1
|
Gnädinger U, Poier D, Trombini C, Dabros M, Marti R. Development of Lab-Scale Continuous Stirred-Tank Reactor as Flow Process Tool for Oxidation Reactions Using Molecular Oxygen. Org Process Res Dev 2024; 28:1860-1868. [PMID: 38783850 PMCID: PMC11110044 DOI: 10.1021/acs.oprd.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 05/25/2024]
Abstract
The use of sustainable oxidants is of great interest to the chemical industry, considering the importance of oxidation reactions for the manufacturing of chemicals and society's growing awareness of its environmental impact. Molecular oxygen (O2), with an almost optimal atom efficiency in oxidation reactions, presents one of the most attractive alternatives to common reagents that are not only toxic in most cases but produce stoichiometric amounts of waste that must be treated. However, fire and explosion safety concerns, especially when used in combination with organic solvents, restrict its easy use. Here, we use state-of-the-art 3D printing and experimental feedback to develop a miniature continuous stirred-tank reactor (mini-CSTR) that enables efficient use of O2 as an oxidant in organic chemistry. Outstanding heat dissipation properties, achieved through integrated jacket cooling and a high surface-to-volume ratio, allow for a safe operation of the exothermic oxidation of 2-ethylhexanal, surpassing previously reported product selectivity. Moving well beyond the proof-of-concept stage, we characterize and illustrate the reactor's potential in the gas-liquid-solid triphasic synthesis of an endoperoxide precursor of antileishmanial agents. The custom-designed magnetic overhead stirring unit provides improved stirring efficiency, facilitating the handling of suspensions and, in combination with the borosilicate gas dispersion plate, leading to an optimized gas-liquid interface. These results underscore the immense potential that lies within the use of mini-CSTR in sustainable chemistry.
Collapse
Affiliation(s)
- Ursina Gnädinger
- Institute
of Chemical Technology, Haute École d’Ingénierie
et d’Architecture Fribourg, HES-SO
University of Applied Sciences and Arts Western Switzerland, 1700 Fribourg, Switzerland
| | - Dario Poier
- Institute
of Chemical Technology, Haute École d’Ingénierie
et d’Architecture Fribourg, HES-SO
University of Applied Sciences and Arts Western Switzerland, 1700 Fribourg, Switzerland
| | - Claudio Trombini
- Department
of Chemistry “G. Ciamician”, Alma Mater Studiorum, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Michal Dabros
- Institute
of Chemical Technology, Haute École d’Ingénierie
et d’Architecture Fribourg, HES-SO
University of Applied Sciences and Arts Western Switzerland, 1700 Fribourg, Switzerland
| | - Roger Marti
- Institute
of Chemical Technology, Haute École d’Ingénierie
et d’Architecture Fribourg, HES-SO
University of Applied Sciences and Arts Western Switzerland, 1700 Fribourg, Switzerland
| |
Collapse
|
2
|
Czieszowic Ł, Orlińska B, Lisicki D, Pankalla E. Efficient Synthesis of 2-Ethylhexanoic Acid via N-Hydroxyphthalimide Catalyzed Oxidation of 2-Ethylhexanal with Oxygen. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5778. [PMID: 37687471 PMCID: PMC10489149 DOI: 10.3390/ma16175778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
An efficient method for the synthesis of 2-ethylhexanoic acid has been reported. The method involves the 2-ethylhexanal oxidation using oxygen or air in the presence of N-hydroxyphthalimide in isobutanol as a solvent under mild conditions. A high selectivity of >99% for 2-ethylhexanoic acid was achieved. The influence of catalyst amount, solvent type and quantity, temperature, and reaction time on the product composition was studied. The developed method is in line with the global trends aimed at developing green oxidation processes as well as having potential for implementation in industry due to its high selectivity, cost-effective oxidizing agent, and mild reaction conditions. The use of isobutanol as a solvent is of crucial importance providing an opportunity for potential producers of 2-EHAL from butanal to employ the less valuable alcohol.
