1
|
Abstract
Humanity’s growing dependence on non-renewable resources and the ensuing environmental impact thus generated have spurred the search for alternatives to replace chemicals and energy obtained from petroleum derivatives. Within the group of biofuels, biodiesel has managed to expand worldwide at considerable levels, going from 20 million tn/year in 2010 to 47 million tn/year in 2022, boosting the supply of glycerol, a by-product of its synthesis that can be easily used as a renewable, clean, low-cost raw material for the manufacture of products for the chemical industry. The hydrogenolysis of glycerol leads to the production of glycols, 1,2-propylene glycol (1,2-PG) and 1,3-propylene glycol (1,3-PG). In particular, 1,3-PG has the highest added value and has multiple uses including its application as an additive in the polymer industry, the manufacture of cosmetics, cleaning products, cooling liquids, etc. This review focuses on the study of the hydrogenolysis of glycerol for the production of 1,3-PG, presenting the main reaction mechanisms and the catalysts employed, both in liquid and vapor phase. Engineering aspects and the effect of the operating variables to achieve maximum yields are discussed. Finally, studies related to the stability and the main deactivation mechanisms of catalytic systems are presented.
Collapse
|
2
|
Mai CT, Ye Y, Rempel GL, Ng FT. A novel one-step synthesis of 1-propanol from hydrogenolysis of glycerol using a Ni-HSiW/Al2O3 catalyst – The impact of H2 pressure on catalyst performance. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Folkard AL, Farahani MD, Mahomed AS, Friedrich HB. Sustainable selective propanol production via continuous flow conversion of glycerol over synergistic bifunctional catalysts: An exploration into factors affecting activity. ChemCatChem 2022. [DOI: 10.1002/cctc.202200602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Nakagawa Y, Kuwata A, Yamaguchi K, Tamura M, Yabushita M, Tomishige K. Adsorption of Keggin-Type Polyoxometalates on Rh Metal Particles under Reductive Conditions. Inorg Chem 2021; 60:12413-12424. [PMID: 34323068 DOI: 10.1021/acs.inorgchem.1c01644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The adsorption of POMs on Rh/SiO2 in water solvent under strongly reductive conditions was investigated. Aqueous solutions of α-Keggin type silicotungstate and silicovanadotungstates were mixed with Rh/SiO2 at 393-473 K under 1 MPa of H2. Monovanadium-substituted silicotungstate, α-SiVW11O405- (SiVW11), was more readily adsorbed than nonsubstituted silicotungstate, α-SiW12O404- (SiW12). After adsorption at 433 K, SiVW11 was desorbed from Rh/SiO2 by oxidation with Br2 water without change of the Keggin structure, as evidenced by 51V NMR. Trivanadium-substituted silicotungstate, α-1,2,3-SiV3W9O407-, was not stable, and the desorbed species from Rh/SiO2 by oxidation with Br2 did not maintain the Keggin structure. The very high temperature for adsorption (473 K) also led to the decomposition of the Keggin structure of SiVW11. An increase in the concentration of SiVW11 in the liquid phase gave a saturation of the amount of desorbable SiVW11, up to five SiVW11 anions per one Rh particle with a 3 nm size. The elemental analysis and W L3-edge extended X-ray absorption fine structure of Rh/SiO2 after the adsorption of SiVW11 showed that a part of SiVW11 was decomposed and irreversibly adsorbed as metallic W species incorporated into the surface of Rh metal particles. The amount of decomposed SiVW11 was almost the same as that of SiVW11 adsorbed as the original Keggin structure. The desorbable SiVW11 was probably bonded on the W atom incorporated on the Rh metal particles as the two-electron-reduced form (α-SiVIIIW11O407-).
Collapse
Affiliation(s)
- Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.,Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Ayaka Kuwata
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Kosuke Yamaguchi
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Masazumi Tamura
- Research Center for Artificial Photosynthesis, Advanced Research Institute for Natural Science and Technology, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.,Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
5
|
Wu F, Jiang H, Zhu X, Lu R, Shi L, Lu F. Effect of Tungsten Species on Selective Hydrogenolysis of Glycerol to 1,3-Propanediol. CHEMSUSCHEM 2021; 14:569-581. [PMID: 33219614 DOI: 10.1002/cssc.202002405] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/19/2020] [Indexed: 06/11/2023]
Abstract
Glycerol, as the major byproduct of biodiesel industry, is a cheap and green chemical feedstock. Following the expanded production of biodiesel, the oversupply of glycerol has led to increasing research of the catalytic conversion of glycerol. The selective hydrogenolysis of glycerol is an economical and sustainable way to produce 1,3-propanediol, which experiences a global growing demand, and valorize glycerol. However, the secondary hydroxy group of glycerol is sterically hindered by two primary hydroxy groups. As a result, 1,2-propanediol is the preferential product rather than 1,3-propanediol during conventional hydrogenolysis of glycerol. Currently, tungsten-containing bifunctional catalysts with metal and Brønsted acid sites are considered as a highly effective and atom-economical catalytic system for the selective hydrogenolysis of glycerol to 1,3-propanediol. Therefore, this Minireview summarized various tungsten-containing bifunctional catalysts for the hydrogenolysis of glycerol in detail and deeply discussed the relationship between tungsten species, metal active sites, and glycerol for selectively producing 1,3-propanediol.
