher Mairhofer
- Institute of Organic Chemistry Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz Austria
| | - Mario Waser
- Institute of Organic Chemistry Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz Austria
| |
Collapse
|
3
|
Yang E, Tucker JW, Chappie TA, Weaver JD, Chapman C, Duzguner R, Humphrey JM. Synthesis of a Pyridoazepine Scaffold via Rhodium-Catalyzed Ring Expansion and Nitroacetamide Condensation. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Eddie Yang
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Joseph W. Tucker
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Thomas A. Chappie
- Worldwide Research and Development, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - John D. Weaver
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Caroline Chapman
- Pfizer R&D UK Limited, Chemical R&D, Discovery Park, Ramsgate Road, Sandwich, Kent CT13 9NJ, UK
| | - Remzi Duzguner
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - John M. Humphrey
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
4
|
Mandler MD, Degnan AP, Zhang S, Aulakh D, Georges K, Sandhu B, Sarjeant A, Zhu Y, Traeger SC, Cheng PT, Ellsworth BA, Regueiro-Ren A. Structural and Thermal Characterization of Halogenated Azidopyridines: Under-Reported Synthons for Medicinal Chemistry. Org Lett 2022; 24:799-803. [PMID: 34714083 DOI: 10.1021/acs.orglett.1c03201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Owing to their participation in Click reactions, bifunctional azides are valuable intermediates in the preparation of medicines and biochemical tool compounds. Despite the privileged nature of pyridines among pharmaceutical scaffolds, reports of the synthesis and characterization of azidopyridines bearing a halogen substituent for further elaboration are almost completely unknown in the literature. As azidopyridines carry nearly equal numbers of nitrogen and carbon atoms, we hypothesized that safety concerns limited the application of these useful bifunctional building blocks in medicinal and biological chemistry. To address this concern, we prepared and characterized nine azidopyridines bearing a single fluorine, chlorine, or bromine atom. All were examined by differential scanning calorimetry (DSC), in which they demonstrated exotherms of 228-326 kJ/mol and onset temperatures between 119 and 135 °C. Selected azidopyridines were advanced to mechanical stress testing, in which impact sensitivity was noted for one regioisomer of C5H3FN4. The utility of these versatile intermediates was demonstrated through their use in a variety of Click reactions and the diversification of the halogen handles.
Collapse
Affiliation(s)
- Michael D Mandler
- Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Andrew P Degnan
- Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Shasha Zhang
- Bristol Myers Squibb Chemical and Synthetic Development, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Darpandeep Aulakh
- Bristol Myers Squibb Chemical and Synthetic Development, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Ketleine Georges
- Bristol Myers Squibb Chemical and Synthetic Development, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Bhupinder Sandhu
- Bristol Myers Squibb Chemical and Synthetic Development, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Amy Sarjeant
- Bristol Myers Squibb Chemical and Synthetic Development, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Yeheng Zhu
- Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Sarah C Traeger
- Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Peter T Cheng
- Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Bruce A Ellsworth
- Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Alicia Regueiro-Ren
- Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
5
|
Lardani D, Marti R, Quintavalla A, Lombardo M, Trombini C. Multidecagram Scale Synthesis of an Endoperoxide, Precursor of Anti-malarial and Anti-leishmanial Agents, via Free-Radical [2 + 2 + 2] Annulation with Molecular Oxygen. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Davide Lardani
- Institut ChemTech, HES-SO, Hochschule für Technik und Architektur, Boulevard de Pérolles 80, CH-1700 Freiburg, Switzerland
| | - Roger Marti
- Institut ChemTech, HES-SO, Hochschule für Technik und Architektur, Boulevard de Pérolles 80, CH-1700 Freiburg, Switzerland
| | - Arianna Quintavalla
- Alma Mater Studiorum, Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Lombardo
- Alma Mater Studiorum, Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Claudio Trombini
- Alma Mater Studiorum, Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
6
|
Allian AD, Flanagan RC, Mentzer R, Sperry JB, Xia H, Zhao R. Precompetitive Collaborations in the Pharmaceutical Industry: Process Safety Groups Work Together to Reduce Hazards, from R&D Laboratories to Manufacturing Facilities. ACS CHEMICAL HEALTH & SAFETY 2021. [DOI: 10.1021/acs.chas.1c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ayman D. Allian
- Eli Lilly and Company, Synthetic Molecule Design & Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Roy C. Flanagan
- GlaxoSmithKline, Clinical Supply Chain, 1011 North Arendell Avenue, Zebulon, North Carolina 27597, United States
| | - Ray Mentzer
- Purdue University, 480 Stadium Mall Drive, FRNY Building, Rm 3019, West Lafayette, Indiana 47907-2050, United States
| | - Jeffrey B. Sperry
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Han Xia
- Eli Lilly and Company, Synthetic Molecule Design & Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Ralph Zhao
- Process Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
7
|
Salique F, Musina A, Winter M, Yann N, Roth PMC. Continuous Hydrogenation: Triphasic System Optimization at Kilo Lab Scale Using a Slurry Solution. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.701910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Despite their widespread use in the chemical industries, hydrogenation reactions remain challenging. Indeed, the nature of reagents and catalysts induce intrinsic safety challenges, in addition to demanding process development involving a 3-phase system. Here, to address common issues, we describe a successful process intensification study using a meso-scale flow reactor applied to a hydrogenation reaction of ethyl cinnamate at kilo lab scale with heterogeneous catalysis. This method relies on the continuous pumping of a catalyst slurry, delivering fresh catalyst through a structured flow reactor in a continuous fashion and a throughput up to 54.7 g/h, complete conversion and yields up to 99%. This article describes the screening of equipment, reactions conditions and uses statistical analysis methods (Monte Carlo/DoE) to improve the system further and to draw conclusions on the key influential parameters (temperature and residence time).
Collapse
|
8
|
Sperry JB, Stone S, Azuma M, Barrett C. Importance of Thermal Stability Data to Avoid Dangerous Reagents: Temozolomide Case Study. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeffrey B. Sperry
- Vertex Pharmaceuticals Incorporated, Process Chemistry, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Shane Stone
- Vertex Pharmaceuticals Incorporated, Process Chemistry, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Michael Azuma
- Vertex Pharmaceuticals Incorporated, Process Chemistry, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Connor Barrett
- Vertex Pharmaceuticals Incorporated, Process Chemistry, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| |
Collapse
|