Collapse
Affiliation(s)
- Łukasz Czieszowic
- Grupa Azoty Zakłady Azotowe-Kędzierzyn-S.A., Mostowa 30A, 47-220 Kędzierzyn-Koźle, Poland
- Department of Chemical Organic Technology and Petrochemistry and PhD School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Beata Orlińska
- Department of Chemical Organic Technology and Petrochemistry and PhD School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Dawid Lisicki
- Department of Chemical Organic Technology and Petrochemistry and PhD School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Ewa Pankalla
- Grupa Azoty Zakłady Azotowe-Kędzierzyn-S.A., Mostowa 30A, 47-220 Kędzierzyn-Koźle, Poland
| |
Collapse
|
3
|
Nagy BS, Kappe CO, Ötvös SB. N
‐Hydroxyphthalimide Catalyzed Aerobic Oxidation of Aldehydes under Continuous Flow Conditions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bence S. Nagy
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
| | - C. Oliver Kappe
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 A-8010 Graz Austria
| | - Sándor B. Ötvös
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 A-8010 Graz Austria
| |
Collapse
|
4
|
Wang Z, Qin Y, Huang H, Li G, Xu Y, Jin P, Peng B, Zhao Y. Solvent Effect on Product Distribution in the Aerobic Autoxidation of 2-Ethylhexanal: Critical Role of Polarity. Front Chem 2022; 10:855843. [PMID: 35402373 PMCID: PMC8989829 DOI: 10.3389/fchem.2022.855843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the aerobic oxidation of aldehydes to acids, how the solvent affect the reaction remains unclear. Herein, the solvent effect in the oxidation of 2-ethylhexanal (2-ETH) to 2-ethylhexanoic acid (2-ETA) was systematically investigated. The vastly different product distributions were observed which could be ascribed to the dominant intermolecular forces. Though strong intermolecular forces in protic solvents limit the oxidation, the optimal 2-ETA yield (96%) was obtained in ipropanol via gradually evaporating the solvent to remove the interactions. Theoretical calculations further revealed that the hydrogen bonds between reactant and protic solvent increase the C-H bond energy (-CHO in 2-ETH). Meanwhile, the hydrogen bonds may improve 2-ETA selectivity by promoting H transfer in the oxidation rearrangement step. Our work discloses the critical role of polarity in determining the reactivity and selectivity of 2-ETH oxidation, and could guide the rational design of more desirable reaction processes with solvent effect.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yitong Qin
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Huijiang Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Guobing Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yan Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Peng Jin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
- *Correspondence: Peng Jin, ; Bo Peng, ; Yujun Zhao,
| | - Bo Peng
- SINOPEC Research Institute of Petroleum Processing, Beijing, China
- *Correspondence: Peng Jin, ; Bo Peng, ; Yujun Zhao,
| | - Yujun Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- *Correspondence: Peng Jin, ; Bo Peng, ; Yujun Zhao,
| |
Collapse
|
5
|
Vanoye L, Favre-Réguillon A. Mechanistic Insights into the Aerobic Oxidation of Aldehydes: Evidence of Multiple Reaction Pathways during the Liquid Phase Oxidation of 2-Ethylhexanal. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Laurent Vanoye
- Université Lyon, Catalyse Polymérisation Procédés & Matériaux (CP2M), UMR 5128 CNRS − CPE Lyon, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Alain Favre-Réguillon
- Université Lyon, Catalyse Polymérisation Procédés & Matériaux (CP2M), UMR 5128 CNRS − CPE Lyon, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
- Conservatoire National des Arts et Métiers, EPN 7, 2 rue Conté, 75003 Paris, France
| |
Collapse
|
6
|
Chen J, Zhu M, Xiang F, Li J, Yang H, Mao Z. Research Progress on Microreactor Technology in Oxidation Reactions. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210319092545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years, the development of the chemical industry has been moving in a
green, safe and efficient direction. Oxidation reactions are one of the most important types of
reactions and have key applications in food, medicine, cosmetics, and petrochemicals. However,
the occurrence of the oxidation reaction is accompanied by a strong exothermic phenomenon,
and improper control can easily lead to safety problems and even explosions. The
realization of an environmentally friendly oxidation reaction is a key industrial milestone.
The unique structural characteristics of microreactors result in good mass and heat transfer
performance, precise control of the reaction temperature, reduced risk of explosion, improved
safety production and selectivity of products. These unique advantages of the microreactor
determine its significant application value in oxidation reactions. In this paper, the research
progress of several typical oxidation reactions, including alkane oxidation, alcohol oxidation,
aldosterone oxidation, aromatics oxidation and olefin oxidation combined with microreactors,
is reviewed systematically.