Collapse
Affiliation(s)
- Fengliang Wu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
| | - Huifang Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuhai Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
| | - Rui Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
| | - Lei Shi
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, P. R. China
| | - Fang Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, P. R. China
| |
Collapse
|
6
|
Effect of FSP-inserted Cu on Physicochemical Properties of Cu/Al2O3 Catalyst. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2020. [DOI: 10.9767/bcrec.15.3.8193.641-652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The copper inserted on Cu/Al2O3 catalysts with various Cu loading (10-40 wt%) were synthesized via flame spray pyrolysis (FSP). These catalysts were characterized using X-ray diffraction (XRD), N2 physisorption, temperature programmed reduction (TPR) and X-ray absorption near edge spectroscopy (XANES). The XRD results confirmed the formation of copper aluminate spinel (CuAl2O4) on the FSP-inserted Cu catalyst. The CuO crystallite size of the Cu/Al2O3 catalysts was increased with increasing Cu loading during the flame spray pyrolysis step. The incorporation of copper and aluminum precursors during the flame spray pyrolysis step can inhibit the growth of Al2O3 particles resulting in higher BET surface area and smaller particle size than pure Al2O3 support. The data from TPR and XANES results can predict the ratio of CuO and CuAl2O4 in the FSP-made support. Less than 20 wt% loading of the FSP-inserted Cu showed high concentration of CuAl2O4 phase in the FSP-made material. The composition of CuO and CuAl2O4 phase can be controlled by varying Cu loading in flame spray pyrolysis step. This is a promising alternative way to synthesize the desired catalyst. An example was the catalytic testing of the selective hydrogenolysis of glycerol. The presence of both CuO and CuAl2O4 phases in the Cu/Al2O3 catalyst enhanced the catalytic activity and promoted the selectivity to acetol product. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
7
|
Liu H, Han J, Huang Q, Shen H, Lei L, Huang Z, Zhang Z, Zhao ZK, Wang F. Catalytic Hydrodeoxygenation of Methyl Stearate and Microbial Lipids to Diesel-Range Alkanes over Pd/HPA-SiO 2 Catalysts. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Huifang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Jianyu Han
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qitian Huang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Hongwei Shen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Lijun Lei
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Zhipeng Huang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhixin Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Zongbao K. Zhao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| |
Collapse
|
8
|
Bhowmik S, Darbha S. Advances in solid catalysts for selective hydrogenolysis of glycerol to 1,3-propanediol. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2020.1794737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Susmita Bhowmik
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| | - Srinivas Darbha
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| |
Collapse
|
9
|
Guadix-Montero S, Santos-Hernandez A, Folli A, Sankar M. Effect of support acidity during selective hydrogenolysis of glycerol over supported palladium-ruthenium catalysts. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20200055. [PMID: 32623993 PMCID: PMC7422897 DOI: 10.1098/rsta.2020.0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
We report the role of the acidity of support during the selectivity hydrogenolysis of glycerol over supported bimetallic palladium-ruthenium (PdRu) catalysts. The PdRu nanoparticles were supported on a series of metal oxides and zeolitic supports via the modified impregnation method and tested for the liquid-phase hydrogenolysis of glycerol using gaseous hydrogen. The relative acid site densities of selected catalysts were determined by ammonia temperature-programmed desorption and pyridine desorption experiments. Based on these studies, we report a direct correlation between the catalytic activity (conversion and 1,2 propane diol yield) and two different acid sites (strong acid sites and very strong acid sites). Besides zeolite-supported catalysts, TiO2 supported PdRu nanoparticles exhibit moderate catalytic activity; however, this catalyst shows high selectivity for the desired C-O bond cleavage to produce C3 products over the undesired C-C bond cleavage to produce < C3 products. This article is part of a discussion meeting issue 'Science to enable the circular economy'.
Collapse
Affiliation(s)
- Susana Guadix-Montero
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Alba Santos-Hernandez
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Andrea Folli
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | | |
Collapse
|
10
|
Abstract
The objective of the present work is to achieve high yield to 1-propanol (1-POH) by crude glycerol hydrogenolysis in liquid phase and find an alternative to the use of noble metals by employing Ni catalysts. Two Ni catalysts with different supports, alumina (γ-Al2O3), and a phosphorous-impregnated carbon composite (CS-P) were studied and characterized in order to determine their acid properties and metallic phases. With the Ni/γ-Al2O3 catalyst, which presented small particles of metallic Ni interacting with the acid sites of the support, it was possible to obtain a complete conversion of crude glycerol with high selectivity towards 1,2-propylene glycol (1,2 PG) (87%) at 220 °C whereas with the Ni/CS-P catalyst, the presence of AlPOx species and the Ni2P metallic phase supplied acidity to the catalyst, which promoted the C-O bond cleavage reaction of the secondary carbon of 1,2 PG to obtain 1-POH with very high selectivity (71%) at 260 °C. It was found that the employment of two consecutive reaction stages (first with Ni/ γ-Al2O3 at 220 °C and then with Ni/CS-P at 260 °C) allows reaching levels of selectivity and a yield to 1-POH (79%) comparable to noble metal-based catalysts.
Collapse
|
11
|
Production of propylene glycol (propane-1,2-diol) in vapor phase over Cu–Ni/γ-Al2O3 catalyst in a down flow tubular reactor: effect of catalyst calcination temperature and kinetic study. REACTION KINETICS MECHANISMS AND CATALYSIS 2019. [DOI: 10.1007/s11144-019-01582-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Tarazanov SV, Grigor’eva EV, Titarenko MA, Klimov NA, Ershov MA, Nikul’shin PA. Furfural Dipropyl Acetal as a New Fuel Additive: Synthesis and Properties. RUSS J APPL CHEM+ 2019. [DOI: 10.1134/s107042721812008x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Perspective on catalyst development for glycerol reduction to C3 chemicals with molecular hydrogen. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3481-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
|
15
|
Mai CT, Ng FT. Effect of Cs+ on the hydrogenolysis of glycerol to higher value sustainable and green chemicals using a supported Ni-HSiW catalyst. Catal Today 2017. [DOI: 10.1016/j.cattod.2017.02.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|