Collapse
Affiliation(s)
- Jian Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070,China
| | - Mengjing Zhu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070,China
| | - Fuwei Xiang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070,China
| | - Junfeng Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070,China
| | - Hongjun Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070,China
| | - Zhipeng Mao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070,China
| |
Collapse
|
7
|
Ötvös SB, Llanes P, Pericàs MA, Kappe CO. Telescoped Continuous Flow Synthesis of Optically Active γ-Nitrobutyric Acids as Key Intermediates of Baclofen, Phenibut, and Fluorophenibut. Org Lett 2020; 22:8122-8126. [PMID: 33026815 PMCID: PMC7573919 DOI: 10.1021/acs.orglett.0c03100] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 02/07/2023]
Abstract
The two-step flow asymmetric synthesis of chiral γ-nitrobutyric acids as key intermediates of the GABA analogues baclofen, phenibut, and fluorophenibut is reported on a multigram scale. The telescoped process comprises an enantioselective Michael-type addition facilitated by a polystyrene-supported heterogeneous organocatalyst under neat conditions followed by in situ-generated performic acid-mediated aldehyde oxidation. Simple access to valuable optically active substances is provided with key advances in terms of productivity and sustainability compared to those of previous batch approaches.
Collapse
Affiliation(s)
- Sándor B. Ötvös
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Center
for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
| | - Patricia Llanes
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, E-43007 Tarragona, Spain
| | - Miquel A. Pericàs
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, E-43007 Tarragona, Spain
- Departament
de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), E-08028 Barcelona, Spain
| | - C. Oliver Kappe
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Center
for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
| |
Collapse
|
8
|
Yang L, Liu P, Zhang HY, Zhang Y, Zhao J. Catalytic Oxidation of o-Chlorotoluene with Oxygen to o-Chlorobenzaldehyde in a Microchannel Reactor. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lijun Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
- Tianjin Taipu Pharmaceutical Ltd., Tianjin 300193, P. R. China
| | - Peng Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Hong-yu Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
9
|
Aka EC, Wimmer E, Barré E, Cortés-Borda D, Ekou T, Ekou L, Rodriguez-Zubiri M, Felpin FX. Comparing Gas–Liquid Segmented and Tube-in-Tube Setups for the Aerobic Dimerization of Desmethoxycarpacine with an Automated Flow Platform. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ehu Camille Aka
- Université de Nantes, UFR des Sciences et des Techniques, CNRS UMR 6230, CEISAM, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | - Eric Wimmer
- Université de Nantes, UFR des Sciences et des Techniques, CNRS UMR 6230, CEISAM, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | - Elvina Barré
- Université de Nantes, UFR des Sciences et des Techniques, CNRS UMR 6230, CEISAM, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | - Daniel Cortés-Borda
- Université de Nantes, UFR des Sciences et des Techniques, CNRS UMR 6230, CEISAM, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | - Tchirioua Ekou
- Université Nangui Abrogoua, Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, 02 BP
801 Abidjan 02, Côte d’Ivoire
| | - Lynda Ekou
- Université Nangui Abrogoua, Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, 02 BP
801 Abidjan 02, Côte d’Ivoire
| | - Mireia Rodriguez-Zubiri
- Université de Nantes, UFR des Sciences et des Techniques, CNRS UMR 6230, CEISAM, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | - François-Xavier Felpin
- Université de Nantes, UFR des Sciences et des Techniques, CNRS UMR 6230, CEISAM, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| |
Collapse
|
10
|
Vanoye L, Abdelaal M, Grundhauser K, Guicheret B, Fongarland P, De Bellefon C, Favre-Réguillon A. Reinvestigation of the Organocatalyzed Aerobic Oxidation of Aldehydes to Acids. Org Lett 2019; 21:10134-10138. [PMID: 31808703 DOI: 10.1021/acs.orglett.9b04193] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The organocatalyzed aerobic oxidation of aldehydes to acids was reproduced from the original report. In- and ex-situ analysis of the reaction mixture as the function of time reveals that, unlike the claim in the publication, the aerobic oxidation of aromatic and aliphatic aldehydes leads predominantly to the formation of peracids. The latter are transformed into the corresponding carboxylic acids during the workup procedure. The buildup of peracids in solution poses safety problems that should not be overlooked. This finding has also an influence on the way new catalysts are investigated to improve this reaction as well as on aerobic aldehyde-mediated co-oxidation.
Collapse
Affiliation(s)
- Laurent Vanoye
- Université Lyon, Laboratoire de Génie des Procédés Catalytiques UMR 5285, CNRS-CPE Lyon-UCBL , 43 boulevard du 11 novembre 1918 , F-69100 Villeurbanne , France
| | - Mohamed Abdelaal
- Université Lyon, Laboratoire de Génie des Procédés Catalytiques UMR 5285, CNRS-CPE Lyon-UCBL , 43 boulevard du 11 novembre 1918 , F-69100 Villeurbanne , France
| | - Kacy Grundhauser
- Université Lyon, Laboratoire de Génie des Procédés Catalytiques UMR 5285, CNRS-CPE Lyon-UCBL , 43 boulevard du 11 novembre 1918 , F-69100 Villeurbanne , France
| | - Boris Guicheret
- Université Lyon, Laboratoire de Génie des Procédés Catalytiques UMR 5285, CNRS-CPE Lyon-UCBL , 43 boulevard du 11 novembre 1918 , F-69100 Villeurbanne , France
| | - Pascal Fongarland
- Université Lyon, Laboratoire de Génie des Procédés Catalytiques UMR 5285, CNRS-CPE Lyon-UCBL , 43 boulevard du 11 novembre 1918 , F-69100 Villeurbanne , France
| | - Claude De Bellefon
- Université Lyon, Laboratoire de Génie des Procédés Catalytiques UMR 5285, CNRS-CPE Lyon-UCBL , 43 boulevard du 11 novembre 1918 , F-69100 Villeurbanne , France
| | - Alain Favre-Réguillon
- Université Lyon, Laboratoire de Génie des Procédés Catalytiques UMR 5285, CNRS-CPE Lyon-UCBL , 43 boulevard du 11 novembre 1918 , F-69100 Villeurbanne , France.,Conservatoire National des Arts et Métiers, EPN 7 , 2 rue Conté , 75003 Paris , France
| |
Collapse
|
11
|
Hamami ZE, Vanoye L, Fongarland P, de Bellefon C, Favre-Réguillon A. Improved Reactor Productivity for the Safe Photo-Oxidation of Citronellol Under Visible Light LED Irradiation. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201800201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zine Eddine Hamami
- Univ Lyon Laboratoire de Génie des Procédés Catalytiques (UMR 5285) CPE Lyon; 43 boulevard du 11 Novembre 1918 F-69100 Villeurbanne France
| | - Laurent Vanoye
- Univ Lyon Laboratoire de Génie des Procédés Catalytiques (UMR 5285) CPE Lyon; 43 boulevard du 11 Novembre 1918 F-69100 Villeurbanne France
| | - Pascal Fongarland
- Univ Lyon Laboratoire de Génie des Procédés Catalytiques (UMR 5285) CPE Lyon; 43 boulevard du 11 Novembre 1918 F-69100 Villeurbanne France
| | - Claude de Bellefon
- Univ Lyon Laboratoire de Génie des Procédés Catalytiques (UMR 5285) CPE Lyon; 43 boulevard du 11 Novembre 1918 F-69100 Villeurbanne France
| | - Alain Favre-Réguillon
- Univ Lyon Laboratoire de Génie des Procédés Catalytiques (UMR 5285) CPE Lyon; 43 boulevard du 11 Novembre 1918 F-69100 Villeurbanne France
- Conservatoire National des Arts et Métiers EPN7-Equipe Chimie Générale; 2 rue Conté F-75003 Paris France
| |
Collapse
|
12
|
Sofack Kreutzer J, Vanoye L, Guicheret B, Philippe R, Metay E, Duclos MC, Lemaire M, De Bellefon C, Fongarland P, Favre-Réguillon A. Continuous flow aerobic alcohol oxidation using a heterogeneous Ru 0 catalyst. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00212f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Stable Ru0 on γ-Al2O3 has been used for the selective aerobic oxidation of benzyl alcohol in flow.
Collapse
|
13
|
Santoro S, Ferlin F, Ackermann L, Vaccaro L. C-H functionalization reactions under flow conditions. Chem Soc Rev 2019; 48:2767-2782. [PMID: 30942788 DOI: 10.1039/c8cs00211h] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
C-H functionalization technologies have progressed enormously in the last decade as testified by the great number of publications that have appeared in the literature, which are receiving great attention from researchers from different areas of expertise. While most of the protocols reported realize the C-H functionalization processes under batch conditions, there is a growing interest in the development of continuous-flow procedures aiming at increasing the performances of established methodologies or the definition of otherwise unfeasible transformations. This review summarizes the application of flow technologies for the realization of C-H functionalization reactions. According to the type of flow reactors necessary, two main general approaches are possible for the application of flow techniques, namely the use of homogeneous or heterogeneous conditions. Each example is discussed and accompanied by the description of the main features and benefits of the use of flow compared to batch conditions.
Collapse
Affiliation(s)
- Stefano Santoro
- Laboratory of Green S.O.C., Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, 8 - 06123 Perugia, Italy.
| | | | | | | |
Collapse
|
14
|
Karan D, Khan SA. Mesoscale triphasic flow reactors for metal catalyzed gas–liquid reactions. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00150f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Design and operation of a mesoscale triphasic reactor for flow hydrogenations, capable of delivering kg per day productivity from a single channel.
Collapse
Affiliation(s)
- Dogancan Karan
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- 117576 Singapore
| | - Saif A. Khan
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- 117576 Singapore
| |
Collapse
|
15
|
Hone CA, Kappe CO. The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow. Top Curr Chem (Cham) 2018; 377:2. [PMID: 30536152 PMCID: PMC6290733 DOI: 10.1007/s41061-018-0226-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 11/26/2022]
Abstract
Molecular oxygen (O2) is the ultimate “green” oxidant for organic synthesis. There has been recent intensive research within the synthetic community to develop new selective liquid phase aerobic oxidation methodologies as a response to the necessity to reduce the environmental impact of chemical synthesis and manufacture. Green and sustainable chemical processes rely not only on effective chemistry but also on the implementation of reactor technologies that enhance reaction performance and overall safety. Continuous flow reactors have facilitated safer and more efficient utilization of O2, whilst enabling protocols to be scalable. In this article, we discuss recent advancements in the utilization of continuous processing for aerobic oxidations. The translation of aerobic oxidation from batch protocols to continuous flow processes, including process intensification (high T/p), is examined. The use of “synthetic air”, typically consisting of less than 10% O2 in N2, is compared to pure O2 (100% O2) as an oxidant source in terms of process efficiency and safety. Examples of homogeneous catalysis and heterogeneous (packed bed) catalysis are provided. The application of flow photoreactors for the in situ formation of singlet oxygen (1O2) for use in organic reactions, as well as the implementation of membrane technologies, green solvents and recent reactor solutions for handling O2 are covered.
Collapse
Affiliation(s)
- Christopher A Hone
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering (RCPE), Inffeldgasse 13, 8010, Graz, Austria.,Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - C Oliver Kappe
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering (RCPE), Inffeldgasse 13, 8010, Graz, Austria. .,Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.
| |
Collapse
|
16
|
Yasukouchi H, Nishiyama A, Mitsuda M. Safe and Efficient Phosgenation Reactions in a Continuous Flow Reactor. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.7b00353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hiroaki Yasukouchi
- Pharma Research Group, Pharma & Supplemental Nutrition Solutions Vehicle, Kaneka Corporation, 1-8, Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688, Japan
| | - Akira Nishiyama
- Pharma Research Group, Pharma & Supplemental Nutrition Solutions Vehicle, Kaneka Corporation, 1-8, Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688, Japan
| | - Masaru Mitsuda
- Pharma Research Group, Pharma & Supplemental Nutrition Solutions Vehicle, Kaneka Corporation, 1-8, Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688, Japan
| |
Collapse
|
17
|
Vanoye L, Yehouenou L, Philippe R, de Bellefon C, Fongarland P, Favre-Réguillon A. Continuous flow oxidation of benzylic and aliphatic alcohols using bleach: process improvement by precise pH adjustment in flow with CO2. REACT CHEM ENG 2018. [DOI: 10.1039/c7re00155j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Commercial bleach neutralization using CO2 enhanced the oxidation rate of benzylic and aliphatic alcohols to their corresponding aldehydes and ketones.
Collapse
Affiliation(s)
- Laurent Vanoye
- Univ. Lyon
- Laboratoire de Génie des Procédés Catalytiques
- UMR 5285 CNRS
- CPE Lyon
- Université Claude Bernard Lyon 1
| | - Laurelle Yehouenou
- Univ. Lyon
- Laboratoire de Génie des Procédés Catalytiques
- UMR 5285 CNRS
- CPE Lyon
- Université Claude Bernard Lyon 1
| | - Régis Philippe
- Univ. Lyon
- Laboratoire de Génie des Procédés Catalytiques
- UMR 5285 CNRS
- CPE Lyon
- Université Claude Bernard Lyon 1
| | - Claude de Bellefon
- Univ. Lyon
- Laboratoire de Génie des Procédés Catalytiques
- UMR 5285 CNRS
- CPE Lyon
- Université Claude Bernard Lyon 1
| | - Pascal Fongarland
- Univ. Lyon
- Laboratoire de Génie des Procédés Catalytiques
- UMR 5285 CNRS
- CPE Lyon
- Université Claude Bernard Lyon 1
| | - Alain Favre-Réguillon
- Univ. Lyon
- Laboratoire de Génie des Procédés Catalytiques
- UMR 5285 CNRS
- CPE Lyon
- Université Claude Bernard Lyon 1
| |
Collapse
|
18
|
Plutschack MB, Pieber B, Gilmore K, Seeberger PH. The Hitchhiker's Guide to Flow Chemistry ∥. Chem Rev 2017; 117:11796-11893. [PMID: 28570059 DOI: 10.1021/acs.chemrev.7b00183] [Citation(s) in RCA: 1065] [Impact Index Per Article: 133.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Flow chemistry involves the use of channels or tubing to conduct a reaction in a continuous stream rather than in a flask. Flow equipment provides chemists with unique control over reaction parameters enhancing reactivity or in some cases enabling new reactions. This relatively young technology has received a remarkable amount of attention in the past decade with many reports on what can be done in flow. Until recently, however, the question, "Should we do this in flow?" has merely been an afterthought. This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts.
Collapse
Affiliation(s)
- Matthew B Plutschack
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kerry Gilmore
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
19
|
Hone CA, Roberge DM, Kappe CO. The Use of Molecular Oxygen in Pharmaceutical Manufacturing: Is Flow the Way to Go? CHEMSUSCHEM 2017; 10:32-41. [PMID: 27863103 DOI: 10.1002/cssc.201601321] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/12/2016] [Indexed: 06/06/2023]
Abstract
Molecular oxygen is arguably the greenest reagent available to the organic chemist. Most commonly, a diluted form of oxygen gas, consisting of less than 10 % O2 in N2 ("synthetic air"), is used in pharmaceutical and fine chemical batch manufacturing to effectively address safety concerns when handling molecular oxygen. Concentrations of O2 in N2 below 10 % are generally required to prevent the risk of combustions in the presence of flammable organic solvents ("limiting oxygen concentration"). Nonetheless, the use of pure oxygen is more efficient than using O2 diluted with N2 and can often provide enhanced reaction rates, resulting in significant improvements in product quality and process efficiency. This Concept takes into account recent studies to make the argument that, for liquid-phase aerobic oxidations, pure oxygen can indeed be handled safely on large scale by employing continuous-flow reactors, while also providing highly convincing synthetic and manufacturing benefits.
Collapse
Affiliation(s)
- Christopher A Hone
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010, Graz, Austria
- Research Center Pharmaceutical Engineering (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | | | - C Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010, Graz, Austria
- Research Center Pharmaceutical Engineering (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| |
Collapse
|
20
|
Yang L, Dietrich N, Hébrard G, Loubière K, Gourdon C. Optical methods to investigate the enhancement factor of an oxygen‐sensitive colorimetric reaction using microreactors. AIChE J 2016. [DOI: 10.1002/aic.15547] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lixia Yang
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP)Université de Toulouse, CNRS, INRA, INSAToulouse France
- Laboratoire de Génie Chimique LGCUniversité de Toulouse, CNRS, INPT, UPSToulouse France
- Fédération de Recherche FERMAT, CNRSToulouseF‐31400 France
| | - Nicolas Dietrich
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP)Université de Toulouse, CNRS, INRA, INSAToulouse France
- Fédération de Recherche FERMAT, CNRSToulouseF‐31400 France
| | - Gilles Hébrard
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP)Université de Toulouse, CNRS, INRA, INSAToulouse France
- Fédération de Recherche FERMAT, CNRSToulouseF‐31400 France
| | - Karine Loubière
- Laboratoire de Génie Chimique LGCUniversité de Toulouse, CNRS, INPT, UPSToulouse France
- Fédération de Recherche FERMAT, CNRSToulouseF‐31400 France
| | - Christophe Gourdon
- Laboratoire de Génie Chimique LGCUniversité de Toulouse, CNRS, INPT, UPSToulouse France
- Fédération de Recherche FERMAT, CNRSToulouseF‐31400 France
| |
Collapse
|
21
|
Vanoye L, Hamami ZE, Wang J, de Bellefon C, Fongarland P, Favre‐Réguillon A. Epoxidation of methyl oleate with molecular oxygen: Implementation of Mukaiyama reaction in flow. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Laurent Vanoye
- Univ LyonLaboratoire de Génie des Procédés Catalytiques UMR 5285VilleurbanneFrance
| | - Zine Eddine Hamami
- Univ LyonLaboratoire de Génie des Procédés Catalytiques UMR 5285VilleurbanneFrance
| | - Jiady Wang
- Univ LyonLaboratoire de Génie des Procédés Catalytiques UMR 5285VilleurbanneFrance
| | - Claude de Bellefon
- Univ LyonLaboratoire de Génie des Procédés Catalytiques UMR 5285VilleurbanneFrance
| | - Pascal Fongarland
- Univ LyonLaboratoire de Génie des Procédés Catalytiques UMR 5285VilleurbanneFrance
| | - Alain Favre‐Réguillon
- Univ LyonLaboratoire de Génie des Procédés Catalytiques UMR 5285VilleurbanneFrance
- Conservatoire National des Arts et MétiersCASER‐SITI, EP Chimie GénéraleParisFrance
| |
Collapse
|
22
|
Schachtner J, Bayer P, Jacobi von Wangelin A. A flow reactor setup for photochemistry of biphasic gas/liquid reactions. Beilstein J Org Chem 2016; 12:1798-1811. [PMID: 27829887 PMCID: PMC5082722 DOI: 10.3762/bjoc.12.170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/20/2016] [Indexed: 11/26/2022] Open
Abstract
A home-built microreactor system for light-mediated biphasic gas/liquid reactions was assembled from simple commercial components. This paper describes in full detail the nature and function of the required building elements, the assembly of parts, and the tuning and interdependencies of the most important reactor and reaction parameters. Unlike many commercial thin-film and microchannel reactors, the described set-up operates residence times of up to 30 min which cover the typical rates of many organic reactions. The tubular microreactor was successfully applied to the photooxygenation of hydrocarbons (Schenck ene reaction). Major emphasis was laid on the realization of a constant and highly reproducible gas/liquid slug flow and the effective illumination by an appropriate light source. The optimized set of conditions enabled the shortening of reaction times by more than 99% with equal chemoselectivities. The modular home-made flow reactor can serve as a prototype model for the continuous operation of various other reactions at light/liquid/gas interfaces in student, research, and industrial laboratories.
Collapse
Affiliation(s)
- Josef Schachtner
- Institute of Organic Chemistry, University of Regensburg, Universitaetsstr. 31, 93040 Regensburg, Germany
| | - Patrick Bayer
- Institute of Organic Chemistry, University of Regensburg, Universitaetsstr. 31, 93040 Regensburg, Germany
| | - Axel Jacobi von Wangelin
- Institute of Organic Chemistry, University of Regensburg, Universitaetsstr. 31, 93040 Regensburg, Germany
| |
Collapse
|
23
|
Lagerblom K, Wrigstedt P, Keskiväli J, Parviainen A, Repo T. Iron-Catalysed Selective Aerobic Oxidation of Alcohols to Carbonyl and Carboxylic Compounds. Chempluschem 2016; 81:1160-1165. [DOI: 10.1002/cplu.201600240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/04/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Kalle Lagerblom
- Department of Chemistry; University of Helsinki; A.I. Virtasen aukio 1 P.O. Box 55 00014 Helsinki Finland
| | - Pauli Wrigstedt
- Department of Chemistry; University of Helsinki; A.I. Virtasen aukio 1 P.O. Box 55 00014 Helsinki Finland
| | - Juha Keskiväli
- Department of Chemistry; University of Helsinki; A.I. Virtasen aukio 1 P.O. Box 55 00014 Helsinki Finland
| | - Arno Parviainen
- Department of Chemistry; University of Helsinki; A.I. Virtasen aukio 1 P.O. Box 55 00014 Helsinki Finland
| | - Timo Repo
- Department of Chemistry; University of Helsinki; A.I. Virtasen aukio 1 P.O. Box 55 00014 Helsinki Finland
| |
Collapse
|
24
|
Bay S, Baumeister T, Hashmi ASK, Röder T. Safe and Fast Flow Synthesis of Functionalized Oxazoles with Molecular Oxygen in a Microstructured Reactor. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00118] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sarah Bay
- Organisch-Chemisches
Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer
Feld 270, 69120 Heidelberg, Germany
| | - Tobias Baumeister
- Institute
of Chemical Process Engineering, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches
Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer
Feld 270, 69120 Heidelberg, Germany
- Chemistry
Department, Faculty of Science, King Abdulaziz University (KAU), 21589 Jeddah, Saudi Arabia
| | - Thorsten Röder
- Institute
of Chemical Process Engineering, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| |
Collapse
|
25
|
Bolivar JM, Tribulato MA, Petrasek Z, Nidetzky B. Let the substrate flow, not the enzyme: Practical immobilization of d
-amino acid oxidase in a glass microreactor for effective biocatalytic conversions. Biotechnol Bioeng 2016; 113:2342-9. [DOI: 10.1002/bit.26011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/15/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Juan M. Bolivar
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology; NAWI Graz; Petersgasse 12 Graz A-8010 Austria
| | - Marco A. Tribulato
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology; NAWI Graz; Petersgasse 12 Graz A-8010 Austria
| | - Zdenek Petrasek
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology; NAWI Graz; Petersgasse 12 Graz A-8010 Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology; NAWI Graz; Petersgasse 12 Graz A-8010 Austria
- Austrian Centre of Industrial Biotechnology (ACIB); Graz Austria
| |
Collapse
|
26
|
Vanoye L, Wang J, Pablos M, de Bellefon C, Favre-Réguillon A. Epoxidation using molecular oxygen in flow: facts and questions on the mechanism of the Mukaiyama epoxidation. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00309e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mukaiyama reaction was performed G/L continuous-flow microreactor. In less than 5 minutes at room temperature, cyclooctene was efficiently transformed to the corresponding epoxide using O2 as oxidant and aldehyde as co-reductant.
Collapse
Affiliation(s)
- Laurent Vanoye
- Univ Lyon
- Laboratoire de Génie des Procédés Catalytiques
- CPE Lyon
- F-69100 Villeurbanne
- France
| | - Jiady Wang
- Univ Lyon
- Laboratoire de Génie des Procédés Catalytiques
- CPE Lyon
- F-69100 Villeurbanne
- France
| | - Mertxe Pablos
- Univ Lyon
- Laboratoire de Génie des Procédés Catalytiques
- CPE Lyon
- F-69100 Villeurbanne
- France
| | - Claude de Bellefon
- Univ Lyon
- Laboratoire de Génie des Procédés Catalytiques
- CPE Lyon
- F-69100 Villeurbanne
- France
| | - Alain Favre-Réguillon
- Univ Lyon
- Laboratoire de Génie des Procédés Catalytiques
- CPE Lyon
- F-69100 Villeurbanne
- France
| |
Collapse
|
27
|
Gavriilidis A, Constantinou A, Hellgardt K, Hii KK(M, Hutchings GJ, Brett GL, Kuhn S, Marsden SP. Aerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industries. REACT CHEM ENG 2016. [DOI: 10.1039/c6re00155f] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This collaborative review (between teams of chemists and chemical engineers) describes the current scientific and operational hurdles that prevent the utilisation of aerobic oxidation reactions for the production of speciality chemicals and active pharmaceutical ingredients (APIs).
Collapse
Affiliation(s)
| | | | - Klaus Hellgardt
- Department of Chemistry
- Department of Chemical Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | - King Kuok (Mimi) Hii
- Department of Chemistry
- Department of Chemical Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | | | | | - Simon Kuhn
- Department of Chemical Engineering
- KU Leuven
- B-3001 Leuven
- Belgium
| | - Stephen P. Marsden
- School of Chemistry and Institute of Process Research and Development
- University of Leeds
- Leeds LS2 9JT
- UK
| |
Collapse
|